Stoichiometric network analysis

In stoichiometric analysis of metabolic networks, one concerns the effect of the network structure on the behaviour and capabilities of metabolism.

Questions that can be tackled include:

- Discovery of pathways that carry a distinct biological function (e.g. glycolysis) from the network, discovery of dead ends and futile cycles, dependent subsets of enzymes
- Identification of optimal and suboptimal operating conditions for an organism
- ► Analysis of network flexibility and robustness, e.g. under gene knockouts

Stoichiometric coefficients

Soitchiometric coefficients denote the proportion of substrate and product molecules involved in a reaction. For example, for a reaction

$$r: A+B \mapsto 2C$$

the *stoichiometric coefficients* for A, B and C are -1, -1 and 2, respectively.

- Assignment of the coefficients is not unique: we could as well choose -1/2, -1/2, 1 as the coefficients
- ► However, the relative sizes of the coeefficients remain in any valid choice.
- Note! We will denote both the name of a metabolite and its concentration by the same symbol.

Reaction rate and concentration vectors

- Let us assume that our metabolic network has the reactions $\mathcal{R} = \{R_1, R_2, \dots, R_r\}$
- ▶ Let the reaction R_i operate with rate v_i
- We collect the individual reaction rates to a *rate vector* $\mathbf{v} = (v_1, \dots, v_r)^T$
- ▶ Similarly, the *concentration vector* $X(t) = (X_1(t), ..., X_m(t))^T$ contains the concentration of each metabolite in the system (at time t)

Stoichiometric vector and matrix

- ► The stoichiometric coefficients of a reaction are collected to a vector s_r
- ► In s_r there is a one position for each metabolite in the metabolic system
- ► The stoichiometric co-efficient of the reaction are inserted to appropriate positions, e.g. for the reaction

$$r: A + B \mapsto 2C$$

$$s_r = egin{array}{c} \cdot & 0 \\ 0 \\ A \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ C \end{array}$$

Stoichiometric matrix

- The stoichiometric vectors can be combined into the stoichiometric matrix S.
- In the matrix S, the is one row for each metabolite M₁, dots, Mm and one column for each reaction R₁,..., Rr.
- ► The coefficients s_{*j} along the j'th column are the

stoichiometric coeefficients of of the reaction j.

$$\mathbf{S} = \begin{bmatrix} s_{11} & \cdots & s_{1j} & \cdots & s_{1r} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ s_{i1} & \cdots & s_{ij} & \cdots & s_{ir} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ s_{m1} & \cdots & s_{mj} & \cdots & s_{mr} \end{bmatrix}$$

Systems equations

In a network of m metabolites and r reactions, the dynamics of the system are characterized by the systems equations

$$\frac{dX_i}{dt} = \sum_{j=1}^r s_{ij} v_j, \text{ for } i = 1, \dots, m$$

- \triangleright X_i is the concentration of the *i*th metabolite
- v_j is the rate of the jth reaction and
- ▶ s_{ij} is the stoichiometric coefficient of ith metabolite in the jth reaction.

Intuitively, each system equation states that the rate of change of concentration of a is the sum of metabolite flows to and from the metabolite.

Systems equations in matrix form

▶ The systems equation can be expressed in vector form as

$$\frac{dX_i}{dt} = \sum_{j=1}^r s_{ij} v_j = S_i^T \mathbf{v},$$

where S_i contains the stoichiometric coefficients of a single metabolite, that is a row of the stoichiometric matrix

▶ All the systems equations of different equations together can then be expressed by a matrix equation

$$\frac{d\mathbf{X}}{dt} = S\mathbf{v},$$

Above, the vector

$$\frac{d\mathbf{X}}{dt} = \left(\frac{d\mathbf{X}_1}{dt}, \dots, \frac{d\mathbf{X}_n}{dt}\right)^T$$

collects the rates of concentration changes of all metabolites

Steady state analysis

- Most applications of stoichiometric matrix assume that the system is in so called steady state
- In a steady state, the concentrations of metabolites remain constant over time, thus the derivative of the concentration is zero:

$$\frac{dX_i}{dt} = \sum_{j=1}^r s_{ij} v_j = 0, \text{ for } i = 1, \dots, n$$

► The requires the production to equal consumption of each metabolite, which forces the reaction rates to be invariant over time.

Steady state analysis and fluxes

- ▶ The steady-state reaction rates $v_j, j = 1, ..., r$ are called the fluxes
- ► Note: Biologically, live cells do not exhibit true steady states (unless they are dead)
- ▶ In suitable conditions (e.g. continuous bioreactor cultivations) steady-state can be satisfied approximately.
- Pseudo-steady state or quasi-steady state are formally correct terms, but rarely used

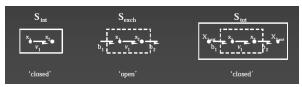
$$\frac{dX_i}{dt} = \sum_{j=1}^r s_{ij} v_j = 0, \text{ for } i = 1, \dots, n$$

Defining the system boundary

When analysing a metabolic system we need to consider what to include in our system

We have the following choices:

- 1. Metabolites and reactions internal to the cell (leftmost picture)
- 2. (1) + exchange reactions transporting matter accross the cell membrane (middle picture)
- 3. (1) + (2) + Metabolites outside the cell (rightmost picture)



(Picture from Palsson: Systems Biology, 2006)

System boundary and the total stoichiometric matrix

The placement of the system boundary reflects in the stoichiometric matrix that will partition into four blocks:

$$\mathbf{S} = \begin{bmatrix} S_{II} & S_{IE} \\ 0 & S_{EE} \end{bmatrix}$$

- ► *S*_{II} : contains the stoichiometric coefficients of internal metabolites w.r.t internal reactions
- S_{IE}: coefficients of internal metabolites in exchange reactions i.e. reactions transporting metabolites accross the system boundary
- $\gt S_{EI}(=0)$: coefficients of external metabolites w.r.t internal reactions; always identically zero
- ► *S_{EE}* : coefficients of external metabolites w.r.t exchange reactions; this is a diagonal matrix.

Exchange stoichiometrix matrix

In most applications handled on this course we will not consider external compounds

- The (exchange) stoichiometric matrix, containing the internal metabolites and both internal and exchange reactions, will be used
- Our metabolic system will be then open, containing exhange reactions of type A ⇒, and ⇒ B

$$\mathbf{S} = \begin{bmatrix} S_{II} & S_{IE} \end{bmatrix}$$



System boundary and steady state analysis

► Exchange stoichiometric matrix is used for steady state analysis for a reason: it will not force the external metabolites to satisfy the steady state condition

$$\frac{dX_i}{dt} = \sum_{j=1}^r s_{ij}v_j = 0, \text{ for } i = 1, \dots, n$$

- Requiring steady state for external metabolites would drive the rates of exchange reactions to zero
- ► That is, in steady-state, no transport of substrates into the system or out of the system would be possible!

Internal stoichiometrix matrix

- ► The internal stoichiometric matrix, containing only the internal metabolites and internal reactions can be used for analysis of conserved pools in the metabolic system
- ► The system is closed with no exchange of material to and from the system

$$\mathbf{S} = [S_{II}]$$

System boundary of our example system

- Our example system is a closed one: we do not have exchange reactions carrying to or from the system.
- ▶ We can change our system to an open one, e..g by introducing a exchange reaction $R_8 :⇒ \alpha G6P$ feeding $\alpha G6P$ into the system and another reaction $R_9 : X5P \Rightarrow$ to push X5P out of the system

```
R_1: \beta G6P + NADP^+ \stackrel{zwf}{\Rightarrow} 6PGL + NADPH
R_2: 6PGL + H_2O \stackrel{pgl}{\Rightarrow} 6PG
R_3: 6PG + NADP^+ \stackrel{gnd}{\Rightarrow} R5P + NADPH
R_4: R5P \stackrel{rpe}{\Rightarrow} X5P
R_5: \alpha G6P \stackrel{gpi}{\Leftrightarrow} \beta G6P
R_6: \alpha G6P \stackrel{gpi}{\Leftrightarrow} \beta F6P
R_7: \beta G6P \stackrel{gpi}{\Leftrightarrow} \beta F6P
```

Example

The stoichiometric matrix of our extended example contains two extra columns, corresponding to the exchange reactions

 $R_8:\Rightarrow \alpha G6P$ and $R_9:X5P\Rightarrow$

Steady state analysis, continued

▶ The requirements of non-changing concentrations

$$\frac{dX_i}{dt} = \sum_{j=1}^r s_{ij} v_j = 0, \text{ for } i = 1, \dots, n$$

constitute a set of linear equations constraining to the reaction rates v_i .

We can write this set of linear constraints in matrix form with the help of the stoichiometric matrix S and the reaction rate vector v

$$\frac{d\mathbf{X}}{dt} = S\mathbf{v} = \mathbf{0},$$

► A reaction rate vector **v** satisfying the above is called the *flux* vector.

Null space of the stoichiometrix matrix

▶ Any flux vector **v** that the cell can maintain in a steady-state is a solution to the homogeneous system of equations

$$S\mathbf{v}=\mathbf{0}$$

By definition, the set

$$\mathcal{N}(S) = \{\mathbf{u}|S\mathbf{u} = 0\}$$

contains all valid flux vectors

- In linear algebra N(A) is referred to as the null space of the matrix A
- ► Studying the null space of the stoichiometric matrix can give us important information about the cell's capabilities

Null space of the stoichiometric matrix

The null space $\mathcal{N}(S)$ is a linear vector space, so all properties of linear vector spaces follow, e.g.:

- $ightharpoonup \mathcal{N}(S)$ contains the zero vector, and closed under linear combination: $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{N}(S) \implies \alpha_1 \mathbf{v}_1 + \alpha \mathbf{v}_2 \in \mathcal{N}(S)$
- ▶ The null space has a basis $\{\mathbf{k}_1, \dots, \mathbf{k}_q\}$, a set of $q \leq \min(n, r)$ linearly independent vectors, where r is the number of reactions and n is the number of metabolites.
- ▶ The choice of basis is not unique, but the number *q* of vector it contains is determined by the rank of *S*.

Null space and feasible steady state rate vectors

- ▶ The kernel $K = (\mathbf{k}_1, \dots, \mathbf{k}_q)$ of the stoichiometric matrix formed by the above basis vectors has a row corresponding to each reaction. (Note: the term 'kernel' here has no relation to kernel methods and SVMs)
- ▶ K characterizes the feasible steady state reaction rate vectors: for each feasible flux vector \mathbf{v} , there is a vector $\mathbf{b} \in \mathbb{R}^q$ such that $K\mathbf{b} = \mathbf{v}$
- In other words, any steady state flux vector is a linear combination

$$b_1\mathbf{k}_1+\cdots+b_q\mathbf{k}_q$$

of the basis vectors of $\mathcal{N}(S)$.

Identifying dead ends in metabolism

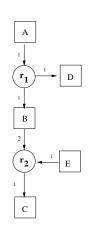
- ► From the matrix K, one can identify reactions that can only have zero rate in a steady state.
- Such reactions may indicate a dead end: if the reaction is not properly connected the rest of the network, the reaction cannot operate in a steady state
- Such reactions necessarily have the corresponding row K_j identically equal to zero, $K_j = 0$

Proof outline

- ▶ This can be easily proven by contradiction using the the equation $K\mathbf{b} = \mathbf{v}$:
- Assume reaction R_j is constrained to have zero rate in steady state, but assume for some i, $k_{ji} \neq 0$.
- ▶ Then we can pick the *i*'th basis vector of K as the feasible solution $\mathbf{v} = \mathbf{k}_i$.
- ▶ Then $v_j = k_{ji} \neq 0$ and the jth reaction has non-zero rate in a steady state.

Enzyme subsets

- An enzyme subset is a group of enzymes which, in a steady state, must always operate together so that their reaction rates have a fixed ratio.
- Consider a pair of reactions R₁ and R₂ in the metabolic network that form a linear sequence.

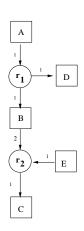


Enzyme subsets

▶ Let *B* be a metabolite that is an intermediate within the pathway produced by *R*₁ and consumed by *R*₂ for which the steady-state assumption holds. Due to the steady state assumption, it must hold true that

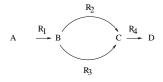
$$v_1 s_{i1} + v_2 s_{i2} = 0$$
 giving $v_2 = -v_1 s_{i1} / s_{i2}$.

► That is, the rates of the two reactions are linearly dependent.



Enzyme subsets

- Also other than linear pathways may be force to operate in 'lock-step'.
- ▶ In the figure, R1 and R4 form an enzyme subset, but R2 and R3 are not in that subset.



Identifying enzyme subsets

- ▶ Enzyme subsets are easy to recognize from the matrix *K*: the rows corresponding to an enzyme subset are scalar multiples of each other.
- ▶ That is, there is a constant α that satisfies $K_j = \alpha K_{j'}$ where K_j denotes the j'th row of the kernel matrix K
- ▶ This is again easy to see from the equation

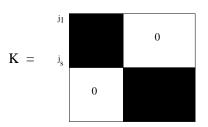
$$K\mathbf{b} = \mathbf{v}$$
.

Proof outline

- Assume that reactions along rows j, j' in K correspond to an enzyme subset.
- Now assume contrary to the claim that the rows are not scalar multiples of each other. Then we can find a pair of columns i, i', where $K_{ji} = \alpha K_{j'i}$ and $K_{ji'} = \beta K_{j'i'}$ and $\alpha \neq \beta$.
- ▶ Both columns i, i' are feasible flux vectors. By the above, the rates of j and j' differ by factor α in the flux vector given by the column i and by factor β in the flux vector given by the column i'.
- ▶ Thus the ratio of reaction rates of j, j' can vary and the reactions are not force to operate with a fixed ratio, which is a contradiction.

Independent components

- Finally, the matrix K can be used to discover subnetworks that can work independently from the rest of the metabolism, in a steady state.
- Such components are characterized by a block-diagonal $K: K_{ji} \neq 0$ for a subset of rows (j_1, \ldots, j_s) and a subset of columns (i_1, \ldots, i_t) .
- ▶ Given such a block we can change b_{i_1}, \ldots, b_{i_t} freely, and that will only affect v_{i_1}, \ldots, v_{i_s}



Example: Null space of PPP

 Consider again the set of reactions from the penthose-phospate pathway

```
R_1: \beta G6P + NADP^+ \stackrel{zwf}{\Rightarrow} 6PGL +
NADPH
                                                                                              S =
R_2: 6PGL + H<sub>2</sub>O \stackrel{pgl}{\Rightarrow} 6PG
                                                                                         BG6P
R_3: 6PG + NADP<sup>+</sup> \stackrel{gnd}{\Rightarrow} R5P + NADPH
                                                                                          \alpha G6P
R_4: R5P \stackrel{rpe}{\Rightarrow} X5P
                                                                                          BF6P
                                                                                          6PGL
R_5: \alpha G6P \stackrel{gpi}{\Leftrightarrow} \beta G6P
                                                                                           6PG
R_6: \alpha G6P \stackrel{gpi}{\Leftrightarrow} \beta F6P
                                                                                           R5P
                                                                                           X5P
R_7: \betaG6P \stackrel{gpi}{\Leftrightarrow} \betaF6P
                                                                                        NADP^+
R_8 :\Rightarrow \alpha G6P
                                                                                        NADPH
                                                                                           H<sub>2</sub>O
R_0: X5P \Rightarrow
```

Null space of PPP

Null space of this system has only one vector

$$K = (0,0,0,0,0.5774,-0.5774,0.5774,0,0,0)^T$$

- Thus, in a steady state only reactions R₅, R₆ and R₇ can have non-zero fluxes.
- ► The reason for this is that there are no producers of NADP⁺ or H₂O and no consumers of NADPH.
- ► Thus our PPP is effectively now a dead end!

```
R_1: \beta G6P + NADP^+ \stackrel{zwf}{\Rightarrow} 6PGL + NADPH
R_2: 6PGL + H_2O \stackrel{pgl}{\Rightarrow} 6PG
R_3: 6PG + NADP^+ \stackrel{gnd}{\Rightarrow} R5P + NADPH
R_4: R5P \stackrel{rpe}{\Rightarrow} X5P
R_5: \alpha G6P \stackrel{gri}{\Rightarrow} \beta G6P
R_6: \alpha G6P \stackrel{gri}{\Rightarrow} \beta F6P
R_7: \beta G6P \stackrel{gri}{\Rightarrow} \beta F6P
R_8 : \Rightarrow \alpha G6P
R_9 : X5P \Rightarrow
```

Null space of PPP

To give our PPP non-trivial (fluxes different from zero) steady states, we need to modify our system

- ▶ We add reaction R_{10} :⇒ H_2O as a water source
- ▶ We add reaction R_{11} : NADPH \Rightarrow NADP⁺ to regenerate NADP⁺ from NADPH.
- We could also have removed the metabolites in question to get the same effect

```
\begin{array}{l} R_1 \colon \beta \mathsf{G6P} + \mathsf{NADP}^+ \xrightarrow{\mathit{zwf}} \mathsf{6PGL} + \mathsf{NADPH} \\ R_2 \colon \mathsf{6PGL} + \mathsf{H}_2\mathsf{O} \xrightarrow{\mathit{pgl}} \mathsf{6PG} \\ R_3 \colon \mathsf{6PG} + \mathsf{NADP}^+ \xrightarrow{\mathit{gnd}} \mathsf{R5P} + \mathsf{NADPH} \\ R_4 \colon \mathsf{R5P} \xrightarrow{\mathit{pg}} \mathsf{X5P} \\ R_5 \colon \alpha \mathsf{G6P} \xrightarrow{\mathit{gpl}} \beta \mathsf{G6P} \\ R_6 \colon \alpha \mathsf{G6P} \xrightarrow{\mathit{gpl}} \beta \mathsf{F6P} \\ R_7 \colon \beta \mathsf{G6P} \xrightarrow{\mathit{gpl}} \beta \mathsf{F6P} \\ R_8 \coloneqq \alpha \mathsf{G6P} \\ R_9 \colon \mathsf{X5P} \Rightarrow \\ R_{10} \colon \Rightarrow \mathsf{H}_2\mathsf{O} \\ R_{11} \colon \mathsf{NADPH} \Rightarrow \mathsf{NADP}^+ \end{array}
```

Enzyme subsets of PPP

From the kernel, we can immediately identify enzyme subsets that operate with fixed flux ratios in any steady state:

- ▶ reactions $\{R_1 R_4, R_8 R_{11}\}$ are one subset: R_{11} has double rate to all the others
- ► {R₆, R₇} are another: R₆ has the opposite sign of R₇
- R₅ does not belong to non-trivial enzyme subsets, so it is not forced to operate in lock-step with other reactions

	_	_
	0.2727	0.1066
	0.2727	0.1066
	0.2727	0.1066
	0.2727	0.1066
	0.3920	-0.4667
K =	-0.1193	0.5733
	0.1193	-0.5733
	0.2727	0.1066
	0.2727	0.1066
	0.2727	0.1066
	0.5454	0.2132
	-	_