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Note on sequences and alignment matrices inNote on sequences and alignment matrices in
exercisesexercises

Example solutions to alignment problems will have
sequences arranged like this:

Perform global alignment of the sequences
s = AGCTGCGTACT
t = ATGAGCGTTA

A
G

C
T
G

C
G

TA
C
T

ATGAGCGTTA

So if you want to be able to
compare your solution easily
against the example, use this
convention.



29.9-1.10 /582606 Introduction to Bioinformatics, Autumn 2009 2

Tracing back optimal pathTracing back optimal path

- T G G T G

- 0 -2 -4 -6 -8 -10

A -2 -1 -3 -5 -7 -9

T -4 -1 -2 -4 -4 -6

C -6 -3 -2 -3 -5 -5

G -8 -5 -2 -1 -3 -4

T -10 -7 -4 -3 0 -2

When filling the DP matrix,
one can store to each cell
the list of pointers to the
cells where the optimal
value was computed; then
tracing back all the optimal
paths is easy.
Explicit pointers are
actually not needed, since
one can just reverse the
computation; start from
cell (m,n), check which are
the neighboring cells
where the optimum value
must have been
computed, and continue
like this to follow all
optimal paths.
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Overlap alignmentOverlap alignment

Overlap matrix used by Overlap-Layout-Consensus algorithm can
be computed with dynamic programming
Initialization: Oi,0 = O0,j = 0 for all i, j
Recursion:

Oi,j = max {
Oi-1,j-1 + s(ai, bi),
Oi-1,j ,
Oi,j-1 ,

}

Best overlap: maximum value from rightmost column and bottom
row

0 0 0 0 0 0 0 0 0 0
0
0
0
0
0

...more on sequence assembly at the Spring 2010 seminar!
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NonNon--uniform mismatch penaltiesuniform mismatch penalties

We used uniform penalty for mismatches:
s(’A’, ’C’) = s(’A’, ’G’) = … = s(’G’, ’T’) = µ

Transition mutations (A<->G, C<->T) are approximately twice as frequent
than transversions (A<->C, A<->T, C<->G, G<->T)

use non-uniform mismatch
penalties collected into a
substitution matrix A C G T

A 1 -1 -0.5 -1

C -1 1 -1 -0.5

G -0.5 -1 1 -1

T -1 -0.5 -1 1
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Gaps in alignmentGaps in alignment

Gap is a succession of indels in alignment

Previous model scored a length k gap as w(k) = -k
Replication processes may produce longer stretches of
insertions or deletions

In coding regions, insertions or deletions of codons may
preserve functionality

C T – - - A A
C T C G C A A
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Gap open and extension penalties (2)Gap open and extension penalties (2)

We can design a score that allows the penalty opening
gap to be larger than extending the gap:

w(k) = - (k – 1)
Gap open cost , Gap extension cost
Alignment algorithms can be extended to use w(k) as
follows:

Si,j = maxi'+j'<i+j {
Si-1,j-1+s(ai,bj),
Si',j'+w(j – j'+i-i')

}
However, this is too inefficient: O(m2n2).

i

j

i'

j'

max
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Speeding up gap open and extensionSpeeding up gap open and extension
alignmentalignment

Si,j = max {
Si-1,j-1 + s(ai, bi),
Gi-1,j-1 + s(ai, bi)

}

Gi,j = max {
Si-1,j – ,
Gi-1,j – ,
Si,j-1 – ,
Gi,j-1 – ,

}

S

G

i

j

i

Equivalent result in
O(mn) time.
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Demonstration of the EBI web siteDemonstration of the EBI web site

European Bioinformatics Institute (EBI) offers many
biological databases and bioinformatics tools at
http://www.ebi.ac.uk/

Sequence alignment: Tools -> Sequence Analysis -> Align

http://www.ebi.ac.uk/
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Sequence Alignment (chapter 6)Sequence Alignment (chapter 6)

The biological problem
Global alignment
Local alignment
Multiple alignment
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Multiple alignmentMultiple alignment

Consider a set of d sequences on
the right

Orthologous sequences from
different organisms
Paralogs from multiple
duplications

How can we study relationships
between these sequences?

aggcgagctgcgagtgcta
cgttagattgacgctgac
ttccggctgcgac
gacacggcgaacgga
agtgtgcccgacgagcgaggac
gcgggctgtgagcgcta
aagcggcctgtgtgcccta
atgctgctgccagtgta
agtcgagccccgagtgc
agtccgagtcc
actcggtgc
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Optimal alignment of three sequencesOptimal alignment of three sequences

Alignment of A = a1a2…ai and B = b1b2…bj can end either in (-, bj),
(ai, bj) or (ai, -)
22 – 1 = 3 alternatives
Alignment of A, B and C = c1c2…ck can end in 23 – 1 ways: (ai, -, -),
(-, bj, -), (-, -, ck), (-, bj, ck), (ai, -, ck), (ai, bj, -) or (ai, bj, ck)
Solve the recursion using three-dimensional dynamic programming
matrix: O(n3) time and space
Generalizes to d sequences but impractical with even a moderate
number of sequences
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Multiple alignment in practiceMultiple alignment in practice

In practice, real-world multiple alignment problems are usually
solved with heuristics
Progressive multiple alignment

Choose two sequences and align them
Choose third sequence w.r.t. two previous sequences and align the third
against them
Repeat until all sequences have been aligned
Different options how to choose sequences and score alignments
Note the similarity to Overlap-Layout-Consensus
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Multiple alignment in practiceMultiple alignment in practice

Profile-based progressive multiple alignment:
CLUSTALW

Construct a distance matrix of all pairs of sequences using
dynamic programming
Progressively align pairs in order of decreasing similarity
CLUSTALW uses various heuristics to contribute to accuracy
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Additional materialAdditional material

R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological
sequence analysis
N. C. Jones, P. A. Pevzner: An introduction to
bioinformatics algorithms
Biological sequence analysis course, next time in 2010-
2011?
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Rapid alignment methods: FASTA and BLASTRapid alignment methods: FASTA and BLAST
(Section 7)(Section 7)

The biological problem
Search strategies
FASTA
BLAST
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The biological problemThe biological problem

Global and local alignment
algoritms are slow in practice
Consider the scenario of
aligning a query sequence
against a large database of
sequences

New sequence with unknown
function

NCBI GenBank size in January 2007
was 65 369 091 950 bases (61 132
599 sequences)
Feb 2008: 85 759 586 764 bases (82
853 685 sequences)
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Problem with large amount of sequencesProblem with large amount of sequences

Exponential growth in both number and total length of
sequences
Possible solution: Compare against model organisms
only
With large amount of sequences, chances are that
matches occur by random

Need for statistical analysis
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Rapid alignment methods: FASTA and BLASTRapid alignment methods: FASTA and BLAST

The biological problem
Search strategies
FASTA
BLAST
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FASTAFASTA

FASTA is a multistep algorithm for sequence alignment (Wilbur and
Lipman, 1983)
The sequence file format used by the FASTA software is widely
used by other sequence analysis software
Main idea:

Choose regions of the two sequences (query and database) that look
promising (have some degree of similarity)
Compute local alignment using dynamic programming in these regions
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Search strategiesSearch strategies

How to speed up the computation?
Find ways to limit the number of pairwise comparisons

Compare the sequences at k-mer level:
k-mer (or a k-word, or a k-tuple) is a substring of length k
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FASTA outlineFASTA outline

FASTA algorithm has five steps:
1. Identify common k-mers between I and J
2. Score diagonals with k-mer matches, identify 10 best
diagonals
3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Analyzing the kAnalyzing the k--mer contentmer content

Example query string I: TGATGATGAAGACATCAG
For k = 8, the set of k-mers of I is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

…
GACATCAG
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Analyzing the kAnalyzing the k--mer contentmer content

There are n-k+1 k-mers in a string of length n

If at least one k-mer of I is not found from another string J, we know
that I differs from J

Need to consider statistical significance: I and J might share k-
mers by chance only

Let m=|I| and n=|J|
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Word lists and comparison by contentWord lists and comparison by content

The k-mers of I can be arranged into a table of k-mer occurences
Lw(I)
Consider the k-mers when k=2 and I=GCATCGGC:

GC, CA, AT, TC, CG, GG, GC

AT: 3
CA: 2
CG: 5
GC: 1, 7
GG: 6
TC: 4

Start indecies of k-mer GC in I

Building Lw(I) takes O(n) time
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Common kCommon k--mersmers

Number of common k-mers in I and J can be computed
using Lw(I) and Lw(J)

For each k-mer w in I, there are |Lw(J)| occurences in J
Therefore I and J have                                common k-
mer pairs
This can be computed in O(m + n + 4k) time

O(m + n + 4k) time to build the lists
O(4k) time to multiply the corresponding list entry sizes (in DNA
strings)
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Common kCommon k--mersmers

I = GCATCGGC
J = CCATCGCCATCG

Lw(J)
AT: 3, 9
CA: 2, 8
CC: 1, 7
CG: 5, 11
GC: 6

TC: 4, 10

Lw(I)
AT: 3
CA: 2

CG: 5
GC: 1, 7
GG: 6
TC: 4

Common k-mers
2
2
0
2
2
0
2
10 in total
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Properties of the common word listProperties of the common word list

For large k, the table size O(4k) is too large to compute the common
k-mer pairs count in the previous fashion
Instead, an approach based on merge sort can be utilised (details
skipped)
The common k-mer technique can be combined with the local
alignment algorithm to yield a rapid alignment approach
Alternative solutions, not part of FASTA:

Exercise: Show how generalized suffix tree can be used for counting the
common k-mer pairs
Generalized suffix tree with some additional data structures can also be
used for directly computing all maximal pairs of tuples {(i',i),(j',j)} such
that ai'...ai =bj'...bj and the ranges cannot be extended left or right (see
Gusfield's book).



29.9-1.10 /582606 Introduction to Bioinformatics, Autumn 2009 28

FASTA outlineFASTA outline

FASTA algorithm has five steps:
1. Identify common k-mers between I and J
2. Score diagonals with k-mer matches, identify 10 best
diagonals
3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Dot matrix comparisonsDot matrix comparisons

k-mer matches in two sequences I and J can be represented as a
dot matrix
Dot matrix element (i, j) has ”a dot”, if the k-mer starting at position i
in I is identical to the k-mer starting at position j in J
The dot matrix can be plotted for various k

i

j

I = … ATCGGATCA …
J = … TGGTGATGC …

i

j
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k=1 k=4

k=8 k=16

Dot matrix (k=1,4,8,16)
for two DNA sequences
X85973.1 (1875 bp)
Y11931.1 (2013 bp)
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k=1 k=4

k=8 k=16

Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1  (531 aa)
CAA72681.1  (588 aa)

Shading indicates
now the match score
according to a
score matrix
(Blosum62 here)
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Computing diagonal sumsComputing diagonal sums

We would like to find high scoring diagonals of the dot matrix
Lets index diagonals by the offset, l =  i  - j

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

k=2

I

J

Diagonal l = i – j = -6
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Computing diagonal sumsComputing diagonal sums

As an example, lets compute diagonal sums for I = GCATCGGC, J
= CCATCGCCATCG, k = 2
1. Construct k-mer list Lw(J)
2. Diagonal sums Sl are computed into a table, indexed with the
offset and initialised to zero

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  0  0  0  0  0  0 0 0 0 0 0 0 0
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Computing diagonal sumsComputing diagonal sums

3. Go through k-mers of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J For the first 2-mer in I,
GC, LGC(J) = {6}.

We can then update
the sum of diagonal
l = i – j = 1 – 6 = -5 to
S-5 := S-5 + 1 = 0 + 1 = 1
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Computing diagonal sumsComputing diagonal sums

3. Go through k-mers of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-mer in I is CA,
for which LCA(J) = {2, 8}.

Two diagonal sums are
updated:
l = i – j = 2 – 2 = 0
S0 := S0 + 1 = 0 + 1 = 1

I = i – j = 2 – 8 = -6
S-6 := S-6 + 1 = 0 + 1 = 1
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Computing diagonal sumsComputing diagonal sums

3. Go through k-mers of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-mer in I is AT,
for which LAT(J) = {3, 9}.

Two diagonal sums are
updated:
l = i – j = 3 – 3 = 0
S0 := S0 + 1 = 1 + 1 = 2

I = i – j = 3 – 9 = -6
S-6 := S-6 + 1 = 1 + 1 = 2
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Computing diagonal sumsComputing diagonal sums

After going through the k-mers of I, the result is:
l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  4  1  0  0  0  0 4 1 0 0 0 0 0

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J



29.9-1.10 /582606 Introduction to Bioinformatics, Autumn 2009 38

Algorithm for computing diagonal sum of scoresAlgorithm for computing diagonal sum of scores

Sl := 0 for all 1 – n < l  m – 1
Compute Lw(J) for all k-mers w
for i := 1 to m – k +1 do

w := IiIi+1…Ii+k-1

for j  Lw(J) do
l := i – j
Sl := Sl + 1

end
end

Match score is here 1
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FASTA outlineFASTA outline

FASTA algorithm has five steps:
1. Identify common k-mers between I and J
2. Score diagonals with k-mer matches, identify 10 best
diagonals
3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Rescoring initial regionsRescoring initial regions

Each high-scoring diagonal chosen in the previous step is rescored
according to a score matrix
This is done to find subregions with identities shorter than k
Non-matching ends of the diagonal are trimmed

I: C C A T C G C C A T C G
J: C C A A C G C A A T C A

I’: C C A T C G C C A T C G
J’: A C A T C A A A T A A A

75% identity, no 4-mer identities

33% identity, one 4-mer identity
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JoiningJoining diagonalsdiagonals

Two offset diagonals can be joined with a gap, if the resulting
alignment has a higher score
Separate gap open and extension are used
Find the best-scoring combination of diagonals

High-scoring
diagonals

Two diagonals
joined by a gap
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FASTA outlineFASTA outline

FASTA algorithm has five steps:
1. Identify common k-mers between I and J
2. Score diagonals with k-mer matches, identify 10 best
diagonals
3. Rescore initial regions with a substitution score matrix
4. Join initial regions using gaps, penalise for gaps
5. Perform dynamic programming to find final alignments
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Local alignment in the highestLocal alignment in the highest--scoring regionscoring region

Last step of FASTA: perform local
alignment using dynamic programming
around the highest-scoring diagonals
Region to be aligned covers –w and +w
offset diagonal to the highest-scoring
diagonals
With long sequences, this region is
typically very small compared to the
whole m x n matrix

w

w

Dynamic programming matrix
M filled only for the green region
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Properties of FASTAProperties of FASTA

Fast compared to local alignment using dynamic programming only
Only a narrow region of the full matrix is aligned

Lossy filter : may fail to find some high scoring local alignments
Increasing parameter k decreases the number of hits:

Increases specificity
Decreases sensitivity
Decreases running time
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Properties of FASTAProperties of FASTA

FASTA looks for initial exact matches to query sequence
Two proteins can have very different amino acid sequences and
still be biologically similar
This may lead into a lack of sensitivity with diverged sequences
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Demonstration of FASTA at EBIDemonstration of FASTA at EBI

http://www.ebi.ac.uk/fasta/
Note that parameter ktup in the software corresponds to
parameter k in lectures

http://www.ebi.ac.uk/fasta/
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Rapid alignment methods: FASTA and BLASTRapid alignment methods: FASTA and BLAST

The biological problem
Search strategies
FASTA
BLAST
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BLAST: Basic Local Alignment Search ToolBLAST: Basic Local Alignment Search Tool

BLAST (Altschul et al., 1990) and its variants are some of the most
common sequence search tools in use
Roughly, the basic BLAST has three parts:

1. Find segment pairs between the query sequence and a database
sequence above score threshold (”seed hits”)
2. Extend seed hits into locally maximal segment pairs
3. Calculate p-values and a rank ordering of the local alignments

Gapped BLAST introduced in 1997 allows for gaps in alignments
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Finding seed hitsFinding seed hits

First, we generate a set of neighborhood sequences for given k,
match score matrix and threshold T
Neighborhood sequences of a k-mer w include all strings of length k
that, when aligned against w, have the alignment score at least T
For instance, let I = GCATCGGC, J = CCATCGCCATCG and k = 5,
match score be 1, mismatch score be 0 and T = 4



29.9-1.10 /582606 Introduction to Bioinformatics, Autumn 2009 50

Finding seed hitsFinding seed hits

I = GCATCGGC, J = CCATCGCCATCG, k = 5, match score 1,
mismatch score 0, T = 4
This allows for one mismatch in each k-mer
The neighborhood of the first k-mer of I, GCATC, is GCATC and the
15 sequences

A       A       C       A       A

CCATC,G GATC,GC GTC,GCA CC,GCAT G

T       T       T       G       T
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Finding seed hitsFinding seed hits

I = GCATCGGC has 4 k-mers and thus 4x16 = 64 5-mer patterns to
locate in J

Occurrences of patterns in J are called seed hits
Patterns can be found using exact search in time proportional to the
sum of pattern lengths + length of J + number of matches (Aho-
Corasick algorithm)

Attend 58093 String processing algorithms to learn Aho-Corasick and
alike algorithms.

Compare this approach to FASTA
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Extending seed hits: original BLASTExtending seed hits: original BLAST

Initial seed hits are extended into locally
maximal segment pairs or High-scoring
Segment Pairs (HSP)
Extensions do not add gaps to the alignment
Sequence is extended until the alignment
score drops below the maximum attained
score minus a threshold parameter value
All statistically significant HSPs reported

AACCGTTCATTA
| || || ||
TAGCGATCTTTT

Initial seed hit

Extension

Altschul, S.F., Gish, W., Miller, W., Myers, E. W. and
Lipman, D. J., J. Mol. Biol., 215, 403-410, 1990
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Extending seed hits: gapped BLASTExtending seed hits: gapped BLAST

In a later version of BLAST, two seed hits
have to be found on the same diagonal

Hits have to be non-overlapping
If the hits are closer than A (additional
parameter), then they are joined into a HSP

Threshold value T is lowered to achieve
comparable sensitivity
If the resulting HSP achieves a score at
least Sg, a gapped extension is triggered

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and
Lipman DJ, Nucleic Acids Res. 1;25(17), 3389-402, 1997
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Gapped extensions of HSPsGapped extensions of HSPs

Local alignment is performed starting
from the HSP
Dynamic programming matrix filled in
”forward” and ”backward” directions
(see figure)
Skip cells where value would be Xg
below the best alignment score found
so far

Region potentially searched
by the alignment algorithm

HSP

Region searched with score
above cutoff parameter
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Estimating the significance of resultsEstimating the significance of results

In general, we have a score S(D, X) = s for a sequence X found in
database D
BLAST rank-orders the sequences found by p-values
The p-value for this hit is P(S(D, Y)  s) where Y is a random
sequence

Measures the amount of ”surprise” of finding sequence X
A smaller p-value indicates more significant hit

A p-value of 0.1 means that one-tenth of random sequences would have
as large score as our result
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Estimating the significance of resultsEstimating the significance of results

In BLAST, p-values are computed roughly as follows
There are mn places to begin an optimal alignment in the m x n
alignment matrix
Optimal alignment is preceded by a mismatch and has t matching
(identical) letters

(Assume match score 1 and mismatch/indel score - )
Let p = P(two random letters are equal)
The probability of having a mismatch and then t matches is (1-p)pt
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Estimating the significance of resultsEstimating the significance of results

We model this event by a Poisson distribution (why?) with mean =
nm(1-p)pt

P(there is local alignment t or longer)
 1 – P(no such event)

= 1 – e = 1 – exp(-nm(1-p)pt)
An equation of the same form is used in Blast:
E-value = P(S(D, Y)  s)  1 – exp(-mn t) where > 0 and 0 < < 1
Parameters and are estimated from data
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Properties of BLASTProperties of BLAST

Better sensitivity than in FASTA
Still a lossy filter:

Alternative lossless filters exist with similar performance!
See e.g. Lam et at.: Compressed indexing and local alignment of
DNA, Bioinformatics, 25:1754-1760, 2008.

Has become the standard in Bioinformatics:
This is due to the p-value computation and ranking of results,
which give a way to compare the significance of the search
results.

However, these computations apply to any alignment algorithm not
just to BLAST.
BLAST may fail to find real occurrences, skewing the comparison of
significance.
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Amino acid sequencesAmino acid sequences

We have discussed mainly DNA sequences
Amino acid sequences can be aligned as well
However, the design of the substitution matrix is more
involved because of the larger alphabet
More on the topic in the course Biological sequence
analysis
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Scoring amino acidScoring amino acid
alignmentsalignments

We need a way to compute the score
S(D, X) for aligning the sequence X
against database D
Scoring DNA alignments was
discussed previously
Constructing a scoring model for
amino acids is more challenging

20 different amino acids vs. 4 bases
Figure shows the molecular
structures of the 20 amino acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
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Scoring amino acidScoring amino acid
alignmentsalignments

Substitutions between chemically
similar amino acids are more frequent
than between dissimilar amino acids
We can check our scoring model
against this

http://en.wikipedia.org/wiki/List_of_standard_amino_acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
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Score matricesScore matrices

Scores s = S(D, X) are obtained from score matrices
Let A = a1a2…an and B = b1b2…bn be sequences of equal length (no
gaps allowed to simplify things)
To obtain a score for alignment of A and B, where ai is aligned
against bi, we take the ratio of two probabilities

The probability of having A and B where the characters match (match
model M)
The probability that A and B were chosen randomly (random model R)
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Score matrices: random modelScore matrices: random model

Under the random model, the probability of having A and
B is

where qxi is the probability of occurence of amino acid
type xi

Position where an amino acid occurs does not affect its
type
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Score matrices: match modelScore matrices: match model

Let pab be the probability of having amino acids of type a and b
aligned against each other given they have evolved from the same
ancestor c
The probability is
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Score matrices: logScore matrices: log--odds ratio scoreodds ratio score

We obtain the score S by taking the ratio of these two
probabilities

and taking a logarithm of the ratio
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Score matrices: logScore matrices: log--odds ratio scoreodds ratio score

The score S is obtained by summing over character pair-
specific scores:

The probabilities qa and pab are extracted from data
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Calculating score matrices for amino acidsCalculating score matrices for amino acids

Probabilities qa are in principle easy
to obtain:

Count relative frequencies of every
amino acid in a sequence database
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Calculating score matrices for amino acidsCalculating score matrices for amino acids

To calculate pab we can use a
known pool of aligned sequences
BLOCKS is a database of highly
conserved regions for proteins
It lists multiply aligned, ungapped
and conserved protein segments
Example from BLOCKS shows
genes related to human gene
associated with DNA-repair
defect xeroderma pigmentosum

Block PR00851A
ID XRODRMPGMNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN|P19447 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54
P91579 ( 80)             RPLYLAPDGHIFLESFSPVYK 67
XPB_DROME|Q02870 ( 84)   RPLWVAPNGHVFLESFSPVYK 79
RA25_YEAST|Q00578 ( 131) PLWISPSDGRIILESFSPLAE 100
Q38861 ( 52)             RPLWACADGRIFLETFSPLYK 71
O13768 ( 90)             PLWINPIDGRIILEAFSPLAE 100
O00835 ( 79)             RPIWVCPDGHIFLETFSAIYK 86

http://blocks.fhcrc.org

http://blocks.fhcrc.org
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BLOSUM matrixBLOSUM matrix

BLOSUM is a score matrix for
amino acid sequences derived
from BLOCKS data
First, count pairwise matches
fx,y for every amino acid type
pair (x, y)
For example, for column 3 and
amino acids L and W, we find
8 pairwise matches: fL,W = fW,L
= 8

RPLWVAPD
RPLWVAPR
RPLWVAPN
PLWISPSD
RPLWACAD
PLWINPID
RPIWVCPD
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Creating a BLOSUM matrixCreating a BLOSUM matrix

Probability pab is obtained by
dividing fab with the total number
of pairs (note difference with
course book):

We get probabilities qa by

RPLWVAPD
RPLWVAPR
RPLWVAPN
PLWISPSD
RPLWACAD
PLWINPID
RPIWVCPD
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Creating a BLOSUM matrixCreating a BLOSUM matrix

The probabilities pab and qa can now be plugged into

to get a 20 x 20 matrix of scores s(a, b).
Next slide presents the BLOSUM62 matrix

Values scaled by factor of 2 and rounded to integers
Additional step required to take into account expected evolutionary
distance
Described in Deonier’s book in more detail
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BLOSUM62BLOSUM62

A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X  *
A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4
R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4
N -2  0  6  1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4
D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3  4  1 -1 -4
C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4
E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4
G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3  0  0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2  0  1 -1 -4
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1  1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4  1 -3 -2 -2  0  0  0 -4
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2  0 -1 -1  0 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7 -1 -3 -2 -1 -4
V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4 -3 -2 -1 -4
B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3  4  1 -1 -4
Z -1  0  0  1 -3  3  4 -2  0 -3 -3  1 -1 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4
X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1 -4
* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4  1
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Using BLOSUM62 matrixUsing BLOSUM62 matrix

MQLEANADTSV

|  | |

LQEQAEAQGEM

= 2 + 5 – 3 – 4 + 4 + 0 + 4 + 0 – 2 + 0 + 1
= 7
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Demonstration of BLAST at NCBIDemonstration of BLAST at NCBI

http://www.ncbi.nlm.nih.gov/BLAST/

http://www.ncbi.nlm.nih.gov/BLAST/
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Signals in DNA (Section 9)Signals in DNA (Section 9)

Genes
Promoter regions
Binding sites for regulatory proteins (transcription
factors, motifs)
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Gene findingGene finding

Could be done by dynamic programming similar to
exercise 3/6 taking into account

Sequencing errors
Exons / intron gap constraints
Total gene length constraints
Codon usage optimization
Start codons / stop codons.

In practise, often just the consensus reverse translation
is taken and BLAST is used for finding local alignments
(exons).
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Promoter sequencesPromoter sequences

Often immediately before the gene.
Clear structure in prokaryotes, more complex in
eukaryotes.
An example from E coli is shown in next slide (taken
from course book).
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Promoter examplePromoter example
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Representing signals in DNARepresenting signals in DNA

Consensus sequence:
-10 site in E coli: TATAAT
GRE half-site consensus: AGAACA

Simple regular expression:
A(C/G)AA(C/G)(A/T)

Positional weight matrix (PWM):

AGAACA
ACAACA
AGAACA
AGAAGA
AGAACA
AGAACT
AGAACA
AGAACAconsensus:

GRE half-sites:

1.00 0.00 1.00 1.00 0.00 0.86
0.00 0.14 0.00 0.00 0.86 0.00
0.00 0.86 0.00 0.00 0.14 0.00
0.00 0.00 0.00 0.00 0.00 0.14

A
C
G
T
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PositionPosition--specific scoring matrix (PSSM)specific scoring matrix (PSSM)

PSSM is a log-odds normalized version of PWM. 1

Calculated by log(pai/qa), where
pai is the frequency of a at column i in the samples.
qa is the probability of a in the whole organism (or in some region
of interest).

Problematic when some values pai are zero.
Solution is to use pseudocounts:

add 1 to all the sample counts where the frequencies are
calculated.

1 In the following log denotes base 2 logarithm.
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PWM versus PSSMPWM versus PSSM

7 0 7 7 0 6
0 1 0 0 6 0
0 6 0 0 1 0
0 0 0 0 0 1

counts

pseudocounts

8 1 8 8 1 7
1 2 1 1 7 1
1 7 1 1 2 1
1 1 1 1 1 2

1.00 0.00 1.00 1.00 0.00 0.86
0.00 0.14 0.00 0.00 0.86 0.00
0.00 0.86 0.00 0.00 0.14 0.00
0.00 0.00 0.00 0.00 0.00 0.14

PWM

PSSM
(position-specific
scoring matrix)

1.54 1.46 1.54 1.54 1.46 1.35
1.46 0.46 1.46 1.46 1.35 1.46
1.46 1.35 1.46 1.46 0.46 1.46
1.46 1.46 1.46 1.46 1.46 0.46

log((8/11)/(1/4))
log((1/11)/(1/4))
log((2/11)/(1/4))
log((7/11)/(1/4))

assuming qa=0.25 for all a
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Extended representationsExtended representations

PWM representation can be
extended to first-order
non-homogenous
Markov chain.
Identical to what described
in lecture 2, except that
transition probabilities are
position-specific.
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Sequence logosSequence logos

Many known transcription factor binding site PWM:s can
be found from JASPAR database
(http://jaspar.cgb.ki.se/).
PWM:s are visualized as sequence logos, where the
height of each nucleotide equals its proportion of the
relative entropy (expected log-odds score) in that
column.

Height of a at column i is

( ) log( / )i ai ai a
a

S p p q

( )ai ip S

http://jaspar.cgb.ki.se/).
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Example sequence logoExample sequence logo

1.54 1.46 1.54 1.54 1.46 1.35
1.46 0.46 1.46 1.46 1.35 1.46
1.46 1.35 1.46 1.46 0.46 1.46
1.46 1.46 1.46 1.46 1.46 0.46

2 
bi

ts
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More on signals in DNAMore on signals in DNA

Book by Durbin et al.: Biological sequence analysis.
Hidden Markov Model (HMM) approach to alignment.
Viterbi / forward-backward dynamic programming algorithms for
finding most probable paths in the model.
Profile-HMMs for sequence family classification.

582653 Computational methods of systems biology (4
credits)

Professor Esko Ukkonen, II period
The course is an advanced introduction to computational
methods for analysing genomic and gene expression data to find
different functional units (such as genes) and regulatory
structures and relations (such as gene enhancers).


