
Introduction to Bioinformatics

Systems biology: modeling biological
networks



Systems biology
p Study of ”whole biological systems”
p ”Wholeness”: Organization of dynamic

interactions
n Different behaviour of the individual parts

when isolated or when combined together
n Systems cannot be fully understood by

analysis of their components in isolation

-- Ludwig von Bertalanffy, 1934
(according to Zvelebil & Baum)



Outline
p 1. Systems biology and biological networks

n Transcriptional regulation
n Metabolism
n Signalling networks
n Protein interactions

p 2. Modeling frameworks
n Continuous and discrete models
n Static and dynamic models

p 3. Identification of models from data



1. Systems biology
p Systems biology – biology of networks

n Shift from component-centered biology to systems of
interacting components

Prokaryotic cell

Eukaryotic cell

http://en.wikipedia.org/wiki/Cell_(biology)
Mariana Ruiz, Magnus Manske

http://en.wikipedia.org/wiki/Cell_(biology)


Interactions within the cell
p Density of biomolecules in

the cell is high: plenty of
interactions!

p Figure shows a cross-
section of an Escherichia
coli cell
n Green: cell wall
n Blue, purple: cytoplasmic

area
n Yellow: nucleoid region
n White: mRNA

http://mgl.scripps.edu/people/goodsell/illustration/public
David S. Goodsell

http://mgl.scripps.edu/people/goodsell/illustration/public


Paradigm shift from study of individual
components to systems
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Paradigm shift from study of individual
components to systems
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Biological systems of networks



Transcriptional regulation

gene

regulatory
region

transcription factor

co-operative
regulation

microarray
experiments

Gene product (protein)



Metabolism

enzyme

metabolite



Signal transduction
signal molecule & receptor

activated relay molecule

inactive
signaling
protein

active
signaling
protein

end product of the
signaling cascade
(activated enzyme)



Protein interaction networks
p Protein interaction is the unifying theme of all

regulation at the cellular level
p Protein interaction occurs in every cellular system

including systems introduced earlier
p Data on protein interaction reveals associations

both within a system and between systems



Protein interaction



2. Graphs as models of biological
networks
p A graph is a natural model for biological systems of

networks
p Nodes of a graph represent biomolecules, edges

interactions between the molecules
p Graph can be undirected or directed

p To address questions beyond simple connectivity
(node degree, paths), one can enrich the graph
models with information relevant to the modeling
task at hand



Enriching examples: transcriptional
regulation
p Regulatory effects can be

(roughly) divided into
n activation
n inhibition

p We can encode this
distinction by labeling the
edges by ’+’ and ’-’, for
example

p Graph models of
transcriptional regulation
are called gene(tic)
regulatory networks

Activation

Inhibition

gene 1

gene 2

gene 3

2 1 3

Repressor
Activator



Enriching examples: more transcriptional
regulation

A gene regulatory network might be enriched further:
In this diagram, proteins working cooperatively as
regulators are marked with a black circle.

This network is a simplified part of cell cycle regulation.



Frameworks for biological network
modeling
p A variety of information can be encoded in graphs
p Modeling frameworks can be categorised based

on what sort of information they include
n Continuous and/or discrete variables?
n Static or dynamic model? (take time into account?)
n Spatial features? (consider the physical location

molecules in the cell?)

p Choice of framework depends on what we want
to do with the model:
n Data exploration
n Explanation of observed behaviour
n Prediction



Static models Dynamic models

Discrete
variables

Continuous
variables



Static models Dynamic models

Discrete
variables

Continuous
variables

Plain graphs

Bayesian networks

(Probablistic)
Boolean networks

Stochastic simulation

Dynamic Bayesian
networks

Biochemical systems
theory (in steady-state)

Metabolic control
analysis

Constraint-based
models

Differential equations

Biochemical systems
theory (general)



Static models Dynamic models

Discrete
variables

Continuous
variables

Plain graphs

Bayesian networks

(Probablistic)
Boolean networks

Stochastic simulation

Dynamic Bayesian
networks

Biochemical systems
theory (in steady-state)

Metabolic control
analysis

Constraint-based
models

Differential equations

Biochemical systems
theory (general)



Dynamic models: differential equations
p In a differential equation model

n variables xi correspond to the concentrations of
biological molecules;

n change of variables over time is governed by rate
equations,

dxi/dt = fi(x), 1 i n

p In general, fi(x) is an arbitrary function (not
necessarily linear)

p Note that the graph structure is encoded by
parameters to functions fi(x)



Properties of a differential equation
model
p The crucial step in specifying the model is

to choose functions fi(x) to balance
n model complexity (number of parameters)
n level of detail

p Overly complex model may need more
data than is available to specify



Example of a differential equation model of
transcriptional regulation

p Let x be the concentration of the target gene
product

p A simple kinetic (i.e., derived from reaction
mechanics) model could take into account
n multiple regulators of target gene and
n degradation of gene products

and assume that regulation effects are
independent of each other



Example of a differential equation model of
transcriptional regulation

p Rate equation for change of x could then be

where k1 is the maximal rate of transcription of
the gene, k2 is the rate constant of target gene
degradation, wj is the regulatory weight of
regulator j and yj is the concentration of
regulator j

Number of parameters?



Differential equation model for
metabolism
p Likewise, rate equations can be derived for

differential equation models for metabolism
p For simple enzymes, two parameters might be

enough
p Realistic modeling of some enzyme requires

knowledge of 10-20 parameters
p Such data is usually not available in high-

throughput manner
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Biochemical systems theory (BST)
p BST is a modeling framework, where differential

rate equations are restricted to the following
power-law form,

where
n i is the rate constant for molecule i and
n gij is a kinetic constant for molecule i and reaction j

p BST approximates the kinetic system and
requires less parameters than the genetic kinetic
model
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Interestingly, if we assume that the concentrations
are constant over time (steady-state), an analytical
solution can be found to a BST model.

But then we throw away the dynamics of the system!



Steady-state modeling
p Is the study of steady-states meaningful?
p If we assume dxi/dt = 0, we restrict ourselves to

systems, where the production of a molecule is
balanced by its consumption

enzyme

metabolite In a metabolic steady-state, these two
enzymes consume and produce
the metabolite in the middle at the same rate
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Constraint-based modeling
p Constraint-based

modeling is a linear
framework, where the
system is assumed to
be in a steady-state

p Model is represented
by a stoichiometric
matrix S, where Sij
gives the number of
molecules of type i
produced in reaction j
in a time unit.
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Constraint-based modeling
p Since variables xi are constant, the questions

asked now deal with reaction rates
p For instance, we could characterise solutions to

the linear steady-state condition, which can be
written in matrix notation as

Sv = 0
p Solutions v are reaction rate vectors, which for

example reveal alternative pathways inside the
network
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Discrete models: Boolean networks
p Boolean networks have been widely used in

modeling gene regulation
n Switch-like behaviour of gene regulation resembles logic

circuit behaviour
n Conceptually easy framework: models easy to interpret
n Boolean networks extend naturally to dynamic modeling



Boolean networks
A Boolean network

G(V, F) contains
p Nodes V = {x1, …, xn},

xi = 0 or xi = 1
p Boolean functions

F = {f1, …, fn}
p Boolean function fi is

assigned to node xi

NOT AND

Logic diagram
for activity of
Rb



Dynamics in Boolean networks
p Dynamic behaviour can be simulated
p State of a variable xi at time t+1 is calculated by

function fi with input variables at time t
p Dynamics are deterministic: state of the network

at any time depends only on the state at time 0.



Example of Boolean network dynamics
p Consider a Boolean network with 3 variables x1,

x2 and x3 and functions given by
n x1 := x2 and x3

n x2 :=  not x3

n x3 := x1 or x2

t  x1   x2   x3
0  0    0    0
1  0    1    0
2  0    1    1
3  1    0    1
4  0    0    1

...



Problems with Boolean networks
p 0/1 modeling is unrealistic in many cases
p Deterministic Boolean network does not cope well

with missing or noisy data
p Many Boolean networks to choose from –

specifying the model requires a lot of data
n A Boolean function has n parameters, or inputs
n Each input is 0 or 1 => 2n possible input states
n The function is specified by input states for which

f(x) = 1 => 2^(2^n) possible Boolean functions
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3. Model identification from data
p We would like to learn a model from the data

such that the learned model
n Explains the observed data
n Predicts the future data well

p Generalization property: model has a good
tradeoff between a good fit to the data and
model simplicity



Three steps in learning a model
p Representation: choice of modeling framework,

how to encode the data into the model
n Restricting models: number of inputs to a Boolean

function, for example

p Optimization: choosing the ”best” model from the
framework
n Structure, parameters

p Validation: how can one trust the inferred model?



Conclusions
p Graph models are important tools in systems

biology
p Choice of modeling framework depends on the

properties of the system under study
p Particular care should be paid to dealing with

missing and incomplete data - choice of the
framework should take the quality of data into
account
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