
Phylogeny inferencePhylogeny inference

Studying evolutionary relatedness among various groups of organisms
(species, populations),  through molecular sequence data  (and also through
morphological data).

The course Phylogenetic data analysis (period IV, 2010) is an in-depth
course on this topic

The link: http://evolution.genetics.washington.edu/phylip/software.html
shows that this field of science is an exceptionally popular one, 385 software
packages at the moment.

The most widely used are PHYLIP, PAUP, MEGA, MrBAYES

This lecture starts by a demo with MEGA4 (http://www.megasoftware.net/)
and exercise session 5  relates to getting started with (easy) phylogeny
reconstructions
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Basic concepts and termsBasic concepts and terms
________________________________________________________________________________________

Leaves, external nodes 1,2,3,4,5 are
observations which may be, depending on the
situation, sequences from different  species,
populations etc. They are often called OTUs =
Operational Taxonomic Units. Internal nodes
6,7,8 are hypothetical sequences in ancestral
units

The tree is unrooted.

In case evidence exists for depicting the
root  (for example, a or b), a rooted three
can be constructed.

For example, is there is data
from different human populations
and from chimpanzee, this animal
is an outgroup and a means
for rooting a tree

Rooting requires
external evidence and
cannot be done on the basis of the data which
is under a given study.
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3

Number of possible rooted and unrooted treesNumber of possible rooted and unrooted trees

n Bn b’n
3 1 3

4 3 15

5 15 105

6 105 945

7 954 10395

8 10395 135135

9 135135 2027025

10 2027025 34459425

20 2.22E+020 8.20E+021

30 8.69E+036 4.95E+038

The number of unrooted trees
bn = (2(n – 1) – 3)bn-1 = (2n – 5)bn-1 = (2n – 5) * (2n – 7) * …* 3 * 1  = (2n – 5)! / ((n-3)!2n-3), n > 2

Number of rooted trees b’n is
b’n = (2n – 3)bn = (2n – 3)! / ((n-2)!2n-2),     n > 2

that is, the number of unrooted trees times the number of branches in the trees
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Maximum parsimonyMaximum parsimony

EntitiaEntitia nonnon suntsunt multiplicandamultiplicanda praeterpraeter necessitatemnecessitatem

Discrete character states, the shortest pathway leading to these is
chosen as the best tree. A model-free method.

Parsimony, Occam´s razor, a philosophical concept, “the best hypothesis is
the one requiring the smallest number of assumptions”.

William of Ockham (1280William of Ockham (1280--1350)1350)
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Parsimony analyses have been used from the early 1970s.

The principle of maximum parsimony: identification of a tree topology/topologies
that require the smallest number of evolutionary changes, i.e. transformations of one
character state into another, to explain the differences among OTUs (operational
taxonomic units).

The goal of minimizing evolutionary change is often defended on philosophical
grounds: when two hypotheses provide equally valid explanations for a phenomenon,
the simpler one should always be  preferred.

Two subproblems:
(1) determining the amount of character change, or tree length, required by any

given tree
(2) searching over all possible tree topologies for the trees that minimize this length.
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Informative and uninformative sites
______________________________________________

1   2   3   4   5   6   7   8   9
OTU a A   A   G   A   G   T   T   C   A
OTU b A   G   C   C   G   T   T   C   T
OTU c A   G   A   T   A   T   C   C   A
OTU d A   G   A   G   A   T   C   C   T

+       +       +

Four OTUs,  three possible unrooted trees: I, II, III
tree I ((a,b),(c,d)) tree II ((a,c),(b,d))        tree III ((a,d),(b,c))

site 3 a G A c        a G                  C b        a G                  C b
G A                           A      A                            A      A

b C                   A d c A                  A d        d A                   A c

site 5       a G A c        a G                  G b        a G                  G b
G      A                             A      A                          A      A

b G                   A d        c A                  A d        d A                   A c

site 9      a A A c         a A                  T b         a A                  T b
T       T                            A      T                           T      T

b T                    T d         c A                  T d         d T                   A c

A site is informative only when there are at least two different kinds of
nucleotides at the site, each of which is represented in at least two OTUs

A nucleotide site is informative
only if it favors a subset of trees
over the other possible trees.
Invariant (1, 6, 8 in the picture)
and uninformative sites are not
considered.

Variable sites:

Site 2  is  uninformative because
all three possible  trees require  1
evolutionary change, G ->A.

Site 3 is  uninformative because
all trees require 2  changes.

Site 4  is uninformative because
all trees require 3 changes.

Site 5  is informative because
tree I requires one change, trees II
and III require three changes
Site 7  is informative, like site 5

Site 9  is informative  because tree
II requires one change, trees I and
III require two.
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Inferring the maximum parsimony treeInferring the maximum parsimony tree
____________________________________________________________________________________________________

Identification of all informative sites and for  each possible tree the minimum number of
substitutions at each informative site is calculated.

In the example for sites 5, 7 and 9:
tree I requires 1, 1, and 2 changes
tree II requires 2, 2, and 1 changes
tree III requires 2, 2, and 2 changes.

Summing the number of  changes over all the informative sites for each possible tree and
chosing the tree associated with the smallest number of changes:

Tree I is chosen because it requires 4 changes, II and III require 5 and 6 changes.

In the case of 4 OTUs an informative site can favor only one of the three possible
alternative trees. For example, site 5 favors tree I over trees II and III, and is thus said to
support tree I. The tree supported by the largest number of informative sites is the most
parsimonious tree. In the cases where more than 4 OTUs are involved, an informative site
may favor more than one tree and the maximum parsimony tree may not necessarily be the
one supported by the largest number of informative sites.
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Exhaustive and heuristic searching for the maximum parsimony treeExhaustive and heuristic searching for the maximum parsimony tree
______________________________________________________________________________________________________________________

The total number of substitutions at both informative and uninformative sites in a
particular tree is called the tree length.

When the number of OTUs is small, it is possible to look at all possible trees, determine
their length, and choose among them the shortest one(s) = exhaustive search.

Large number of sequences (more than about 12) makes exhaustive searches
impossible.

Short-cut algorithms,  for example ´branch-and-bound´: First an arbitrary tree is
considered  (or a tree obtained by another methods, for example some distance method),
and compute the minimum  number of substitutions for the this tree, which is considered
as the “upper bound” to which the length of any other tree is compared. The rationale is
that the maximum parsimony tree must be either equal in length to this tree or shorter.

Above 20 sequences  heuristic searches are needed:  only a manageable subset of all the
possible trees is examined. Branch swapping (rearrangement) is used to generate
topologically similar trees from a initial one. Subtree pruning and regrafting is one method.
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This picture is modified from : Zvelebid&Baum, Understanding
Bioinformatics, 2008,  Garland Science,  Page 277.

Flow–diagram including the
different steps in building
phylogenetic trees .

Phylogeny reconstructionPhylogeny reconstruction
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Distance matrix methodsDistance matrix methods
NeighborNeighbor--joining phylogeny by MEGAjoining phylogeny by MEGA--softwaresoftware

Introduction to getting started with phylogenies in practice:
exercise session 5 with MEGA-software
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Introduced in 1960´s, based on clustering algorithms of Sokal and Sneath (1963,
Principles of numerical taxonomy).

Calculatation of a measure of the distance between each pair of units (for
example, species) and then finding a tree that predicts the observed set of
distances as closely as possible.

The data is reduced to a matrix table of pairwise distances, which can be
considered as estimates of the branch length separating a given pair of units
compared.

Each distance infers the best unrooted tree for a given pair of units. In effect,
there is a number of estimated two-unit trees, and finding the n-unit tree that is
implied is the task.

The individual distances are not exactly the path lengths in the full n-unit tree
between two units: finding the full tree that does the best job of approximating
the individual two-unit trees.
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Distances in a phylogenetic treeDistances in a phylogenetic tree
__________________________________________________________________________________________________________________

Distance matrix D = (dij) gives pairwise distances for leaves of the phylogenetic tree

In addition, the phylogenetic tree will now specify distances between leaves and internal nodes

Distances dij in evolutionary context satisfy the following conditions:
Symmetry: dij = dji for each i, j
Distinguishability: dij  0 if and only if i  j
Triangle inequality: dij  dik + dkj for each i, j, k
Distances satisfying these conditions are called metric
In addition, evolutionary mechanisms may impose additional constraints on the
distances: additive and ultrametric distances

A tree is called additive, if the distance between any pair of leaves (i, j) is the sum of the
distances between the leaves and a node k on the shortest path from i to j in the tree

dij = dik + djk

A rooted additive tree is called an ultrametric tree, if the distances between any two leaves i
and j, and their common ancestor k are equal

dik = djk

Edge length dij corresponds to the time elapsed since divergence of i and j from the common
parent ,i.e.  edge lengths are measured by a ”molecular clock” with a constant rate
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Ultrametric treeUltrametric tree
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Only vertical segments of the tree have
correspondence to some distance dij:

Horizontal segments act as connectors.
d8,9

Distances to be ultrametric can be found by the three-point condition:
D corresponds to an ultrametric tree if and only if for any three species
(OTUs)   i, j and k, the  distances satisfy       dij  max(dik, dkj)

dik = djk for any two
leaves i, j and any
ancestor k of i and j

Three-point
condition: there are
no leafs i, j for which
dij > max(dik, djk)
for some leaf k.
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UPGMA  algorithmUPGMA  algorithm

Unweighted Pair Group Method using arithmetic Averages, constructs an ultrametric
phylogenetic tree via clustering

The algorithm works by at the same time merging two clusters and creating a new node on the
tree. The tree is built from leaves towards the root.

NeighborNeighbor--joining algorithmjoining algorithm

Neighbor joining has similarities to UPGMA, Differences in the choice of function f(C1, C2) and
how to assign the distances

Find clusters C1 and C2 that minimise a function f(C1, C2)
Join the two clusters C1 and C2 into a new cluster C
Add a node to the tree corresponding to C
Assign distances to the new branch

The distance dij for clusters Ci and Cj is

Let u(Ci) be the separation of cluster Ci from other clusters defined by
where n is the number of clusters.

Instead of trying to choose the clusters Ci and Cj closest to each other, neighbor joining
at the same time

Minimises the distance between clusters Ci and Cj and
Maximises the separation of both Ci and Cj from other clusters
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This picture is from : Zvelebid&Baum, Understanding Bioinformatics, 2008,
Garland Science, Page 279.

UPGMA-method,
a worked example

Tree reconstruction from six sequences, A-F.
(A) The distance matrix showing that A and D are closest. They
are selected in the first step to produce internal node V (in (B)).
(B) The distance matrix including node V from which it can be
deduced that V and E are closest, resulting in internal node W.
(C,D) Subsequent steps defining nodes X, Y and Z and resulting
in the final tree (E).
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This picture is from : 277. Zvelebid&Baum, Understanding Bioinformatics,
2008,  Garland Science,  Page  281.

Fitch-Margoliash method, NOTE: This
distance-method  not in MEGA-software

(A) In the first step the shortest distance is used to identify
the two clusters (A,C)  which are combined to create the next
internal node. A temporary cluster (W) is defined as all
clusters except these two, and the distances calculated from
W to both A and C. The method then uses equations b1 = ½(d

AB + d AC – d BC,   b 2 = ½(d AB + d BC – d AC), b 3 = ½(d AC + d BC – D

AB) to calculate  the branch lengths from A and C to the
internal node that connects them. (B) A and C are combined
into the cluster X and the distances calculated from the other
clusters. After identifying B and X as the next clusters to be
combined to create cluster Z, the temporary cluster Y contains
all other sequences. X is the distance b3 from the new internal
node, and the distance between the internal nodes is b4.
Branch length b4 is negative (not realistic); in future
calculations this branch is treated like

all others. (C) Combining sequences A,B and C
into cluster Z, the sequences D and E are
added to the tree in the final step. (D) The final
tree has a negative branch length. The tables
give the patristic distances (those measurer on
the tree itself) and the errors (eij). The tree has
a wrong topology,

as becomes clear with the neighbor-
joining tree from the same data.
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This picture is from : Zvelebid&Baum, Understanding Bioinformatics, 2008,
Garland Science,  Page 284.

Neighbor-joining method,
a worked example

The distance matrix is the same as in the Fitch-Margoliash
example.
At each step the distances are converted by using the algorithm
which minimizes the total tree distance (the minimum evolution
principle).

The first step:

(A) Star-tree in which all sequences are joined directly to a
single internal node X with no internal branches.

(B)   After sequences 1 and 2 have been identified as the first
pair of nearest-neighbors, they are separated from node X
by  and internal node Y. The method calculates the brabch
lengths from sequences 1 and 2 to node Y to complete the
step.
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Parameters of nucleotide changeParameters of nucleotide change

____________________________________________________________________________________________________________________________________

One-parameter model, the ´Jukes-Cantor model´

Assumption: nucleotide substitutions occur with equal probabilites, 

The rate of substitution for each nucleotide is 3  per unit time

A   T   C   G

A            

T            

C      

G      

At time 0:  A at a certain nucleotide site, PA(0) = 1
Question: probability that this site is occupied by A at time t , PA(t) ?
At time 1, probability of still having A at this site is

PA(1) = 1 - 3                                                           (1)

 is the probability of A changing to T, C, or G
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The probability of the site having A at time 2 is

PA(2) = (1 - 3 )P(A1) +  [1  – PA(1)] (2)

This includes two possible  course of events:

t = 0                                          t = 1                                                   t = 2
A                                         A A

no substitution                         no substitution

A                                     T, C or G                                                 A
substitution                                 substitution

The following recurrence equation applies to any t

PA(t+1) = (1 - 3  )PA(t) + [1 – PA(t) ]                                    (3)

Note that this holds also for t = 0, because PA(0) = 1 and thus
PA(0+1) =  (1 – 3 ) PA(0) +  [1  – PA(0) ] = 1 - 3
which is identical with equation (1).
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The amount of change per unit time, rewriting equation (3):

PA(t) =  PA(t+1) – PA(t) = - 3 PA(t) + [1 – PA(t) ]  =  - 4 PA(t) +          (4)

Approximating the previous discrete-time model by a continuous-time model, by
regarding PA(t) as the rate of change at time t

dPA(t) / dt  =  - 4 PA(t) + (5)

The solution of this first-order linear differential equation is

PA(t) = ¼  +  (PA(0) – ¼ )e -4 t (6)

The starting condition was A at the given site, P A(0) = 1, consequently

PA(t) = ¼  + ¾ e -4 t (7)

Equation holds regardless of the initial conditions, for example if the initial
nucleotide is not A, then PA(0) = 0, and the probability of having A at time t

PA(t) = ¼  + ¼ e -4 t (8)
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Equations (7) and (8) describe the substitution process. If the initial nucleotide is
A, then PA(t) decreases exponentially from 1 to ¼ . If the initial nucleotide is not A,
then PA(t) will  increase monotonically from 0 to ¼ .

Under this simple model, after reaching  equilibrium, PA(t)=PT(t)=PC(t)=PG(t) for all
subsequent times.

Equation (7) can be rewritten in a more explicit form to take into account that the
initial nucleotide is A and the nucleotide at time t is also A

PAA(t) = ¼  + ¾ e -4 t (9)

If the initial nucleotide is G instead of A, from equation (8)

PGA(t) = ¼  + ¼ e -4 t (10)

Since all the nucleotides are equivalent under the Jukes-Cantor model, the general
probability, Pij(t) , that a nucleotide will become j at time t, given that it was i at time 0,
equations (9) and (10) give the general probabilities Pii(t) and
Pij(t), where i  j.
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KimuraKimura´́s twos two-- parameterparameter --modelmodel

The Jukes-Cantor –model was introduced in 1969 when virtually nothing was known
about nucleotide substitution

In 1980 Kimura proposed different parameters for transitions and transversions.

Transition is a nucleotide change between purines,  A  and G, and pyrimidines, T and C.
Transversion is a purine – pyrimide change.

The rate of transition change is  and transversion change is  per unit time

A   T    C   G

A            

T                

C                

G          
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The development of models of sequence evolution is a very active field, profuse
amount of publications.

Two approaches:

Empirically using properties calculated through comparisons of large
numbers of observed sequences. For example simply counting
apparent replacements between many closely related sequences.

Empirical models result in fixed parameter values which are
estimated only once and the n assumed to be applicable to all
datasets => computationally easy to use

Parametrically on the basis of the chemical or biological
properties of DNA and amino acids. For example, incorporating a
parameter to describe the relative frequency of transition (purine- purine,
pyrimidine-pyrimidine) and transversion (purine –pyrimidine).

Parameter values are derived from the dataset in each particular
analysis.

Both methods result in Markov process models, defined by matrices containing the
relative rates (=the relative numbers, on average, and per unit time). From these are
calculated the probabilities of change from any nucleotide to any other nucleotide,
including the probability of remaining the same, over any period of evolutionary time
at any site
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Relationships among six  standard models
of nucleotide evolution.

For each model the matrix of rates of substitutions
between nucleotides is shown (represented by a
bubble plot where the area of each bubble indicates
the corresponding rate), a partial representation of a
hominoid phylogeny as inferred by that model from
a mitochondrial sequence dataset, and the
maximum log-likelihood value  obtained. For the
REV+  model also the gamma distribution of rates
among sites described by the inferred parameter
value =0.28 is shown. The reverse-J shape of the
graph indicates that the majority of sites have low
rates of evolution, with some sites having high rates
of evolution. The JC model assumes that all
nucleotide substitutions occur at equal rates. The
models become more advanced moving down the
figure, as illustrated in the bubble plots by their
increasing flexibility in estimating relative
replacement rates and as reflected by increasing log-
likelihoods. Note how the inferred maximum
likelihood phylogeny changes significantly as the
models become more advanced (compare JC with
K2P); inferred branch lengths also tend to increase
(compare REV to REV+ ). Arrows show where
models are nested within each other; that is, where
the first model is a simpler form of the next. For
example, the JC model is nested within the K2P
model (it is a special case arising when  is fixed
equal to 1), but the K2P model is not nested with the
FEL model.
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Model comparisons

The likelihood framework permits estimation of parameter values and their standard
errors from the observed data (with no need for any a priori knowledge).

For example, a transition / transversion bias estimated as = 2.3 +/- 0.16 effectively
excludes the possibility that there is no such bias ( = 1), whereas = 2.3 +/- 1.6 does
not.

Likelihood ratio tests compare two competing models, using their maximized
likelihoods with a statistic, 2 , that measures how much better an explanation of the
data the alternative model gives. To perform a significance test, the distribution of
values of 2  expected under the simpler hypothesis is required. If the observed value
of is too great to be consistent with this distribution (P-values), the simpler model
is rejected in favour of the more complex model.

When two models being compared are nested, the simpler model being a special
case of the more complex model obtained by constraining certain free parameters to
take particular values, then the required distribution for 2  is usually a 2 distribution
with the number of degrees of freedom equal to the difference in the number of
parameters between the two models.
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When the models are not nested (the usual situation with complex models)
the required distribution of 2  can be estimated by Monte Carlo simulation or
parametric bootstrapping.

Figure in the next page illustrates a test for assessing whether one particular
model is a statistically adequate description of the evolution of a set of
sequences.

This test almost invariably indicates that current models of sequence
evolution are not explaining the evolutionary patterns in the data fully
(sequences have been evolving by natural selection
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Statistical tests of models.

(a) Part of the mitochondrial sequence dataset
used in previous figure, and the maximum
likelihood phylogenetic tree and likelihood
values from the HKY) and REV models.

(b) The statistical test to compare these models
of nucleotide substitution, in which the
likelihood ratio statistic 2  is compared with a
42 distribution. The observed value of 2 , 14.4,

has a P-value considerably less than 0.05, and
the HKY model is rejected in favour of the REV
model.

(c) The test of the adequacy of the REV model.
The test statistic is derived from a comparison
of the REV model and a multinomial model that
identifies the maximum possible likelihood
attainable under any model. The test
distribution is estimated by parametric
bootstrapping, in which simulated datasets Si

(generated using the maximum likelihood
phylogeny and substitution model parameters
estimated with the REV model) and are
subjected to the same analysis as the original
data. Comparison of the test statistic and the
distribution of values obtained from simulated
data indicates that the observed value 2  is far
in excess of what is expected if the REV model
were accurate, and we can conclude that a
more complex evolutionary model is necessary
to describe the patterns of evolution of these

sequences fully.
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Considering the primary interest in the topology of the inferred
evolutionary tree:

As with estimates of model parameters, a single point-
estimate is of little value without some measure of the
confidence.

Non-parametric bootstrapping: comparisons of an inferred
tree with a set of bootstrap replicate trees, typically in the
form of tabulation of the proportion of the bootstrap replicates
in which each branch from the inferred tree occurs.

Difficulty in the precise interpretation of what these values
represent.
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Statistical tests of tree topologies.

(a) Part of a dataset of six HIV-1 nucleotide
sequences, from HIV-1 subtypes A (two
examples), B, D and E (two examples), and
the maximum likelihood (ML) phylogenetic
inference under the REV+  model. The ML
phylogeny (TML) differs from the
conventional tree (T1), which would group
the two subtype A sequences together.

(b) A non-parametric bootstrap analysis of
confidence in TML: analysis of many
bootstrapped datasets allows calculation of
the proportion of replicates in which
branches appearing in TML also arise in the
bootstrap trees – these values are indicated
in (a). Note that the central branch does not
receive a statistically significant bootstrap
proportion, indicating that there is some
uncertainty about the position of the subtype
A sequences.

(c) The likelihoods assigned to TML, T1 and
another plausible tree T0, and the proportion
of the time these trees are inferred from non-
parametric bootstrap datasets. Note that T0
and T1 are each recovered a considerable
proportion of the time.
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FrequentistFrequentist and Bayesian tree confidence and credibilityand Bayesian tree confidence and credibility

Quantifying the uncertainty of a phylogenetic estimate is at least as important a goal as obtaining the
phylogenetic estimate itself.

Measures of phylogenetic reliability point out what parts of a tree can be trusted when interpreting the
evolution of a group and guide future efforts in data collection that can help resolve remaining uncertainties.

Bootstrapping (in distance methods and in maximum likelihood phylogenies) and posterior probability (in
Bayesian phylogenies)

582606 Introduction to Bioinformatics, Autumn 2009 8-15. Oct / 31



Bootstrapping proceduce

Sample 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

OTU 1   G  A  G  G G A  G  G A  C  C C G  A  T  C  A  A A A

OTU 2   G  C  G  T  G  G G G A  A C  C G  G A  G  A  A A C

OTU 3   C  A  A A G  A  G  C  A  A C  G  A  G  T  T A  A A C

OTU 4   G  C  G  G A  C  A  G  A  A A A G  A  T  T A  A A T

OUT 5   C  A  G  A  G  A  G  A  A A C  A  G  A  G  T  A  A A C

Pseudosample 1 1  1  1  1  2  6  6  6  8  8  10 13 13 13 13 15 16 17 17 19

3 1

2

4 5

Pseudosample 2 2  2  2  2  5  7  8  8  9  10 11 12 12 14 14 17 17 18 20 20

3 1

2

4 5

Pseudosample 3 3  3  3  5  5  6  7  7  9  9  11 11 11 11 11 12 12 18 18 18

5                 3

2

4

1
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Strict Consensus Tree

Hu Ch Go Or Gi Hu Ch Go Or Gi

Tree 1 Tree 3

Hu Ch Go Or Gi

Tree 2

Hu Ch Go Or Gi
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Majority Rule Consensus Tree

Hu Ch Go Or Gi Hu Ch Go Or Gi

Tree 1 Tree 3

Hu Ch Go Or Gi

Tree 2

Hu Ch Go Or Gi
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The bootstrapping approach .When optimality-criterion
methods are used, a tree search (green box) is performed
for each data set, and the resulting tree is added to the final
collection of trees. A wide variety of tree-search strategies
have been developed, but most are variants of the same
basic strategy. An initial tree is chosen, either randomly or
as the result of an algorithm — such as neighbour joining .
Changes to this tree are proposed; the type of move can be
selected randomly or the search can involve trying every
possible variant of a particular type of move .The new tree is
scored and possibly accepted. Some search strategies are
strict hill-climbers — they never accept moves that result in
lower scores; others (genetic algorithms or simulated
annealing) occasionally accept worse trees in an attempt to
explore the tree space more fully.

The Markov chain Monte Carlo (MCMC) methodology is similar
to the tree-searching algorithm, but the rules are stricter. From an
initial tree, a new tree is proposed. The moves that change the
tree must involve a random choice that satisfies several
conditions. The MCMC algorithm also specifies the rules for when
to accept or reject a tree. MCMC yields a much larger sample of
trees in the same computational time, because it produces one
tree for every proposal cycle versus one tree per tree search
(which assesses numerous alternative trees) in the traditional
approach. However, the sample of trees produced by MCMC is
highly auto-correlated. As a result, millions of cycles through
MCMC are usually required, whereas many fewer (of the order of
1,000) bootstrap replicates are sufficient for most problems.

582606 Introduction to Bioinformatics, Autumn 2009 8-15. Oct / 35



1)  A classical example: phylogenetics in court

Molecular evidence of HIV-1 transmission in a criminal case
By: Metzker et al., PNAS October 29, 2002, 99: 14292-14297. doi: 10.1073/pnas.222522599

A gastroenterologist was convicted of attempted second-degree murder by injecting his former girlfriend with
blood or blood-products obtained from an HIV type 1 (HIV-1)-infected patient under his care.

Phylogenetic analyses of HIV-1 sequences were admitted and used as evidence in this case, representing the
first use of phylogenetic analyses in a criminal court case in the United States.

Phylogenetic analyses of HIV-1 reverse transcriptase and env DNA sequences isolated from the victim, the
patient, and a local population sample of HIV-1-positive individuals showed the victim's HIV-1 sequences to be
most closely related to and nested within a lineage comprised of the patient's HIV-1 sequences.

Examples of phylogeny inference in practiceExamples of phylogeny inference in practice
Examples of phylogeny inference in practiceExamples of phylogeny inference in practice
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Phylogenetic analyses of the gp120 and RT sequences (two genes of the virus) to examine
relationships among the patient, victim, and LA (geographical reference area) control viral DNA
sequences. The analyses that formed the basis of the results we presented in court were conducted
by using the optimality criteria of parsimony and minimum evolution (neighbor joining algorithm).

These approaches were used because they were accepted by the court in a pre-trial hearing as
meeting the criteria for admissibility of evidence. Analyses based on direct likelihood evaluations of
the sequence data were not computationally feasible at the time of the pretrial hearing or court case.

Recent developments of Markov-chain Monte Carlo (MCMC) approaches have, however, made a
Bayesian analysis under a likelihood model feasible. Therefore, additional post-trial analyses were
conducted with MCMC Bayesian analysis by using the Metropolis-coupled MCMC algorithm
implemented in the program mrBayes.

Bayesian analysis was based on a General-Time-Reversible model of sequence evolution, with -
distributed rate heterogeneity among sites and a calculated proportion of invariable sites (GTR+ +I).

For each gene, 5,000,000 MCMC generations, and sampled solutions once every 100 generations.
After 2,500,000 generations, it was determined that the searches had reached equilibrium by plotting
the values for the likelihood scores and the various parameters of the model. We therefore used the
samples from the final 2,500,000 generations to compute 95% confidence intervals for the model
parameters shown in Tables (next page), and to assess the posterior probabilities of the relationships
between the victim and patient sequences.

Note that the two genes are very different (see the parameter estimates). This serves here as an
example of the importance of models (cf. above, the simple Jukes-Cantor model would not be
adequate).
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Means and 95% confidence intervals for parameters of the GTR +  + I model for
gp120 sequences (one gene from the virus)

Parameter Mean 95%  confidence  interval
-------------------------------------------------------------------------------------------------------------
C–T substitution rate 5.03 3.60–7.03
C–G substitution rate 0.97 0.57–1.54
A–T substitution rate .75 0.52–1.07
A–G substitution rate 3.87 91–5.10
A–C substitution rate 2.34 1.60–3.34
Frequency of A 0.40 0.37–0.43
Frequency of C 0.15 0.13–0.17
Frequency of G 0.23 0.21–0.25
Frequency of T 0.22 0.20–0.25

 (shape of  distribution) 0.53 0.43–0.68
Proportion of invariable sites 0.08 0.01–0.18

Means and 95% confidence intervals for parameters of the GTR +  + I model for the RT sequences
(another gene from the virus)

Parameter Mean                 95% Confidence interval
__________________________________________________________________________
C–T substitution rate 110.36 23.04–195.53
C–G substitution rate 17.59 2.82–42.02
A–T substitution rate 7.62 1.34–17.32
A–G substitution rate 83.01 16.29–171.17
A–C substitution rate 16.60 3.41–35.62
Frequency of A 0.40 0.36–0.43
Frequency of C 0.17 0.14–0.19
Frequency of G 0.20 0.17–0.23
Frequency of T 0.23 0.20–0.26

 (shape of  distribution) 0.94 0.38–1.94
Proportion of invariable sites 0.50 0.29–0.63
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For the parsimony and minimum evolution analyses, nonparametric bootstrapping  was used to test the a priori
hypothesis of a relationship between the victim and patient sequences. The generally accepted standard for
rejecting a null hypothesis (in this case, the null hypothesis is that the sequences obtained from the victim are not
most closely related to sequences obtained from the patient) is P < 0.05.

In forensic studies, however, there is no widely accepted standard for the meaning of beyond a reasonable
doubt. Under a wide range of conditions, bootstrap proportions (BP) have been shown to represent a conservative
estimate of phylogenetic confidence, and 1-BP was used as a conservative estimate of p (the probability of type I
error) in a test of the a priori hypothesis .  Because of the importance of estimating the strength of the results, as
many bootstrap replications as were computationally feasible for each analysis were constructed.

For parsimony analyses, 100,000 bootstrap replicates, whereas for the more computationally intense maximum-
likelihood distance analyses (in which large numbers of pairwise distances had to be recalculated for each
replicate), 1,000 (gp120) to 10,000 (RT) replicates.

In the parsimony analyses, all 100,000 bootstrap replicates of the gp120 gene data supported the victim and
patient sequences as the most closely related within the analysis (P < 0.00001), and 95,826 bootstrap replicates of
the RT gene data supported the victim sequences as embedded within a group of patient sequences (P <
0.04174).

In the maximum-likelihood distance analyses, all 1,000 bootstrap replicates of the gp120 gene data (P < 0.001)
supported the closer relationship between the patient and victim viral sequences compared with any of the LA
controls, and all 10,000 bootstrap replicates of the RT gene data (P < 0.0001)  supported the victim sequences as
embedded within a group of patient sequences. All 25,000 sampled trees from the MCMC analyses also supported
these relationships (P < 0.00004). The relationships of the patient and victim RT sequences were virtually identical
based on both the originally sampled sequences (sequenced at BCM) and those subsequently sequenced at an
other laboratory.  (NOTE: Maximum likelihood and Bayesian phylogenies have not been introduced during this
Introduction to bioinformatics course.)

The close relationship between the victim and patient samples was thus supported by both of the genes
that we examined, using all major methods of phylogenetic analysis (parsimony, minimum evolution, and
likelihood), and a broad range of evolutionary models.
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Metzker M. L. et.al. PNAS 2002;99:14292-14297
©

Phylogenetic analysis of the
gp120 region using a minimum
evolution criterion assuming
HKY+gamma model of
evolution.

P.ENV and V.ENV are DNA sequences for
provirus PCR products from the patient
and victim, respectively. Sequence names
beginning with LA denote viral sequences
from control HIV-1 infected individuals
from the Lafayette, LA, metropolitan area.
The same pattern of relationships
(monophyly of all patient and victim
sequences) was obtained with all
phylogenetic methods (parsimony,
minimum evolution, and Bayesian) and all
models of evolution examined. In addition
to the 100% bootstrap support of this
relationship for the minimum evolution
analyses, the parsimony bootstrap support
and the Bayesian posterior support were
also 100%.
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Metzker M. L. et.al. PNAS 2002;99:14292-14297

Phylogenetic analysis of the RT
region; details of the analysis are the
same as for previous page.

(a) Tree based on sequences from
BCM .

(b) Subtree of patient and victim
sequences, including those
added by MIC. In both a and b,
the smaller set of boxed
sequences represents the
sequences from the victim, and
the larger set of boxed
sequences represents the
patient plus victim sequences.
The victim sequences were
found to be embedded within
the patient sequences in all
analyses and for all models of
evolution examined. In addition
to the 100% bootstrap support
of this relationship for the
minimum evolution analyses,
the parsimony bootstrap support
was 96% and the Bayesian
posterior support was 100%.
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(A) Prevaccination measles dynamics:
weekly case reports for Leeds, UK.

(B) Weekly reports of influenza-like
illness for France.

(C) Annual diagnosed cases of HIV in
the United Kingdom.

(D) Measles phylogeny: the measles
virus nucleocapsid gene [63
sequences, 1575 base pairs (bp)].

(E) Influenza phylogeny: the human
influenza A virus (subtype H3N2)
hemagglutinin (HA1) gene
longitudinally sampled over a
period of 32 years (50 sequences,
1080 bp).

(F) Dengue phylogeny: the dengue
virus envelope gene from all four
serotypes (DENV-1 to DENV-4, 120
sequences, 1485 bp).

(G) HIV-1 population phylogeny: the
subtype B envelope (E) gene
sampled from different patients
(39 sequences, 2979 bp).

(H) HCV population phylogeny: the
virus genotype 1b E1E2 gene
sampled from different patients
(65 sequences, 1677 bp).

(I) HIV-1 within-host phylogeny: the
partial envelope (E) gene
longitudinally sampled from a
single patient over 5.8 years.

2)   Phylodynamics: understanding the behaviour of2)   Phylodynamics: understanding the behaviour of
viruses, what happens to their gene sequences duringviruses, what happens to their gene sequences during
time epochstime epochs
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3)3) Resolving the ”tree of life”, the dream of DarwinResolving the ”tree of life”, the dream of Darwin

Genome analyses are delivering unprecedented amounts of data from an abundance of organisms, raising
expectations that in the near future, resolving the tree of life (TOL) will simply be a matter of data collection. However,
recent analyses of some key clades in life's history have produced “bushes” and not resolved trees. The patterns observed
in these clades are both important signals of biological history and symptoms of fundamental challenges that must be
confronted.

The combination of the spacing of cladogenetic events and the high frequency of independently evolved characters
(homoplasy) limit the resolution of ancient divergences. Because some histories may not be resolvable by even vast
increases in amounts of conventional data, the identification of new molecular characters will be crucial to future
progress.

The famous science writer, Richard Dawkins says: … “there is, after all, one true tree of life, the unique pattern of
evolutionary branchings that actually happened. It exists. It is in principle knowable. We don't know it all yet. By 2050 we
should – or if we do not, we shall have been defeated only at the terminal twigs, by the sheer number of species.”

Examples of open questions: Who are tetrapods' (four-legged animals) closest living relatives? Which is the earliest-
branching animal phylum? Answers to such fundamental questions would be easy if the historical connections among all
living organisms in the TOL were known. Obtaining an accurate depiction of the evolutionary history of all living organisms
has been and remains one of biology's great challenges. The discipline primarily responsible for assembling the TOL—
molecular systematics—has produced many new insights by illuminating episodes in life's history, posing new hypotheses,
as well as providing the evolutionary framework within which new discoveries can be interpreted.

The TOL has been molded by cladogenesis and extinction. Starting from a single lineage that undergoes cladogenesis
and splits into two, the rate at which the lineages arising from this cladogenetic event undergo further cladogenetic
events determines the lengths of the nascent stems. Once these stems have been generated, the only process that can
modify their lengths is extinction. At its core, the elucidation of evolutionary relationships is the identification, through
statistical means, of the tree's stems



(A) Early in a clade's history (gray box), the number of cladogenetic events is smaller and the length of stems larger in tree-like (left) relative
to bush-like clades (right).
(B) In the absence of homoplasy, the number of PICs  (parsimony informatice characters) for a stem is proportional to its time span; many
PICs (rectangles) accumulated on the long stem x (left), whereas few PICs accumulated on the short stem y (right).
(C) When the stem time span is long, the effect of homoplastic characters (crosses supporting a clade of species A and C and bullets
supporting a clade of species B and C) is not sufficient to obscure the true signal (left). In contrast, the same number of homoplastic
characters is sufficient to mislead reconstruction of short stems (right), because the number of homoplastic characters shared between
species A and C (three crosses in each of the two species) is larger than the number of true PICs (two rectangles).

Homoplasy, homoplastic = the probability of several species acquiring the same nucleotide or amino acid independently.

From:  Bushes in the Tree of Life,  Rokas A, Carroll SB PLoS Biology Vol. 4, No. 11, e352 doi:10.1371/journal.pbio.0040352
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(A) The human/chimpanzee/gorilla
tree (5–8 million years ago).
(B) The elephant/sirenian/hyrax
bush (57–65 million years ago).
(C) The
tetrapod/coelacanth/lungfish bush
(370–390 million years ago).
(D) The metazoan superbush (>550
million years ago).

In each panel, the three alternative
topologies for each set of taxa are
shown. Below each topology, the
percentage and number (in
parentheses) of genes, PICs, and
RGCs (rare genomic changes)
supporting that topology are shown
(when available). Numbers of
genes supporting each topology in
(A), (C), and (D) are based on
maximum likelihood analyses;
numbers in (B) are based on
parsimony. The observed conflicts
are not dependent on the
optimality criterion used; similar
results have been obtained by
analyses of the data under a variety
of widely used optimality criteria.
A fraction of genes in each panel is
uninformative: (A), 6 of 98 genes;
(B), 9 of 20 nuclear genes; (C), 1 of
44 genes; and (D), 179 of 507
genes.

From:  Bushes in the tree of life,
Rokas A, Carroll SB PLoS Biology
Vol. 4, No. 11, e352
doi:10.1371/journal.pbio.0040352



4)4) The phylomeThe phylome

Complementing the concepts
- transcriptome
- proteome
- interactome
- metabolome

Reconstruction of the evolutionary histories of all genes encoded in a
genome

The human phylome
- Genome Biology 8:R109 (2007)
- proteins encoded by 39 publicly available eukaryotic genomes



Schematic representation of the
phylogenetic pipeline used to
reconstruct the human phylome. Each
protein sequence encoded in the
human genome is compared against a
database of proteins from 39 fully
sequenced eukaryotic genomes to
select putative homologous proteins.
Groups of homologous sequences are
aligned and subsequently trimmed to
remove gap-rich regions. The refined
alignment is used to build a NJ tree,
which is then used as a seed tree to
perform a ML likelihood analysis as
implemented in PhyML, using four
different evolutionary models (five in
the case of mitochondrially encoded
proteins). The ML tree with the
maximum likelihood is further refined
with a Bayesian analysis using MrBayes.
Finally, different algorithms are used to
search for specific topologies in the
phylome or to define orthology and
paralogy relationships.

From:
Huerta-Cepas et al. Genome Biology 2007
8:R109 doi:10.1186/gb-2007-8-6-r109
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5)5) Phylogenetic inference may form a framework for understandingPhylogenetic inference may form a framework for understanding
the evolution of  characters, e.g. humanenness....the evolution of  characters, e.g. humanenness....

During the course of evolution, gene families have increase their size through events of gene
duplication.

These events may correspond to massive duplications affecting many genes in the genome at the same
time, such as in whole genome duplications (WGDs) or may be restricted to chromosomal segments or
specific genes.

Not only recent genomics surveys have provided evidence for the abundance of duplicated genes in all
organisms,  but it has also been observed that gene duplication is often associated with processes of neo-
functionalization and/or sub-functionalization.

To quantify the extent of gene duplication that has occurred in the lineages leading to human, the
phylogenetic trees have been scanned to  find duplication events, which have been mapped onto a
species phylogeny that marks the major branching points in the lineage leading to hominids (next page).

High duplication rates in the lineages leading to mammals, primates and hominids. This suggests that
duplications have played a major role in the evolution of these groups.



Estimates for the number of
duplication events occurred
at each major transition in
the evolution of the
eukaryotes.
Horizontal bars indicate the
average number of
duplications per gene. Boxes
on the right list some of the
GO terms of the biological
process category that are
significantly over-represented
compared to the rest of the
genome in the set of gene
families duplicated at a
certain stage.

GO = gene ontology



Gene trees and species trees may tell different stories



What is known about humanWhat is known about human--specific charactersspecific characters

“Protein evolution” –
related characters usually
mean that accelerated
evolution, “positive
selection”,  has been
noticed.

This means that the
phylogeny on the basis of
such a gene is biased,
i.e. has too long branches
as compared to the
phylogeny which is
known to reflect evolution
of  e.g. “neutral”
characters (markers
which measure elapsed
time).
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Human chromosomes, some
genes shown.

Genes with blue colour are
those in which positive selection
has been inferred.

This field of science is very
active and is one example of the
utilization of phylogeny inference as
a tool – the scientific question is
not:

”what is the phylogeny”

but is:
” the species phylogeny

should be .... however, it is not (too
long branches, for example), why?
Maybe this gene has experienced
high rate of evolution and is thus
one marker for something specific
that has occurred in the history of
human lineage?


