Prelude to Sequence Alignment

= Content

= General results in Combinatorial Pattern Matching / Stringology
= Knuth-Morris-Pratt
= Boyer-Moore

Suffix tree, Suffix array

Edit distance

Dynamic Programming

Approximate pattern search, k-mismatches, k-errors

= Solutions specific to Bioinformatics
= Needleman-Wunsch (global alignment, score matrixes)
= Smith-Waterman (local alignment)
= FASTA, BLAST

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 1

Classical results from Stringology

= The world of "text of length n, pattern of length m".
= Knuth-Morris-Pratt: O(n) time exact pattern search.

= Boyer-Moore: O(n/m) time exact pattern search on
average.

= Powerful general tools: Suffix tree and suffix array

= Numerous theoretical results
on approximate pattern

matching pattern CAC

text AGAT.....CAC....CAC...GTAT

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 2

Suffix tree

= Suffix tree is a compressed keyword trie of all suffixes of
a seguence

= E.g. suffixes of sequence CATACT are CATACT,
ATACT, TACT, ACT, CT, T.

= suffix tree looks like:

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 3

Suffix tree

4 2 1) 6

CATAC
123456

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 4

Suffix tree

CATAC
123456

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 5

Exact search on suffix tree

pattern = C

CATACT
123456

582606 Introduction to Bioinformatics, Autumn 2009

22.-24. Sept/ 6

Backtracking on suffix tree

ACA, 1 mismatch (SNP)
A

CATACT
123456

582606 Introduction to Bioinformatics, Autumn 2009

22.-24. Sept/ 7

Simple analysis task: LCSS

= | et LCSS(A,B) denote the longest common substring of
two sequences A and B. E.g.:
= LCSS(AGATCTATCT,CGCCTCTATG)=TCTAT.

= A good solution is to build suffix tree for the shorter
sequence and make a descending suffix walk with the
other sequence.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 8

Suffix link

suffix link

582606 Introduction to Bioinformatics, Autumn 2009

22.-24. Sept/ 9

Descending suffix walk

suffix tree of A Read B left-to-right,
always going down in the
tree when possible.

If the next symbol of B does
not match any edge label
on current position, take
suffix link, and try again.
(Suffix link in the root

to itself emits a symbol).
The node v encountered
with largest string depth
is the solution.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 10

Another common tool: Generalized suffix tree

node info:
subtree size 47813871
seqguence count 87

\

ACCTTA....ACCTHCACATT..CATH#TGTCGT...GTA#TCACCACC...C$

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 11

Generalized suffix tree application

node info:

subtree size 4398
blue sequences 12/15
red sequences 2/62

\

...ACC..#...ACC...#...ACC...ACC..ACC..#..ACC..ACC...#...ACC.. . #...
CHLLLHLOHLHLOACCLHLHLHLHLHLH L HACCLACC.L A Ho

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 12

Properties of suffix tree

= Suffix tree has n leaves and at most n-1 internal nodes,
where n is the total length of all sequences indexed.

= Each node requires constant number of integers
(pointers to first child, sibling, parent, text range of
Incoming edge, statistics counters, etc.).

= Can be constructed in linear time (e.g. Ukkonen's online
linear time construction).

= |n practice: Huge overhead due to pointer structure:

= Standard implementation of suffix tree for human genome
requires over 200 GB memory!

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 13

Reducing space: suffix array

A

=[2,2 ‘ - =[3
=[5,6] ‘ A .A

T=[3,6] T

A A T =[6,6 —

C C #[2,6] [] <[4.6]
T T ' I

suffix -| 4 2 1 5 6 3
array

CATACT
123456

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 14

Suffix array

= Many algorithms on suffix tree can be simulated using
suffix array.

= For example, exact pattern search works using binary
search on suffix array.

= Suffix array Is the basis a popular bioinformatics tool
called Mummer.

= Suffix array can be constructed easily from suffix tree,
but there are also direct linear time construction
algorithms that take less space (e.g. Karkkainen &
Sanders algorithm).

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 15

Approximate string matching

= k-mismatches problem: Search all occurrences O of
pattern P[1,m] in text T[1,n] such that P differs in at most
K positions from the occurrence substring:

= More formally: | € O Is a k-mismatch occurrence position of P in
T if and only if d,(P, T[j,j+m-1])<k, where d,,(A,B) is the Hamming
distance of A and B.

= dy(AB)=[{ 1: Alil#B[i]}.

= Theory: O(kn) time algorithm is easy to achieve (using suffix
trees and some advanced data structure techniques) and very
sophisticated algorithms exist to solve the problem even faster.

= Practice: naive algorithm or backtracking on suffix tree (slide 7)
work well for small k.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 16

Approximate pattern matching: filtering

= Best practical algorithms for approximate string matching
use filtering:

= Sweep the text with a fast algorithm to detect possible candidate
occurrence positions.

» Check all candidates for real occurrences.

= There are noisy filters (that may fail to find some candidates that
are real occurrences) and noiseless filters (that are guaranteed
to find all real occurrences).

= Simple noiseless filter for k-mismatch search:

= Partition the pattern into k+1 pieces.

» Take all exact occurrences of the pieces as candidates.

= Check all candidates with naive algorithm.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept [17

Approximate string matching: filtering

example

"= Text T=CGAGCGATAGCTACCGT
= Pattern P=ACAG, k=1
= Partition P into e.g. P1=AC, P?=AG
= Search P and P2in T: CGAGCGATAGCTACCGT
= Check the candidates: CGAGCGATAGCTACCGT
= Running time:

= Build suffix tree of T: O(n) time.

= Search P! and P2 in suffix tree of T: O(m+#candidates) time.
= Checking O(#candidates x m) time.

= The challenge: #candidates >> #occurrences

= Better filters than above exist (with smaller #candidates)
582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 18

Approximate what?

= Different versions of approximate pattern matching can
be defined modifying the distance function d(A,B).

= The most studied distance function IS unit cost edit
distance or Levenshtein distance.

= d (A,B) is the minimum amount of single symbol insertions,
deletions, and substitutions required to convert A into B.

= For example, on A="stockholm" and B="tukholma" we have
d, (A,B)=4:
= delete s, substitute o->u, delete c, insert a
= .. or delete s, delete o, substitute c->u, insert a
= .. oris there better sequence of edits???
stockholm-
- tu-kholma

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 19

Dynamic programming

= Way to compute edit distance optimally.

= General algorithm principle:
= Can be seen as a variant of Dijkstra's shortest path algorithm.

= Abstract idea: Use induction to break the problem into
smaller subproblems and suitable evaluation order so
that subproblem solutions are available when needed.

= Concrete example, Fibonacci numbers:
= 0,1,1,2,3,5,8,13,21,34,55,89,...
= F(i)=F(i-2)+F(i-1) with F(0)=0, F(1)=1
= The recursion to compute F(i) contains
many identical subproblems.

89
34 55

13 21 21 34
5 8 8 13 8 13 13 21

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 20

Edit distance

= | et A=a,a,...a,, and B=b,b,...b, be two strings.
= Consider an optimal listing of edits to convert the prefix
a,a,...a; of A into prefix b,b,...b; of B corresponding to
L(alaz a;,b40,...b)):
If a=b; we know that d, (a,a,...a,b,b,...b)=d, (a;a,...a;;,b,b,...b; ;)

- OtherW|se either a; Is substituted by b;, or a; is deleted or b; is
inserted in the optimal list of edits.
= Hence, we have d, (a;a,...a;,b,b,...b)=
min(d, (a;a,...a;4,b,0,...b; 1) +(if a=b; then O else 1),
d (a;3,..-a4,b,0;...0)+1,
d (a;3,...a;b,b,...b; 1)+1).

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 21

Edit distance matrix DJi,)]

" Let D[i,)] denote d (a;a,...a;,b,b,...1)).
= Obviously D[0,j]=] and DIi,0]=I.
= The induction from previous slide gives
D[i,j]=min(D[i-1,}-1]+if (a;=b;) then O else 1,
D[i-1,j]+1,D[i,j-1]+1).
= Matrix D can be computed row-by-row, column-by-

column (or in many other evaluation orders) so that DJi-
1,j-1], D[i-1,j], and D[i,j-1] are available when computing

D[i.j].
= Running time to compute D[m,n] is O(mn).

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 22

Q
Q.
=
©
X
b
&)
O
-
©
i)

2

©

e

©

LL

22.-24. Sept / 23

582606 Introduction to Bioinformatics, Autumn 2009

k-errors problem

= Kk-errors problem is the approximate string matching
problem with edit distance:

More formally: | € O is a k-errors occurrence (end)position of P
In T if and only if d (P,T[}',]])sk for some |J'.

= Can be solved with the "zero the first row trick":

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 24

D[0,j]=0 for all j.

Otherwise the computation is identical to edit distance
computation using matrix D.

Intuition: DIi,jJ] then equals the minimum number of edits to
convert P[1,]] into some suffix of T[1,j].

If D[m,j]<k, then P can be converted to some substring T[j',j] with
at most k edit operations.

Current applications

= Short-read sequencing (454, Solexa, SOLID) has raised
again the issue of doing fast k-mismatches and k-errors

matching.

= Some popular software packages exploit the suffix tree

backtracking idea (bowtie, bwa, SOAP2):

» |nstead of suffix tree, a compressed suffix array based on so-
called Burrows-Wheeler transform is used as backbone of the

search.
*» The index size for e.g. human genome can be kept in ~3 GB.

= Compression does not affect the running time significantly.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 25

More on general string processing

techniques...

= Gusfield's book: Algorithms on Strings, Trees and
Sequences: Computer Science and Computational
Biology

= 58093-3 Merkkijonomenetelmat (String Processing
Algorithms)
= Lectured previously Autumn 2008.
= Next time Autumn 2010 in English?

= |[SMB 2009 tutorial on compressed index structures
applied to short-read mapping
(http://www.cs.helsinki.fi/u/vmakinen/ismb09tutorial _vm.

pdf)

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 26

http://www.cs.helsinki.fi/u/vmakinen/ismb09tutorial_vm.

Sequence alignment

The biological problem
Global alignment
Local alignment
Multiple alignment

582606 Introduction to Bioinformatics, Autumn 2009

22.-24. Sept | 27

Background: comparative genomics

= Basic question in biology: what properties are shared
among organisms?

= Genome seqguencing allows comparison of organisms at
DNA and protein levels

= Comparisons can be used to
* Find evolutionary relationships between organisms
= |dentify functionally conserved sequences

= |dentify corresponding genes in human and model organisms:
develop models for human diseases

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept /| 28

Homologs

= Two genes (sequences in
general) gz and g, evolved
from the same ancestor
gene g, are called homologs

g, = agtgtccgttaagtgcgttc

0 = agtgccgttaaagttgtacgtc

= Homologs usually exhibit
conserved functions gc = ctgactgtttgtggttc

= Close evolutionary
relationship => expect a high
number of homologs

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 29

Seqguence similarity

= We expect homologs to be "similar” to each other

= Intuitively, similarity of two sequences refers to the degree of match
between corresponding positions in sequence

agtgccgttaaagttgtacgtc

ctgactgtttgtggttc

= What about sequences that differ in length?

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 30

Similarity vs homology

= Sequence similarity is not sequence homology

= [f the two sequences gg and g have accumulated enough mutations,
the similarity between them is likely to be low

#mutations #mutations
O agtgtccgttaagtgcgttc 64 acagtccgttcgggctattg
1 agtgtccgttatagtgcgttc 128 cagagcactaccgc
2 agtgtccgcttatagtgcgttc 256 cacgagtaagatatagct
4 agtgtccgcttaagggcgttc 512 taatcgtgata
8 agtgtccgcttcaaggggcegt 1024 acccttatctacttcctggagtt
16 gggccgttcatgggggt 2048 agcgacctgcccaa
32 gcagggcgtcactgagggct 4096 caaac

Homology is more difficult to detect over greater evolutionary

distances.
582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 31

Similarity vs homology (2)

= Sequence similarity can occur by chance
= Similarity does not imply homology

= Consider comparing two short sequences against each
other

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 32

Orthologs and paralogs

We distinguish between two types of homology

= Orthologs: homologs from two different species, separated by a
Speciation event

= Paralogs: homologs within a species, separated by a gene duplication
event

Organism A
@ Gene duplication event —— |

Organism B Organism C gs gc| Paralogs

Ja Oa

“

Orthologs

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 33

Orthologs and paralogs (2)

= QOrthologs typically retain the original function
= |n paralogs, one copy is free to mutate and acquire new function (no

selective pressure) Organism A

Organism B Organism C

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 34

Paralogy example: hemoglobin

= Hemoglobin is a protein
complex which transports
oxygen

= |n humans, hemoglobin
consists of four protein
subunits and four non-protein
heme groups

Sickle cell diseases
are caused by mutations
in hemoglobin genes

www.rcsb.org/pdb/explore.do?structureld=1GZX
http://en.wikipedia.org/wiki/Image:Sicklecells.jpg

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 35

http://www.rcsb.org/pdb/explore.do?structureId=1GZX
http://en.wikipedia.org/wiki/Image:Sicklecells.jpg

Paralogy example: hemoglobin

= |n adults, three types are
normally present

= Hemoglobin A: 2 alpha and 2
beta subunits

= Hemoglobin A2: 2 alpha and 2
delta subunits

= Hemoglobin F: 2 alpha and 2
gamma subunits
= Each type of subunit (alpha,
beta, gamma, delta) is
encoded by a separate gene

www.rcsb.org/pdb/explore.do?structureld=1GZX

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 36

http://www.rcsb.org/pdb/explore.do?structureId=1GZX

Paralogy example: hemoglobin

= The subunit genes are paralogs of
each other, i.e., they have a
common ancestor gene

= Exercise: hemoglobin human
paralogs in NCBI sequence

databases
http://www.ncbi.nlm.nih.gov/sites/entrez?db=
Nucleotide

Find human hemoglobin alpha, beta, gamma
and delta

Compare sequences

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureld=1GZX

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 37

http://www.ncbi.nlm.nih.gov/sites/entrez?db=
http://www.rcsb.org/pdb/explore.do?structureId=1GZX

Orthology example: insulin

= The genes coding for insulin in human (Homo sapiens)
and mouse (Mus musculus) are orthologs:

= They have a common ancestor gene in the ancestor species of
human and mouse

= Exercise: find insulin orthologs from human and mouse in NCBI
sequence databases

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 38

Sequence alignment

= Alignment specifies which positions in two sequences

match

acgtctag acgtctag

act ct ag- -act ct ag
2 matches 5 matches

5 mismatches 2 mismatches
1 not aligned 1 not alighed

acgt ct ag

ac-tctag

7 matches
0 mismatches
1 not aligned

582606 Introduction to Bioinformatics, Autumn 2009

22.-24. Sept / 39

Sequence alignment

= Maximum alignment length is the total length of the two sequences

-------- actctag actctag--------

0 matches 0 matches
0 mismatches 0 mismatches
15 not aligned 15 not aligned

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 40

Mutations: Insertions, deletions and

substitutions

Indel: insertion or acgt ct ag Mismatch: substitution
deletion of a base | | | | | (point mutation) of
with respect to the -laklt ct ag a single base
ancestor sequence

" |nsertions and/or deletions are called indels

= We can't tell whether the ancestor sequence had a base or not
at indel position!

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept [41

Problems

= What sorts of alignments should be considered?

= How to score alignments?

= How to find optimal or good scoring alignments?

= How to evaluate the statistical significance of scores?

In this course, we discuss each of these problems briefly.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 42

Sequence Alignment (chapter 6)

= The biological problem
= Global alignment

= | ocal alignment

= Multiple alignment

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 43

Global alignment

= Problem: find optimal scoring alignment between two sequences
(Needleman & Wunsch 1970)

= Every position in both sequences is included in the alignment
= We give score for each position in alignment

= |dentity (match) +1
= Substitution (mismatch) -
* |ndel -0

= Total score: sum of position scores

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 44

Scoring: Toy example

Consider two sequences with
characters drawn from the English
language alphabet: WHAT, WHY

582606 Introduction to Bioinformatics, Autumn 2009

||
VH Y

S(WHAT/WH-Y)=1+1-8—-y

VHAT

- VHY

S(WHAT/-WHY)=-0—-pdu—pH—}

22.-24. Sept /| 45

Representing alignments and scores

Alignments can be
represented in the
following tabular form. - W [H | AT

Each alignment
corresponds to a path
through the table. \

VIHAT "
[- T~

Y Y A

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept /| 46

Representing alignments and scores

V\H AT

X W | H|A]|T

VY- - —p == === =——p

A VX '
; N ¥

- VHY v AR

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 47

Representing alignments and scores

W 1
Global alignment H c|zel
score S, , = 2-6-1 - IZ_S_pI

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 48

Filling the alignment matrix

Case 1

Case?2

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 49

Consider the alignment process
at shaded square.

Case 1. Align H against H
(match)

Case 2. Align H in WHY against
— (indel) in WHAT

Case 3. Align H in WHAT
against — (indel) in WHY

Filling the alignment matrix (2)

Scoring the alternatives.
Case 1.S,,=5;, +5s(2, 2)
B Case 2 82,2 - 81,2 - 6

W Case 1 Case2 Case 3.S5,,=S5,,-0
s(i,) = 1 for matching positions,
H s(i,) = - W for substitutions.
Choose the case (path) that
Y yields the maximum score.

Keep track of path choices.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 50

Global alignment: formal development

A = a,a,a;...a,,

B = b,b,bs...b,
bl b2 b3 b4 =

- A - dy a3
« Any alignment can be written 0
as a unique path through the
matrix 1

« Score for aligning Aand B up
to positions i and j: 2

Si,j = S(a1a2a3...ai, blbzbg---bj)
3

582606 Introduction to Bioinformatics, Autumn 2009

0 1 2 3 4
b, |b, |b, |b,
__>\
- N
1 —*\
AV
a, l
ds
22.-24] Sept / p1

Scoring partial alignments

" Alignment of A = a,a,a;...a; with B = b;b,b;...b; can be end in three
possible ways

= Casel: (a;a,...8,1) &

(byb,...b;4) b

= Case 2: (aa,...8,1) &
(b,b,...b) -
= Case 3: (a;a,...8) —
(byb,...b;4) b

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 52

Scoring alignments

Scores for each case:

= Case 1: (a;a,...8,4) &,
(byb,...b; 1) b

= Case 2: (a;a,...8;4) &,
(b.by...b) -

= Case 3: (a,8,...a)) —
(byb,...b;) b

582606 Introduction to Bioinformatics, Autumn 2009

+11f a; = b;
s(a;, by = {

-l otherwise

s(&;, -) =s(-, b) =-0

22.-24. Sept / 53

Scoring alignments (2)

= First row and first column 0 1 2 3 4
correspond to initial alignment
against indels:

S(i,0)=-i0 - b, |b, |bs |by
S(0,))=-10
o |- 1o 5 |-256 |-35 |-4d
= Optimal global alignment score
S(A, B) =S
1 al -6
2 a.2 _26
3 3.3 _36

582606 Introduction to Bioinformatics, Autumn 2009 22.-24] Sept / p4

Algorithm for global alignment

Input sequences A, B, m = |A|, n = |B]
Set S;, :=-di for all i

Set Sy :=-0] for all j

fori:=1tom

forj:=1ton
Sij = max{Siyj -0, Sjyjts(a.b;), Sij1- 0}
end
end

Algorithm takes O(mn) time

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 55

Global alignment: example

_ 1 : T G G T G
5= 2 : 0o | 2| 4| 6 | -8 | -10
A | -2
T | -4
cC | -6
G | -8
T | -10 ?

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 56

Global alignment: example

=1 - T G G T G
5=2 - 0 \ -2 N 14 -6 -8 -10
A o = -1—=0-3
T -4
C -6
G -8
T -10 ?

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept /| 57

Global alignment: example (2)

u=1 T G G T G
5=2 O =»-2 =»-4 -6 =»-8 -l»-lO
¥ N N
Al 2 -1 >3 P>5 P>7 P9
N N } N =
T A L2 R4 (4R
Ny Ny Ny
ATCGT- e B Gl Nl A
6# 3& NS ™\ N Ny
| Gl ANS | ANWRNS |
T | -10| -7 | 4 | -3 0 -2
- TGCGTG

582606 Introduction to Bioinformatics, Autumn 2009

22.-24. Sept / 58

Sequence Alignment (chapter 6)

= The biological problem
= Global alignment

= | ocal alignment

= Multiple alignment

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 59

Local alignment: rationale

= QOtherwise dissimilar proteins may have local regions of similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type Il
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-3
receptor (right).

The shared function
here is protein kinase.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 60

Local alignment: rationale

B ﬁ\
Regions of

similarity

= Global alignment would be inadequate

= Problem: find the highest scoring local alignment between two
seguences

= Previous algorithm with minor modifications solves this problem
(Smith & Waterman 1981)

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 61

From global to local alignment

= Modifications to the global alignment algorithm

= Look for the highest-scoring path in the alignment matrix (not
necessarily through the matrix), or in other words:

= Allow preceding and trailing indels without penalty

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 62

Scoring local alignments

A = a,a,a4...a,, B =b;b,b;...b,
Let | and J be intervals (substrings) of A and B, respectively:

ITcA JcCB

Best local alignment score:

M(A,B) =max{S(I,J): I C A,J C B}

where S(I, J) is the alignment score for substrings | and J.

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 63

Allowing preceding and trailing indels

=" First row and column initialised 0 1 2 3 4
to zero:
Mio=Mo,; =0

o |- |0 0] o=\o 0
\\
bl b2 b3 Loja 1o
- - al
2 |a, |0
3 |ag |0

582606 Introduction to Bioinformatics, Autumn 2009 22.-24| Sept / p4

Recursion for local alignment

Allow alignment to
start anywhere in
sequences

582606 Introduction to Bioinformatics, Autumn 2009

Finding best local alignment

= Optimal score is the highest value - T G G T G
in the matrix
M(A,B) =max{S(I,J):IcAJcBy -~ [00101000
= max;; M;;

= Best local alignment can be found
by backtracking from the highest Tr{oj1,0}0}1,0
value in M

0) 0\ 0)
= Whatis the best local alignment in \
this example?

582606 Introduction to Bioinformatics, Autumn 2009 22.-24.|Sept | 66

Local alignment. example

M;; = max { - |G |G |C |T |[C |A [A |T |C |A
M:._,., + s(a, b)),
Ml—l,]—l_ 5 ([|) 0 _ 0 0 0 0 0 0 0 0 0
i-1,j J
Mijq — O, 1 A0 N4
0 =S
1 2 C |0
3 C |0
4 T |0
5 A |0
Scoring (for example)s A |0
Match: +2
Mismatch: -1 G0
Indel: -2 8 G |0

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept | 67

Local alignment. example

O 1 2 3 5 6 7 9 10
Mi,j:max{ - |G |G |(C |T (C |A |A |T |C |A
M. ...+ s(a, b)),
Ml—l,]—l_6 (I |) 0 _ 0 0 0 0 0 0 0 0 0
i-1,] 6’ *
M" - ’
ot 219 lalalala 0)2
1 2 C |0
3 C |0
4 T |0
5 A |0
Scoring (for example)s A |0
Match: +2
Mismatch: -1 r G0
Indel: -2 8 G |0

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept / 68

@
Q.
=
Qv
X
D
-
-
D
=
-

=}

T

G
&
@

—

v

4 5 6

3

Optimal local

<|loln|o|ld|ln]|o|m | 4|y
A Attt
Olololcn|mm|dA| AN || <
A I B b v
Flo|o|ld|o|la|d|s || m
i A1 7
AO:21003 < | N
il 1N
<|loln|o|ld|ld|F| w0 ||
A 7 7
C0022nw_3100
7 2
Flo|lo|lo|ldld|n|o |o|lo
A
Olo|lojln|lN|o|lo|lo |o|w
A 4
GOOOOOOOZn4
71—
Olo|lo|lo|lo|lo|lo|lo ||
7
|lolololo|lolo|lo |o|o
< OO << | OO
O d N MM < 10D © ~
7\
Q
3
L S
)
c KL) -
@ 5 !
E 10 /;Un._/._hZ
& — o .. o
= = O - o
c O O SE a8
Nn=SS &

22.-24. Sept / 69

582606 Introduction to Bioinformatics, Autumn 2009

Multiple optimal alignments

Non-optimal, good-scoring alignments

How can you find - |G |G |C |T |C |A |A|T |C |A
o - |o oo o |o |oJoo [o |0 |o
1. Optimal N g
alignments if 1 Ao Jo JoJo [0 o0 [2 2[00 [2
more than one 2 C |0 |0 [0 (2 |0 |2 \0 1 11020
exist? a K
3 clojofof2/12 100 [3g1
2. Non-optimal 4 T]0 Jo o Jo 410 [21 HE
good-scoring 5 A |0 |0 O |0 |23 4341 |1 \3
alignments? 6 A JoJoJo oo 1 5!4 RE
7 Gl0oJ22 |0 |o |o |37 [4 [5F3FL
e v v
8 G lo |2 [a—=2 |0 o |12 [3 [a—+2

582606 Introduction to Bioinformatics, Autumn 2009 22.-24. Sept/ 70

