Introduction to Bioinformatics

Systems biology: modeling biological networks

Systems biology

- p Study of "whole biological systems"
- p "Wholeness": Organization of dynamic interactions
 - n Different behaviour of the individual parts when isolated or when combined together
 - n Systems cannot be fully understood by analysis of their components in isolation

-- Ludwig von Bertalanffy, 1934 (according to Zvelebil & Baum)

Outline

p 1. Systems biology and biological networks

- n Transcriptional regulation
- n Metabolism
- n Signalling networks
- n Protein interactions
- p 2. Modeling frameworks
 - n Continuous and discrete models
 - n Static and dynamic models
- p 3. Identification of models from data

1. Systems biology

- p Systems biology biology of networks
 - n Shift from component-centered biology to systems of interacting components

Interactions within the cell

http://mgl.scripps.edu/people/goodsell/illustration/public David S. Goodsell

- p Density of biomolecules in the cell is high: plenty of interactions!
- Figure shows a crosssection of an Escherichia coli cell
 - n Green: cell wall
 - n Blue, purple: cytoplasmic area
 - n Yellow: nucleoid region
 - n White: mRNA

Paradigm shift from study of individual components to systems

Paradigm shift from study of individual components to systems

Biological systems of networks

Transcriptional regulation

Metabolism

Protein interaction networks

- Protein interaction is the unifying theme of all regulation at the cellular level
- Protein interaction occurs in every cellular system including systems introduced earlier
- p Data on protein interaction reveals associations both within a system and between systems

Protein interaction

2. Graphs as models of biological networks

- p A graph is a natural model for biological systems of networks
- P Nodes of a graph represent biomolecules, edges interactions between the molecules
- p Graph can be undirected or directed
- p To address questions beyond simple connectivity (node degree, paths), one can *enrich* the graph models with information relevant to the modeling task at hand

Enriching examples: transcriptional regulation

- Regulatory effects can be (roughly) divided into
 - n activation
 - n inhibition
- P We can encode this distinction by labeling the edges by '+' and '-', for example
- p Graph models of transcriptional regulation are called gene(tic) regulatory networks

Enriching examples: more transcriptional regulation

A gene regulatory network might be enriched further: In this diagram, proteins working cooperatively as regulators are marked with a black circle.

This network is a simplified part of cell cycle regulation.

Frameworks for biological network modeling

- p A variety of information can be encoded in graphs
- Modeling frameworks can be categorised based on what sort of information they include
 - n Continuous and/or discrete variables?
 - n Static or dynamic model? (take time into account?)
 - Spatial features? (consider the physical location molecules in the cell?)
- p Choice of framework depends on what we want to do with the model:
 - n Data exploration
 - n Explanation of observed behaviour
 - n Prediction

	Static models	Dynamic models	
Discrete variables			
Continuous variables			

	Static models	Dynamic models	
Discrete variables	Plain graphs	Stochastic simulation	
	(Probablistic) Boolean networks		
	— Bayesian networks —	Dynamic Bayesian networks	
Continuous	Biochemical systems theory (in steady-state)	Differential equations	
variables	Metabolic control analysis	Biochemical systems	
	Constraint-based models		

	Static models	Dynamic models	
Discrete variables	Plain graphs	Stochastic simulation	
	(Probablistic) Boolean networks		
Continuous variables	— Bayesian networks —	Dynamic Bayesian networks	
	Biochemical systems theory (in steady-state)	Differential equations	
	Metabolic control analysis	Biochemical systems	
	Constraint-based models	(general)	

Dynamic models: differential equations

p In a differential equation model

- n variables x_i correspond to the concentrations of biological molecules;
- n change of variables over time is governed by rate equations,

 $dx_i/d_t = f_i(x), \ 1 \le i \le n$

- P In general, f_i(x) is an arbitrary function (not necessarily linear)
- P Note that the graph structure is encoded by parameters to functions f_i(x)

Properties of a differential equation model

p The crucial step in specifying the model is to choose functions f_i(x) to balance n model complexity (number of parameters) n level of detail

p Overly complex model may need more data than is available to specify

Example of a differential equation model of transcriptional regulation

- P Let x be the concentration of the target gene product
- p A simple kinetic (i.e., derived from reaction mechanics) model could take into account
 - n multiple regulators of target gene and
 - n degradation of gene products

and assume that regulation effects are independent of each other

Example of a differential equation model of transcriptional regulation

P Rate equation for change of x could then be

$$\frac{dx}{dt} = k_1 \frac{1}{1 + \exp(-\sum_{j=1...m} w_j y_j + b)} - k_2 x$$

where k_1 is the maximal rate of transcription of the gene, k_2 is the rate constant of target gene degradation, w_j is the regulatory weight of regulator j and y_j is the concentration of regulator j

Number of parameters?

Differential equation model for metabolism

- p Likewise, rate equations can be derived for differential equation models for metabolism
- P For simple enzymes, two parameters might be enough
- P Realistic modeling of some enzyme requires knowledge of 10-20 parameters
- p Such data is usually not available in highthroughput manner

	Static models	Dynamic models
Discrete variables	Plain graphs	Stochastic simulation
	(Probablistic) Boolean networks	
Continuous variables	— Bayesian networks —	Dynamic Bayesian networks
	Biochemical systems theory (in steady-state)	Differential equations
	Metabolic control analysis	Biochemical systems
	Constraint-based models	(general)

Biochemical systems theory (BST)

p BST is a modeling framework, where differential rate equations are restricted to the following power-law form,

$$\frac{dx_i}{dt} = \alpha_i \prod_{j=1}^n x_j^{g_{ij}}$$

where

 $\mathbf{n} \mathbf{a}_{i}$ is the rate constant for molecule i and

n g_{ij} is a kinetic constant for molecule i and reaction j

p BST approximates the kinetic system and requires less parameters than the genetic kinetic model

Steady-state modeling

- p Is the study of steady-states meaningful?
- p If we assume dx_i/dt = 0, we restrict ourselves to systems, where the production of a molecule is balanced by its consumption

In a metabolic steady-state, these two enzymes consume and produce the metabolite in the middle at the same rate

	Static models	Dynamic models
Discrete variables	Plain graphs	Stochastic simulation
	(Probablistic) Boolean networks	
Continuous variables	— Bayesian networks —	Dynamic Bayesian networks
	Biochemical systems theory (in steady-state)	Differential equations
	Metabolic control analysis	Biochemical systems
	Constraint-based models	

Constraint-based modeling

- p Constraint-based modeling is a linear framework, where the system is assumed to be in a steady-state
- p Model is represented by a stoichiometric matrix S, where S_{ij} gives the number of molecules of type i produced in reaction j in a time unit.

Constraint-based modeling

- p Since variables x_i are constant, the questions asked now deal with reaction rates
- P For instance, we could characterise solutions to the linear steady-state condition, which can be written in matrix notation as

Sv = 0

p Solutions v are reaction rate vectors, which for example reveal alternative pathways inside the network

Discrete models: Boolean networks

- p Boolean networks have been widely used in modeling gene regulation
 - n Switch-like behaviour of gene regulation resembles logic circuit behaviour
 - n Conceptually easy framework: models easy to interpret
 - n Boolean networks extend naturally to dynamic modeling

Boolean networks

- A Boolean network G(V, F) contains
- p Nodes V = $\{x_1, ..., x_n\}$, x_i = 0 or x_i = 1
- p Boolean functions

$$F = \{f_1, ..., f_n\}$$

p Boolean function f_i is assigned to node x_i

Dynamics in Boolean networks

- p Dynamic behaviour can be simulated
- P State of a variable x_i at time t+1 is calculated by function f_i with input variables at time t
- p Dynamics are deterministic: state of the network at any time depends only on the state at time 0.

Example of Boolean network dynamics

- p Consider a Boolean network with 3 variables x₁, x₂ and x₃ and functions given by
 - $\mathbf{n} \mathbf{x}_1 := \mathbf{x}_2 \text{ and } \mathbf{x}_3$

$$x_2 := not x_3$$

$$x_3 := x_1 \text{ or } x_2$$

t	x1	$\mathbf{x}2$	x3
0	0	0	0
1	0	1	0
2	0	1	1
3	1	0	1
4	0	0	1

Problems with Boolean networks

- p 0/1 modeling is unrealistic in many cases
- p Deterministic Boolean network does not cope well with missing or noisy data
- Many Boolean networks to choose from specifying the model requires a lot of data
 - n A Boolean function has n parameters, or inputs
 - n Each input is 0 or $1 = > 2^n$ possible input states
 - n The function is specified by input states for which $f(x) = 1 = > 2^{(2^n)}$ possible Boolean functions

3. Model identification from data

- P We would like to learn a model from the data such that the learned model
 - n Explains the observed data
 - n Predicts the future data well
- p Generalization property: model has a good tradeoff between a good fit to the data and model simplicity

Three steps in learning a model

- P Representation: choice of modeling framework, how to encode the data into the model
 - Restricting models: number of inputs to a Boolean function, for example
- p Optimization: choosing the "best" model from the framework

n Structure, parameters

Validation: how can one trust the inferred model?

Conclusions

- p Graph models are important tools in systems biology
- P Choice of modeling framework depends on the properties of the system under study
- Particular care should be paid to dealing with missing and incomplete data - choice of the framework should take the quality of data into account

References and further reading

- P Florence d'Alché-Buc and Vincent Schachter: Modeling and identification of biological networks. In Proc. Intl. Symposium on Applied Stochastic Models and Data Analysis, 2005.
- p Marketa Zvelebil and Jeremy O. Baum: Understanding bioinformatics. Garland Science, 2008.
- P Hiroaki Kitano: Systems Biology: A Brief Overview. Science 295, 2002.
- Marie E. Csete and John C. Doyle: Reverse engineering of biological complexity. Science 295, 2002.
- p James M. Bower and Hamid Bolouri (eds): Computational Modeling of Genetic and Biochemical Networks. MIT Press, 2001.