Note on sequences and alignment matrices In

exercises

= Example solutions to alignment problems will have
sequences arranged like this:

= Perform global alignment of the sequences
= s=AGCTGCGTACT

= t= ATGAGCGTTA ATGAGCGTTA
>
)
So if you want to be able to Q
compare your solution easily g
against the example, use this @
convention. X
O
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Tracing back optimal path

= Whenfilling the DP matrix, - T G G T G
one can store to each cell
the list of pointers to the - 0 -2 -4 -6 -8 -10
cells where the optimal 4
value was computed; then A -2 -1 -3 -5 -7 -9
tracing back all the optimal \
paths is easy. T 4 -1 _2 4 -4 -6

N

= Explicit pointers are
actually not needed, since C -6 -3 -2 \ -3 -5 -5
one can just reverse the
computation; start from G -8 -5 -2 -1 ‘\ -3 -4
cell (m,n), check which are L
the neighboring cells T -10 -7 -4 -3 0 -2
where the optimum value
must have been
computed, and continue
like this to follow all
optimal paths.
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Overlap alignment

" Overlap matrix used by Overlap-Layout-Consensus algorithm can
be computed with dynamic programming

" Initialization: O;,=Ogy;=0forall |, |
= Recursion:

— 0000Q0O00O0O0
Oi’cj)_ max({ o 0
... . + s(a. .
-1,)-1 i1 MiJs
Oi.j— 0O, 0 —
Oi,j—l - 6, 8 >
}

Best overlap: maximum value from rightmost column and bottom
row

—> ...more on sequence assembly at the Spring 2010 seminar!
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Non-uniform mismatch penalties

=  We used uniform penalty for mismatches:
sCA,'C)=s(A,’'G)=...=s(G", ' T)=u
=  Transition mutations (A<->G, C<->T) are approximately twice as frequent
than transversions (A<->C, A<->T, C<->G, G<->T)
= use non-uniform mismatch
penalties collected into a

substitution matrix A C G T
A 1 -1 -0.5 -1
c | 2| 1] 1 ]-05
G -0.5 -1 1 -1
T -1 -0.5 -1 1
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Gaps In alignment

= Gap Is a succession of indels in alignment
CT[- A A
CTCGCAA

= Previous model scored a length k gap as w(k) = -kd
= Replication processes may produce longer stretches of
Insertions or deletions

* |n coding regions, insertions or deletions of codons may
preserve functionality
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Gap open and extension penalties (2)

= We can design a score that allows the penalty opening
gap to be larger than extending the gap:

w(k) =-a—B(k - 1)
= Gap open cost a, Gap extension cost [3

= Alignment algorithms can be extended to use w(k) as
follows: |
Sij = MaX;.,j<i+j 1 i
Si.1j-1+s(aiby), i
S; y+rw( — J+i-I)
+

= However, this is too inefficient: O(m?n?).
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Speeding up gap open and extension

alignment

Sij = max {
Si.1j1 t+ s(a, by,
Gi1j-1 + s(a, by) . —r
! ’ I | 4

=max {
Sij— 0,
C-:'i—l,j _ B! G
Sul—a, H
Gij1— B, _ &lr
¥ ! ]

Gl,j

= Equivalent result in
O(mn) time.
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Demonstration of the EBI web site

= European Bioinformatics Institute (EBI) offers many
biological databases and bioinformatics tools at
http://www.ebi.ac.uk/
= Sequence alignment: Tools -> Sequence Analysis -> Align
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Sequence Alignment (chapter 6)

= The biological problem
= Global alignment

= | ocal alignment

= Multiple alignment
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Multiple alignment

Consider a set of d sequences on
the right

= Orthologous sequences from
different organisms

= Paralogs from multiple
duplications

How can we study relationships
between these sequences?

582606 Introduction to Bioinformatics, Autumn 2009

aggcgagctgcgagtgcta
cgttagattgacgctgac
ttccggetgegac
gacacggcgaacgga
agtgtgcccgacgagcgaggac
gcgggctgtgagegeta
aagcggcectgtgtgeccta
atgctgctgccagtgta
agtcgagccccgagtgce
agtccgagtcc
actcggtgce
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Optimal alignment of three sequences

" Alignment of A = a,a,...a;and B = b,b,...b; can end either in (-, b),
(&, by or (&, -)

= 221 =3 alternatives

o Alignment of A, B and C =c,C,...c, can end in 23— 1 ways: (g, -, -),
(-, b, =), (- - ¢, (= by, €y, (a5, - €, (8, by, -) or (&, by, C)

= Solve the recursion using three-dimensional dynamic programming
matrix: O(n?®) time and space

= Generalizes to d sequences but impractical with even a moderate
number of sequences
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Multiple alignment in practice

= |n practice, real-world multiple alignment problems are usually
solved with heuristics
=  Progressive multiple alignment
= Choose two sequences and align them

= Choose third sequence w.r.t. two previous sequences and align the third
against them

= Repeat until all sequences have been aligned
= Different options how to choose sequences and score alignments
= Note the similarity to Overlap-Layout-Consensus
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Multiple alignment in practice

= Profile-based progressive multiple alignment:
CLUSTALW

= Construct a distance matrix of all pairs of sequences using
dynamic programming

* Progressively align pairs in order of decreasing similarity

= CLUSTALW uses various heuristics to contribute to accuracy
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Additional material

= R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological
sequence analysis

= N. C. Jones, P. A. Pevzner: An introduction to
bioinformatics algorithms

= Biological sequence analysis course, next time in 2010-
20117
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Rapid alignment methods: FASTA and BLAST

(Section 7)

= The biological problem
= Search strategies

= FASTA

= BLAST
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The biological problem

=  Global and local alignment Growth of the
. . . International Nucleotide Sequence Database Collaboration
algoritms are slow in practice

= Consider the scenario of -
aligning a query sequence
against a large database of

SUDHIR W] BIFE] 250 E

sequences —
= New sequence with unknown : F-—— — - 10
function £% % % ;1

Base Pars conlributed by GenBarkf—8 EMBL=— OOE)=N

= NCBI GenBank size in January 200
was 65 369 091 950 bases (61 132
599 sequences)

= Feb 2008: 85 759 586 764 bases (82
853 685 sequences)
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Problem with large amount of sequences

= Exponential growth in both number and total length of
sequences

= Possible solution: Compare against model organisms
only

= With large amount of sequences, chances are that

matches occur by random
= Need for statistical analysis
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Rapid alignment methods: FASTA and BLAST

= The biological problem
= Search strategies

= FASTA

= BLAST
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FASTA

= FASTA is a multistep algorithm for sequence alignment (Wilbur and
Lipman, 1983)

= The sequence file format used by the FASTA software is widely
used by other sequence analysis software
= Main idea:

= Choose regions of the two sequences (query and database) that look
promising (have some degree of similarity)

= Compute local alignment using dynamic programming in these regions

582606 Introduction to Bioinformatics, Autumn 2009 29.9-1.10/ 19




Search strategies

= How to speed up the computation?
* Find ways to limit the number of pairwise comparisons

= Compare the sequences at k-mer level:
= k-mer (or a k-word, or a k-tuple) is a substring of length k
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FASTA outline

= FASTA algorithm has five steps:
= 1. Identify common k-mers between | and J

2. Score diagonals with k-mer matches, identify 10 best
diagonals

3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Analyzing the k-mer content

= Example query string I: TGATGATGAAGACATCAG
m For k =8, the set of k-mersof | is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

GACATCAG
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Analyzing the k-mer content

= There are n-k+1 k-mers in a string of length n

= |f at least one k-mer of | is not found from another string J, we know
that | differs from J

= Need to consider statistical significance: | and J might share k-
mers by chance only

= Let m=|l| and n=|J|
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Word lists and comparison by content

= The k-mers of | can be arranged into a table of k-mer occurences
L(1)
=  Consider the k-mers when k=2 and I=GCATCGGC:
GC, CA, AT, TC, CG, GG, GC

AT. 3

CA: 2

CG:5

GC:1, 7+ Start indecies of k-mer GC in |
GG: 6

TC: 4 Building L, (I) takes O(n) time
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Common k-mers

= Number of common k-mers in | and J can be computed
using L,(I) and L,,(J)

= For each k-mer w in |, there are |L,(J)| occurences in J

= Therefore | and J have >y [ Lw(I)||Lw(J)| common k-
mer pairs

" This can be computed in O(m + n + 4K) time

= O(m + n + 4K) time to build the lists

= O(4% time to multiply the corresponding list entry sizes (in DNA
strings)
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Common k-mers

= | = GCATCGGC
= J=CCATCGCCATCG

L,(1) L,.(J) Common k-mers
AT: 3 AT: 3,9 2
CA: 2 CA: 2,8 2

CC:1,7 0
CG: 5 CG: 5,11 2
GC: 1,7 GC: 6 2
GG: 6 0
TC: 4 TC: 4,10 2

10 in total
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Properties of the common word list

= For large k, the table size O(4X) is too large to compute the common
K-mer pairs count in the previous fashion

= |nstead, an approach based on merge sort can be utilised (details
skipped)

= The common k-mer technique can be combined with the local
alignment algorithm to yield a rapid alignment approach

= Alternative solutions, not part of FASTA:

= Exercise: Show how generalized suffix tree can be used for counting the
common k-mer pairs

» Generalized suffix tree with some additional data structures can also be
used for directly computing all maximal pairs of tuples {(i',i),(j',j)} such
that a;...a; =b;...b; and the ranges cannot be extended left or right (see
Gusfield's book).
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FASTA outline

= FASTA algorithm has five steps:
= 1. Identify common k-mers between | and J

2. Score diagonals with k-mer matches, identify 10 best
diagonals

3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Dot matrix comparisons

= k-mer matches in two sequences | and J can be represented as a
dot matrix

= Dot matrix element (i, j) has "a dot”, if the k-mer starting at position i
In | is identical to the k-mer starting at position jin J

= The dot matrix can be plotted for various k

| = ... ATCGGATICA ...
e J = ... TGGIGATC ...
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matics, Autumn 2009

Dot matrix (k=1,4,8,16)
for two DNA sequences
X85973.1 (1875 bp)
Y11931.1 (2013 bp)
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Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1 (531 aa)
CAA72681.1 (588 aa)

k=8 k=16

Shading indicates
now the match score
according to a

score matrix
(Blosum62 here)
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Computing diagonal sums

= We would like to find high scoring diagonals of the dot matrix

= Lets index diagonals by the offset, | =1 - j
J

‘CCATCGCCATCG o

N * | ¢ -
g ”* “"*

00A ’,A
A '*‘% *’n
T *, Mo,
3 —i_i=-

c ”‘q Diagonal | =i—|=-6
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Computing diagonal sums

= As an example, lets compute diagonal sums for | = GCATCGGC, J
= CCATCGCCATCG, k=2

= 1. Construct k-mer list L, (J)

= 2. Diagonal sums S,are computed into a table, indexed with the
offset and initialised to zero

||—lO-9-8-7-6-5-4-3-2-10123456
Sl‘OOOOOOOOOOOOOOOOO
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Computing diagonal sums

= 3. Go through k-mers of |, look for matches in L,(J) and update
diagonal sums

) For the first 2-mer in |,
CCATCIGTICATCG ge L(J)-(6)

G 22

Cl |* " * We can then update

A * R the sum of diagonal
T ¥ Sk |=i-j=1-6=-5t0

C * B.”* 8_5::8_5+1:O+1:1

G

G * ‘0‘

C
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Computing diagonal sums

= 3. Go through k-mers of I, look for matches in L,(J) and update
diagonal sums

) Next 2-mer in | is CA,

G.P CAITCGCICAIT CG  forwhich Le,(J) = {2, 8).
c |* .*"I. Two diagonal sums are
A * *,) updated:

T 3 > I=i-j=2-2=0
C S =] Spi=S,+1=0+1=1
G ”‘t "” . .
G * %, |=1—]=2-8=-6
C "’ S-6:S-6+1:O+1:1
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Computing diagonal sums

= 3. Go through k-mers of |, look for matches in L,(J) and update
diagonal sums

J . :
Next 2-mer In | Is AT,
G.P CIATIC f.’C CIATICG  forwhich L, (J) = {3, 9}.
Cl |* .*"I. Two diagonal sums are
A *. *e updated:
i %] B |1=i—-j=3-3=0
c A %] | Spi=S,+1=1+1=2
G "0 "’.
G gy |=i-j=3-9=-6
c S,=S.+1=1+1=2
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Computing diagonal sums

After going through the k-mers of I, the result is:
I‘-10-9-8-7-6-5-4-3-2-10123456

S|‘00004100004100000

J
CCATCGCCATCG

*

OO0OO0-H42>» 00
*
*
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Algorithm for computing diagonal sum of scores

S :=0foralll-n<lsm-1
Compute L,/(J) for all k-mers w
fori:=1tom-k+1do
W= Ll diges
forjeL,(J)do
| :=i—]
S5=5+1
end
end

Match score is here 1

A
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FASTA outline

= FASTA algorithm has five steps:
= 1. Identify common k-mers between | and J

= 2. Score diagonals with k-mer matches, identify 10 best
diagonals

= 3. Rescore initial regions with a substitution score matrix
= 4. Join initial regions using gaps, penalise for gaps
= 5. Perform dynamic programming to find final alignments
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Rescoring Iinitial regions

= Each high-scoring diagonal chosen in the previous step is rescored
according to a score matrix
= This is done to find subregions with identities shorter than k

=  Non-matching ends of the diagonal are trimmed

l: CCATCGCCATCG o . : i
' CCAACGCAATCA 75% identity, no 4-mer identities
|’: CICATCGCCATC®G . . : :
3 AICATCIAAATAAA 33% identity, one 4-mer identity

40
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Joining diagonals

= Two offset diagonals can be joined with a gap, if the resulting
alignment has a higher score

=  Separate gap open and extension are used
= Find the best-scoring combination of diagonals

— High-scoring L
diagonals \

Two diagonals \ ....... o
joined by a gap \
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FASTA outline

= FASTA algorithm has five steps:
= 1. Identify common k-mers between | and J

2. Score diagonals with k-mer matches, identify 10 best
diagonals

3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Local alignment in the highest-scoring region

= |ast step of FASTA: perform local
alignment using dynamic programming
around the highest-scoring diagonals

= Regionto be aligned covers —w and +w
offset diagonal to the highest-scoring
diagonals

= With long sequences, this region is
typically very small compared to the
whole m x n matrix

Dynamic programming matrix
M filled only for the green region
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Properties of FASTA

= Fast compared to local alignment using dynamic programming only
= Only a narrow region of the full matrix is aligned
= Lossy filter : may fail to find some high scoring local alignments
= Increasing parameter k decreases the number of hits:
* |ncreases specificity
= Decreases sensitivity
= Decreases running time
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Properties of FASTA

= FASTA looks for initial exact matches to query sequence

= Two proteins can have very different amino acid sequences and
still be biologically similar

= This may lead into a lack of sensitivity with diverged sequences
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Demonstration of FASTA at EBI

= http://www.ebl.ac.uk/fasta/

= Note that parameter ktup in the software corresponds to
parameter k in lectures
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Rapid alignment methods: FASTA and BLAST

= The biological problem
= Search strategies

= FASTA

= BLAST
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BLAST: Basic Local Alignment Search Tool

= BLAST (Altschul et al., 1990) and its variants are some of the most
common sequence search tools in use
= Roughly, the basic BLAST has three parts:

= 1. Find segment pairs between the query sequence and a database
sequence above score threshold ("seed hits”)

= 2. Extend seed hits into locally maximal segment pairs
= 3. Calculate p-values and a rank ordering of the local alignments

= Gapped BLAST introduced in 1997 allows for gaps in alignments
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Finding seed hits

= First, we generate a set of neighborhood sequences for given K,
match score matrix and threshold T

= Neighborhood sequences of a k-mer w include all strings of length k
that, when aligned against w, have the alignment score at least T

= Forinstance, let | = GCATCGGC, J= CCATCGCCATCG and k =5,
match score be 1, mismatch scorebe Oand T =4
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Finding seed hits

= | =GCATCGGC, J= CCATCGCCATCG, k = 5, match score 1,
mismatch score 0, T=4

" This allows for one mismatch in each k-mer

= The neighborhood of the first k-mer of I, GCATC, is GCATC and the
15 sequences

( ( e e (
A A C A A
< CCATC, GLGATC, GX GIC, GCAq CC, GCATL G
T T T G T

\ \ \ \
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Finding seed hits

= | = GCATCGGC has 4 k-mers and thus 4x16 = 64 5-mer patterns to
locate in J
= Qccurrences of patterns in J are called seed hits
= Patterns can be found using exact search in time proportional to the
sum of pattern lengths + length of J + number of matches (Aho-
Corasick algorithm)
= Attend 58093 String processing algorithms to learn Aho-Corasick and
alike algorithms.

=  Compare this approach to FASTA

582606 Introduction to Bioinformatics, Autumn 2009 29.9-1.10/ 51




Extending seed hits: original BLAST

= |nitial seed hits are extended into locally
maximal segment pairs or High-scoring
Segment Pairs (HSP)

= Extensions do not add gaps to the alignment

= Sequence is extended until the alignment
score drops below the maximum attained
score minus a threshold parameter value

= All statistically significant HSPs reported

Altschul, S.F., Gish, W., Miller, W., Myers, E. W. and
Lipman, D. J., J. Mol. Biol., 215, 403-410, 1990

582606 Introduction to Bioinformatics, Autumn 2009

29.9-1.10/

AN
N\ N\ \ N
N\
N N\ N\
N\ \ N
NN
N\ NN
N\ N N
\ N\
Extension
/
AA TAATT
[l 1] ]
TA TOTTT
52 Initial seed hit




Extending seed hits: gapped BLAST

= |n a later version of BLAST, two seed hits \ NN \
have to be found on the same diagonal \
= Hits have to be non-overlapping \ N\
= [f the hits are closer than A (additional
parameter), then they are joined into a HSP N\

AN
=  Threshold value T is lowered to achieve \N N\
comparable sensitivity \

= |f the resulting HSP achieves a score at
least S, a gapped extension is triggered

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, and
Lipman DJ, Nucleic Acids Res. 1;25(17), 3389-402, 1997
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Gapped extensions of HSPs

= Local alignment is performed starting
from the HSP

= Dynamic programming matrix filled in

"forward” and "backward” directions /A

see figure

(see figure) 3
/ t

= Skip cells where value would be X, P
below the best alignment score found HSP
so far

e

Region searched with score Region potentially searched
above cutoff parameter by the alignment algorithm
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Estimating the significance of results

= |n general, we have a score S(D, X) = s for a sequence X found in
database D
= BLAST rank-orders the sequences found by p-values
=  The p-value for this hitis P(S(D, Y) = s) where Y is a random
seguence
» Measures the amount of "surprise” of finding sequence X

= A smaller p-value indicates more significant hit

= A p-value of 0.1 means that one-tenth of random sequences would have
as large score as our result
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Estimating the significance of results

= |n BLAST, p-values are computed roughly as follows

= There are mn places to begin an optimal alignment in the m x n
alignment matrix

=  Optimal alignment is preceded by a mismatch and has t matching
(identical) letters
= (Assume match score 1 and mismatch/indel score -«)
= Let p = P(two random letters are equal)

= The probability of having a mismatch and then t matches is (1-p)pt
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Estimating the significance of results

=  We model this event by a Poisson distribution (why?) W|th mean A=
nm(1-p)p'
= P(there is local alignment t or longer)
= 1 — P(no such event)
=1-e?*=1-exp(-nm(1-p)pY
= An equation of the same form is used in Blast: ow
= E-value =P(S(D, Y)=s)=1-exp(-mny¢)wherey>0and0<g¢<1
= Parameters y and ¢ are estimated from data
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Properties of BLAST

= Better sensitivity than in FASTA

= Still a lossy filter:

= Alternative lossless filters exist with similar performance!

= See e.g. Lam et at.. Compressed indexing and local alignment of
DNA, Bioinformatics, 25:1754-1760, 2008.

= Has become the standard in Bioinformatics:

= This is due to the p-value computation and ranking of results,
which give a way to compare the significance of the search
results.

= However, these computations apply to any alignment algorithm not
just to BLAST.

= BLAST may fall to find real occurrences, skewing the comparison of
significance.
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Amino acid sequences

= We have discussed mainly DNA sequences
= Amino acid sequences can be aligned as well

= However, the design of the substitution matrix is more
Involved because of the larger alphabet

= More on the topic in the course Biological sequence
analysis
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\\“I

L-Alahine L-Arginine

alignments

o M

H

;
H
NH;
OH
H, H H H2N/\g/

HoN HoN

H H
o

OH Eu\f
Scoring amino acid Y Y

H SH
e
= We need a way to compute the score H
S(D, X) for aligning the sequence X
against database D A .
= Scoring DNA alignments was *@ *ﬁ;} *ﬁ Qﬂ
discussed previously — | O
= Constructing a scoring model for
amino acids is more challenging y ) L on
= 20 different amino acids vs. 4 bases Hzrf§@“ N %}/ﬁ” Hzmﬁ;
'S ]

= Figure shows the molecular

L-Methionine L-Pherylalanine L-Froline L-Setine

structures of the 20 amino acids
H N H
H = H
% NH H A0
H,N o oo Ha " HN i
HaN 5
o
L-Threonine L-Tryptophan L-Tyrosine L-Yaline
Thr T (Trp il (Tyr [ al 1)

http://en.wikipedia.org/wiki/List_of standard_amino_acids
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http://en.wikipedia.org/wiki/List_of_standard_amino_acids

oL

OH HEM\{
Scoring amino acid Y ey

alignments

NH
H
H
NH,
OH
H H H2N/\g/
HN
H H
d

SH
HzN/%] ng«l/%<:I
- . . H
= Substitutions between chemically
similar amino acids are more frequent
than between dissimilar amino acids N c .
= We can check our scoring model *@ é;; ﬁ Qﬁ
against this - ’ ’
H
HzN H H HoN
HaN I fo} H
HzN OH H " " HZNH"' H HoN OH

http://en.wikipedia.org/wiki/List_of standard_amino_acids
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Score matrices

= Scores s = S(D, X) are obtained from score matrices

= LetA=a,a,...a,and B = b,b,...b, be sequences of equal length (no
gaps allowed to simplify things)

= To obtain a score for alignment of A and B, where g, is aligned
against b;,, we take the ratio of two probabilities

» The probability of having A and B where the characters match (match
model M)

= The probability that A and B were chosen randomly (random model R)
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Score matrices: random model

= Under the random model, the probabillity of having A and

Bis
P(A, B‘R) — H,L Qai Hz b

where q,; IS the probability of occurence of amino acid
type X;

= Position where an amino acid occurs does not affect its
type
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Score matrices: match model

= Let p,, be the probability of having amino acids of type a and b
aligned against each other given they have evolved from the same

ancestor c
=  The probability is

P(A, BIM) = [[; pasb,

64
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Score matrices: log-odds ratio score

= We obtain the score S by taking the ratio of these two

probabilities
pABIM) 1L pa, by H Pa;b;
P(A,B|R) [1; 9a; I1; as, % qa, Qb
and taking a logarithm of the ratio
P(A,B|M Pa,b;, T
S = logy P((A,B||R)) =it logy g g = 2lin s(as by)
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Score matrices: log-odds ratio score

_ P(A,B|M) _ n Pagb, _ 7
S = logy P(A,B||R) = 21108 a;qp, =1 s(ai, bi)

= The score S Is obtained by summing over character pair-
specific scores:

s(a,b) = log, 22t

dadb

" The probabilities g, and p,, are extracted from data
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Calculating score matrices for amino acids

= Probabilities g, are in principle easy s(a, b) — 10g2
to obtain:

= Count relative frequencies of every
amino acid in a sequence database

Pab
dadb
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Calculating score matrices for amino acids

= To calculate p,, we can use a s(a, b) — 10g2
known pool of aligned sequences

= BLOCKS is a database of highly  siockprooss1a
. . ID XRODRMPGMNTB; BLOCK
conserved regions for proteins AG PRO0S51A. distance from previous block=(52,131)

. . . DE Xeroderma pigmentosum group B protein signature
= |t lists mUItlply allgned, ungapped BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
- XPB_HUMAN| P19447 ( 74)  RPLWAPDGHI FLEAFSPVYK 54
and conserved protein segments XPB:NQJSEI P49135 § 743 RPLVWAPDGH! FLEAFSPVYK 54

Pab
dadb

P91579 ( 80) RPLYLAPDGH FLESFSPVYK 67

= Example from BLOCKS shows XPB_DROVE| QU2870 ( 84)  RPLWAPNGHVFLESFSPVYK 79

RA25_YEAST| Q00578 ( 131) PLW SPSDGRI | LESFSPLAE 100

genes related to human gene Q88861 (  52) RPLWACADGR! FLETFSPLYK 71

. . . 013768 ( 90) PLW NPI DGRI | LEAFSPLAE 100

associated with DNA-repair 000835 ( 79) RPI WCPDGH FLETFSAI YK 86
defect xeroderma pigmentosum

http.//blocks.fhcrc.org
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BLOSUM matrix

= BLOSUM is a score matrix for

amino acid sequences derived RALYWAPD
from BLOCKS data RALW/APR
= First, count pairwise matches RALVWAPN
f,, for every amino acid type PLIW SPSD
pair (x, y) RALIWACAD
" For exam_ple, for column 3_and PL NPI D
amino acids L and W, we find R WCPD

8 pairwise matches: f, \y, =fy |
=8
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Creating a BLOSUM matrix

=  Probability p,, is obtained by
dividing f_,, with the total number RPL W/APD
of pairs (note difference with RAL WAPR

course book):

RRLW/APN
_ 20 x PL{W SPSD
pab — fab/ Zx:l y=1 fmy REL WACAD
PLW NPI D
= We get probabilities g, by RAl YWCPD

L 20
Qo — p—1 Pab
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Creating a BLOSUM matrix

= The probabilities p,, and g, can now be plugged into

_ Pab

s(a,b) = 1o

( Y ) g2 qaqb
to get a 20 x 20 matrix of scores s(a, b).

= Next slide presents the BLOSUMG62 matrix

» Values scaled by factor of 2 and rounded to integers

= Additional step required to take into account expected evolutionary
distance

= Described in Deonier’'s book in more detalil
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Using BLOSUMG62 matrix

MOL EANADTSV
|

L QEQAEAQGEM
S = Z (a“ba )

=2+5-3-4+4+0+4+0-2+0+1
=7
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Demonstration of BLAST at NCBI

= http://www.ncbi.nim.nih.gov/BLAST/
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Signals in DNA (Section 9)

= (Genes
= Promoter regions

= Binding sites for regulatory proteins (transcription
factors, motifs) —

DNA - U R -

transcrption

RNA B
trarslation
Protens .
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Gene finding

= Could be done by dynamic programming similar to
exercise 3/6 taking into account
= Seguencing errors
= Exons /intron gap constraints
= Total gene length constraints
= Codon usage optimization
= Start codons / stop codons.

= |n practise, often just the consensus reverse translation
Is taken and BLAST is used for finding local alignments
(exons).

582606 Introduction to Bioinformatics, Autumn 2009 29.9-1.10/ 76




Promoter sequences

= Often immediately before the gene.
= Clear structure in prokaryotes, more complex in
eukaryotes.

= An example from E coli is shown in next slide (taken
from course book).
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Promoter example

Table 9.2. A sample of E. coli promoter sequences. These sequences have been
aligned relative to the transcriptional start site at position +1 (boldface large letter).
Sequences from —40 to +11 are shown. Close matches to consensus —35 and —10
hexamers are underlined. See also Appendix C.3 for additional examples and sources

of the data.
—35 10 1
ORF83P1 | { |
CTCTGOTGCCATTICACAAATGCGCAGGGCTAAAACCTTTCCTGTAGCACCG
ada
GTTGGTTTTTGCCTGATGGTGACCGGGCAGCCTAAAGGCTATCCTTAACCA
amnP4
TTCACATTTICTGTGACATACTATCGGATGTGCGGTAATTGTATGGAACAGG
araFGH
CTCTCCTATGCGAGAATTAATTTCTCGCTAAAACTATCTCAACACAGTCACT
aroG
CCCCGTTTACACATTCTGACGGAAGATATAGATT GGAAGTATTGCATTCAC
atpl
TATTGTTTGAAATCACCGGGGCGCACCGTATAATTTGACCGCTTTTTGATG
caiT
AATCACAGAATACAGCTTATTGAATACCCATTAT GAGTTAGCCATTAACGC
clpAP1
TTATTGACGTGTTACAAAAATTCTTTTCTTATGAT GTAGAACGTGCAACGC
errP2-1

GTGGTGAGCTTCCTCGCGATGAACGTGCTACACT TCTGTTGCTGGGGATGG
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Representing signals in DNA

= Consensus sequence: GRE half-sites:

o | AGAACA
= -10 site in E coli: TATAAT ACAACA
= GRE half-site consensus; AGAACA AGAACA

. . AGAAGA

= Simple regular expression: AGAACA
= A(C/G)AA(CIG)(AIT) AGAACT
AGAACA

= Positional weight matrix (PWM):
1.00 0.00 1.00 1.00 0.00 0.86]
0.00 0.14 0.00 0.00 0.86 0.00
0.00 0.86 0.00 0.00 0.14 0.00
10.00 0.00 0.00 0.00 0.00 0.14

consensus: AGAACA

— O 0>
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Position-specific scoring matrix (PSSM)

= PSSM is a log-odds normalized version of PWM. 1
= Calculated by log(p.i/d,), where

= p, is the frequency of a at column i in the samples.

= (, Is the probability of a in the whole organism (or in some region
of interest).

" Problematic when some values p_; are zero.

= Solution Is to use pseudocounts:

= add 1 to all the sample counts where the frequencies are
calculated.

! In the following log denotes base 2 logarithm.
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PWM versus PSSM

(7 0 7 7 0 6] (1.00 0.00 1.00 1.00 0.00 0.86]
counts |0 10 060 PWM  l000 014 000 000 086 000
060010 000 086 000 000 0.14 0.0
00000 1] 000 000 0.00 000 0.00 0.14
pseudocounts
s 188 1 7 154 -146 154 154 -146 135
121171 PSSM 146 046 -146 -146 135 -146
1 711 2 1| pemieremns” | 146 135 146 146 -0.46 146
11 11 1 »| seomngmam) | 146 -146 -146 -146 -146 046

\ log((8/11)/(1/4))
log((1/11)/(1/4
|38E§2,11§,§1,4£ / «<—— assuming g,=0.25 for all a

log((7/11)/(1/4))
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Extended representations

= PWM representation can be
extended to first-order
non-homogenous
Markov chain.

= |dentical to what described
In lecture 2, except that
transition probabilities are
position-specific.
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A.
Markov chain. identical distributions
Transition matrix

/// U\\\.

I I o1 ool oorii-
5 .
B.
Markov ghain, nonidentical distributions
Trangition Trangition Transition Transiti
matrix 2 matrix 3 malrix 4 matrix 5

/\/\/\/\

Ly ey vy et

n 2 3 4

Fig. 9.4. Controst between the Markov chain representation for positions with
identical probability distributions (panel A) and the model for positions in a sig-
nal (binding site) sequence {panel B). Numbered four-element horizontal rows are
the vectors of probabilities for A, €, G, and T at each position. These vectors are
transformed to vectors at the next position byma.tnxmltp]cat. n by a transition
matrix. In panelA a single transition matrix is employed. In panel B, a dffeent
trans t n matrix is required for each successivi epost on.
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Seqguence logos

= Many known transcription factor binding site PWM:s can
be found from JASPAR database
(http://jaspar.cgb.ki.se/).

= PWM:s are visualized as sequence logos, where the
height of each nucleotide equals its proportion of the
relative entropy (expected log-odds score) in that
column.

- E(§)=)_ p,log(p,/a,)

» Height of a atcolumniis PLE(S)
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Example sequence logo

154 -146 154 154 -146 135
-146 -046 -146 -146 135 -1.46
-146 135 -146 -146 -046 -1.46

-146 -146 -146 -146 -146 -0.46]

|
heAhca

2 bits

a
) |
F A N
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More on signals in DNA

= Book by Durbin et al.: Biological sequence analysis.
» Hidden Markov Model (HMM) approach to alignment.

= Viterbi / forward-backward dynamic programming algorithms for
finding most probable paths in the model.

= Profile-HMMs for sequence family classification.

" 582653 Computational methods of systems biology (4

credits)
» Professor Esko Ukkonen, Il period
= The course is an advanced introduction to computational
methods for analysing genomic and gene expression data to find

different functional units (such as genes) and regulatory
structures and relations (such as gene enhancers).

85
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