Introduction to Bioinformatics

Systems biology: modeling biological
networks



Systems biology

p Study of "whole biological systems”

p "Wholeness”: Organization of dynamic
Interactions

n Different behaviour of the individual parts
when isolated or when combined together

n Systems cannot be fully understood by
analysis of their components in isolation

-- Ludwig von Bertalanffy, 1934
(according to Zvelebil & Baum)



Outline

p 1. Systems biology and biological networks
n Transcriptional regulation
n Metabolism
n Signalling networks
n Protein interactions

p 2. Modeling frameworks
n Continuous and discrete models
n Static and dynamic models

p 3. ldentification of models from data



1. Systems biology

p Systems biology — biology of networks

n Shift from component-centered biology to systems of
Interacting components

Ribosomes  CYtoplasm

Cell wall

ial F I
Capsule Bacterial Flagellum

DMA (nucleoid)

Plasma membrane

=

f (, r

———

Prokaryotic cell

Eukaryaotic cell

)

Mariana Ruiz, Magnus Manske



http://en.wikipedia.org/wiki/Cell_(biology)

Interactions within the cell

p Density of biomolecules in
the cell is high: plenty of
Interactions!

p Figure shows a cross-
section of an Escherichia
coli cell

n Green: cell wall

n Blue, purple: cytoplasmic
area

n Yellow: nucleoid region
n White: mRNA

David S. Goodsell


http://mgl.scripps.edu/people/goodsell/illustration/public

Paradigm shift from study of individual
components to systems
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Paradigm shift from study of individual
components to systems
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Biological systems of networks
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Transcriptional regulation
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Metabolism
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Signal transduction
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Protein interaction networks

p Protein interaction is the unifying theme of all
regulation at the cellular level

p Protein interaction occurs in every cellular system
Including systems introduced earlier

p Data on protein interaction reveals associations
both within a system and between systems



Proteln interaction




2. Graphs as models of biological
networks

p A graph is a natural model for biological systems of
networks

p Nodes of a graph represent biomolecules, edges
Interactions between the molecules

p Graph can be undirected or directed

O

p To address questions beyond simple connectivity
(node degree, paths), one can enrich the graph Q
models with information relevant to the modeling
task at hand \ |

O



Enriching examples: transcriptional

regulation
2 1 3
p Regulatory effects can be
(roughly) divided into l
n activation T ‘ Activathr Repressor
~ inhibition i O [
p We can encode this O
distinction by labeling the
edges by '+’ and ’-’, for gene 2
example O O
p Graph models of gene 1 / ActivaticV
transcriptional regulation
are called gene(tic) Q ‘ .
regulatory networks \ \Inh'b't'on

O O

gene 3



Enriching examples: more transcriptional
regulation

o DNA synthesis

A gene regulatory network might be enriched further:
In this diagram, proteins working cooperatively as
regulators are marked with a black circle.

This network is a simplified part of cell cycle regulation.



Frameworks for biological network
modeling

p A variety of information can be encoded in graphs

p Modeling frameworks can be categorised based
on what sort of information they include
n Continuous and/or discrete variables?
n Static or dynamic model? (take time into account?)
n Spatial features? (consider the physical location
molecules in the cell?)
p Choice of framework depends on what we want
to do with the model:
n Data exploration
n Explanation of observed behaviour
n Prediction



Static models Dynamic models

Discrete
variables

Continuous
variables
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Dynamic models: differential equations

p In a differential equation model

n variables x;, correspond to the concentrations of
biological molecules

n change of variables over time is governed by rate
equations,

dxi/d, = f.(xX), 1 <1 <n

p In general, f,(x) Is an arbitrary function (not
necessarily Ilnear)

p Note that the graph structure is encoded by
parameters to functions f;(x)



Properties of a differential equation
model

p The crucial step in specifying the model is
to choose functions f;(x) to balance

n model complexity (number of parameters)
n level of detall

p Overly complex model may need more
data than is available to specify



Example of a differential equation model of
transcriptional regulation

p Let X be the concentration of the target gene
product

p A simple kinetic (i.e., derived from reaction
mechanics) model could take into account
n multiple regulators of target gene and
n degradation of gene products

and assume that regulation effects are
Independent of each other



Example of a differential equation model of
transcriptional regulation

p Rate equation for change of x could then be

dr . 1
dt - 1+ E}EP[_ Ej=1...m Wity & bjl

— kg.’lf

where k; is the maximal rate of transcription of
the gene, k, iIs the rate constant of target gene
degradation, w; Is the regulatory weight of
regulator j and y;is the concentration of
regulator j

Number of parameters?



Differential equation model for
metabolism

p Likewise, rate equations can be derived for
differential equation models for metabolism

p For simple enzymes, two parameters might be
enough

p Realistic modeling of some enzyme requires
knowledge of 10-20 parameters

p Such data is usually not available in high-
throughput manner
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Biochemical systems theory (BST)

p BST is a modeling framework, where differential
rate equations are restricted to the following
power-law form,

Py 1L
dr; - i
d L H £5
where

n q; is the rate constant for molecule i and
n g; Is a kinetic constant for molecule I and reaction

p BST approximates the kinetic system and
requires less parameters than the genetic kinetic
model




Static models Dynamic models
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Steady-state modeling

p Is the study of steady-states meaningful?

p If we assume dx;/dt = O, we restrict ourselves to
systems, where the production of a molecule is
balanced by its consumption

© O metabolite In a metabolic steady-state, these two
________________ -~ enzymes consume and produce
/’{ “““““ ~ the metabolite in the middle at the same rate
@ o o
NSNS

O @ o @-o
/ \ ./ enzyme
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Constraint-based modeling

10 o2
o Constraint-based \ /S
modeling is a linear (D
framework, where the /N
system is assumed to 3'\ 4/‘ °®
be in a steady-state ) @ —0o—@—o
p Model is represented VRN / 9 10
by a stoichiometric 6@ 7@ 8@
matrix S, where S;; L2134
gives the number of 11 S; = 0if value
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Constraint-based modeling

p Since variables x; are constant, the questions
asked now deal with reaction rates

p For instance, we could characterise solutions to
the linear steady-state condition, which can be
written in matrix notation as

Sv=0
p Solutions v are reaction rate vectors, which for

example reveal alternative pathways inside the
network
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Discrete models: Boolean networks

p Boolean networks have been widely used in
modeling gene regulation

n Switch-like behaviour of gene regulation resembles logic
circuit behaviour

n Conceptually easy framework: models easy to interpret
n Boolean networks extend naturally to dynamic modeling



Boolean networks

A Boolean network
G(V, F) contains

p Nodes V = {Xq, ..., X},
Xi=0orx, =1
p Boolean functions

F=Af, .., T}

p Boolean function f; is AT ]
assigned to node X;

cyclinE

p21

Logic diagram
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Dynamics In Boolean networks

p Dynamic behaviour can be simulated

p State of a variable x; at time t+1 is calculated by
function f; with input variables at time t

p Dynamics are deterministic: state of the network
at any time depends only on the state at time O.



Example of Boolean network dynamics

p Consider a Boolean network with 3 variables x,,
X, and X5 and functions given by

n X; 1= X, and Xg

n X, 1= NOt X, t |x1 X2 X3
a 0lo 0 0
N Xg 1= X4 OF X, 11 o 1 5
210 1 1
31 0) 1
4 10 0) 1




Problems with Boolean networks

p 0/1 modeling is unrealistic In many cases

p Deterministic Boolean network does not cope well
with missing or noisy data

p Many Boolean networks to choose from —
specifying the model requires a lot of data
n A Boolean function has n parameters, or inputs
n Each input is O or 1 => 2" possible input states

n The function is specified by input states for which
f(x) = 1 == 2™(2™n) possible Boolean functions
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3. Model identification from data

p We would like to learn a model from the data
such that the learned model
n Explains the observed data
n Predicts the future data well

p Generalization property: model has a good
tradeoff between a good fit to the data and
model simplicity



Three steps In learning a model

p Representation: choice of modeling framework,
how to encode the data into the model

n Restricting models: number of inputs to a Boolean
function, for example

p Optimization: choosing the "best” model from the
framework

N Structure, parameters
p Validation: how can one trust the inferred model?



Conclusions

p Graph models are important tools in systems
biology

p Choice of modeling framework depends on the
properties of the system under study

p Particular care should be paid to dealing with
missing and incomplete data - choice of the
framework should take the quality of data into
account
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