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Inductive databases

@ Data mining
search for interesting and understandable patterns in data

€ State-of-the-art in data mining ~ databases in the early
days

@ A theory of data mining is lacking

@ View by Mannila and Iemielinski (CACM 96)

Make first class citizens out of patterns
Query not only the data but also the patterns
Tightly integrate data mining and databases
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Overview

1. Introduction to inductive databases
2. On query languages for data mining
Design issues and examples

3. Underlying principles of inductive querying
Constraint-based Mining

4. Perspectives
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1. Introduction to Inductive Databases

® Supporting complex and interactive knowledge
discovery processes

ESearch for interesting patterns in data
— Groups of customers, clusters of genes
— Frequent sequential patterns in alarms

— Molecular fragments that characterize toxicity

€ From data to knowledge
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The KDD process

Interpretation
and Evaluation

Data Mining

Selection and
Preprocessing

Data
Consolidation

Consolidated

Data Sources Data
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A vision

@ Supporting KDD processes by means of gueries

«There is no such thing as real discovery, just a matter

of the expressive power of the query languages»
Imielinski & Mannila, CACM Nov. 1996

EMake first class citizens out of patterns
€ Examples queries

2Give a decision tree that tests upon at most 5
attributes including blood pressure and sex, and that has
accuracy at least 90 % on the training data

=6Give all fragments of molecules that appear in at least
20% of the actives, a(\d in at most 1.0/0 of the inactives,
and that do not confain a bepZene ing.., poogs - august 2002



A long-term perspective

€ Why is the relational model so succesful?

EA general purpose query language with « nice »
properties

— simple theoretical foundations
— declarative semantics

— closure principle
The same is needed for KDD applications

The ultimate goal of IDBs is to find the equivalent
of Codd's relational database model for use in data
mining
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Two Examples

® Molecular Fragments
A domain specific IDB

See Kramer et al KDD 01, De Raedt and Kramer
TIJCAT 01

& Association rules and Item sets

Main paradigm in existing IDBs and IDB
extensions of SQL
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Molecular Feature Mining: Molfea

® What ?

Find fragments (substructures) of interest in sets

of molecules o
=
O \\\ |

& Why ?

Discover new knowledge - |

=

Use in predictive models

— SAR (Structure Activity Relationship)
— De Raedt & Kramer 01 (ijcai)

N
H~ ™H

Boulicaut and De Raedt - August 2002



Molecules and Fragments

& 2D-structure
Essentially Graphs

® Fragments
Substructres
Linear fragments

QO Sequence of atoms and
bonds

® Linear fragments

,0,.c,.cl',.n,’'s.. denote
-ccce-Clt elements
! O C.C.C.C Cl .- ... single bond
.=, ... double bond
' ... triple bond
.+ ... aromatic bond
(hydrogens implicit)
N € Smarts encoding

H ™H

cl

10 Boulicaut and De Raedt - August 2002



Smiles encoding
c1 ® Smiles

Compact encoding of
molecular structure

o Used by computational
chemists

Supported by many tools
(e.g. Daylight)

Very compact !

Very efficient matching

M
H- ™H

N-cl:c:c:c( cZ2:c:c:c(-Cl):c:c2):c:cl
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Smiles encoding
o -
N—-cl:c:c:c:c:cl
N-cl:c:c:c( ):c:cl
N-cl:c:c:c(
cZ2:c:c:c:.c:c2):c:cl

N
H- ™H

N-cl:c:c:c( c2:c:c:c(—Cl):c:c2):c:cl,



Constraint-based mining (1)

€ What ?
Use constraints to specify which fragments are interesting

— The scientist/user controls the mining process

Evaluation functions (generality, frequency)
Primitive constraints (minimal/maximal frequency)
Boolean operators (conjunctions)

Dec/larative mining |
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Constraint-based mining (2)

® Generality
One fragment is more general than another one if it isa
substructure of the other one

Notation : g< s (g /s more general than s, i.e., g will match a
graph/string whenever s does)

Graphs : ~ subgraph relationship

Strings : substring / subsequence relationship

— E.g. aabbcc is more general than ddaabbccee
(substring), abc is more general than aabbcc
(subseguence)

Item sets : subset relation
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Primitives
® MolFea Specific !

g is equivalent to s (syntactic variants) only when they are a
reversal of one another

E.g.,Cl-0-5"and , 5-O-C " denote the same substructure

g is more general than s if and only if g is a subsequence of
s or g is a subsequence of the reversal of s

Eg.,ll-O0-5'<,C/-0-S-c:cic’,,0-Cl'<,C/-O0-5°

® Frequency of a fragment f on a data set D
Percentage of data points in D that f occurs in
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Primitive constraints

®7r<P P<f not(f<P)and not (P< )

f ... unknown target fragment
P...a specific fragment

Assume Freg(f,D)is the relative frequency of a

fragment 7 on a data setD
E.g., let f be aa and D={abaa,acc, caa}, freq(f,D) = .66=2/3

® Freg(f,D1)= t, Freg(f,D2)< t

1... positive real number between O and 1

D1, D2 ... Data sets
E.g. Freg(f, Pos)= 0.20
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Example queries

® Queries are conjunctions of primitive constraints

('N-O'<sf)
[J(Freq(f, Act) = 0.1)
[ (Freg(f, Inact) s 0.01)

not( F's f) Onot (Cl'< F)
[Jnot (Br'<f)Jnot (I'<f)
[ (Freg(f, Act) = 0.05)

[ (Freg(f, Inact) < 0.02)
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The HIV Data Set pe Raedt & al 01 (sigkdd)

@ Developmental Therapeutics Program's AIDS
Antiviral Screen Database (http://dtp.nci.nhi.gov)

— One of the largest public domain databases of
this type

® Measures protection of human CEM cells from HIV-1
infection using a soluble formazan assay

@ 41768 compounds have been selected among the
43382 ones

- 40282 Confirmed Inactive
—1069 Confirmed Moderately Active
—417 Confirmed Active
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AZT (Azidothymidine)

The majority of these
fragments are derivatives

of AZT.
" NH Gives insight into the
Q // structural requirements
HN\H/N N/7H for anti-HIV activity.
0 0 A rediscovery that proves
the principle
HO Post-processing
N=N=N-C-C-C-n:c:c:c=0 Combine fr'agmen’rs?

N=N=N-C-C-C-n:c:n:c=0
19 Boulicaut and De Raedt - August 2002



Another Example : Item Sets

@ Association rule mining Agrawal & al. 93 (sigmod)

A Az Ag

11010 baskets - products
11 ]1 documents - keywords
1101 bacteria - properties
o1 |1 cells - genes

AL A, = A, [1/4,1] A = A, [1/4,1/3]
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Knowledge discovery from boolean contexts

Interpretation
and evaluation

Data mining \ Ii‘Knowledge
Frequent

Selection and
pre-processing

Data Boolean
consolidation data
.+
Data sources g
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Association rule mining process

€ Standard process - Agrawal & al. 96 (aaai press)

Mining every association rule for which support
and confidence are greater than user-given
thresholds

O Computing frequent itemsets

O Deriving interesting rules from frequent rules

Objective vs. subjective measures of interestingness

22 Boulicaut and De Raedt - August 2002



Supporting by means of queries (1)

@ Pre-processing : manipulating data sets

E.g., compute a boolean context

— Selections of relevant sources, agregations, sampling,
discretizations, etc

€ Data Mining : generating pattern sets
E.g., compute 5%-frequent association rules

— A query as some « syntactic sugar » on top of an
algorithm;

— Declarative data mining using constraints
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Supporting by means of queries (2)

@ Post-processing : manipulating pattern sets

E.g., identify interesting rules among the frequent
ones

— Selections of relevant patterns or models,
redundancy elimination, grouping, etc

Querying materialized collections of patterns
Crossing over the patterns and the data
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The Inductive Database framework

Extensional data

Y
\_//
/| Intensional data
N /
/ Data
“ Mining
System

=)

Intensional/extensional patterns

1,

K
S
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Inductive database abstraction

€ What is an inductive database ?
A set of data sets

A set of pattern sets

€ IDB languages
A query language that generates data sets

An inductive query language that generates pattern sets

@ Closure principle |

The result of a query should be a pattern set, a data set or a
combination thereof

® An abstract set and logic oriented view
€ Not a universal framework, though quite general
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Manipulation

®create data set D as query

®create view data set D as query
®create pattern set P as query
®create pattern view P as query
®insert /| Delete / Update statenents

& Data and Pattern sets can be extensional /
intensional |
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Tllustration

create data set D1 as Q
create pattern view Pl as Q2(D1)
At this point assune Pl = PSetl

update data set Dl using 2
Update P1 too : Pl = update(PSet1)

@ Incremental data mining |

®Iinsert P2 into pattern view P1
® Pattern view update problem

28
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Abstraction

® Patterns domains specify

Language of patterns (e.g., itemsets, association rules,
sequences, graphs, dependencies, decision trees, clusters)

Evaluation functions (e.g., frequency, closures, generality,
validity, accuracy)

Primitive constraints (e.g., minimal and maximal frequency,
freeness, syntactical constraints, minimal accuracy)

@ Situation similar to constraint programming
Declarative aspects
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2. On query languages for data mining

MINE RULE Meo & al. 96 (vldb), 98 (icde)

MSQL Imielinski & Virmani 96 (kdd), 99 (dmkd)
LDL++ Giannotti & Manco 99 (pkdd)

RDM de Raedt 00 (ilp)

DMQL Han & al. 96 (kdd)

Molfea De Raedt & Kramer 01 (ijcai)

30 Boulicaut and De Raedt - August 2002



Design issues

® Specification of the data part
Different data types
Pre-processing features

® Specification of the pattern part
Different pattern domains
Different constraints
Post-processing features

® The closure property
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MINE RULE (1)

® A SQL-like operator on transactional DB

Tid |Customer] Item Date | Price| Qty
1 |cl ski-pants| 12/1 | 55 |1
1 |l beer 12/1 | 4 2
2 |c2 shirts | 12/1 | 21 |1
2 |c2 jackets | 12/1 | 115 |1
3 |cl digpers | 12/1 | 18 |1

32

Boulicaut and De Raedt - August 2002



33

MINE RULE (2)

MINE RULE exemple as

SELECT DISTINCT 1..nltem as BODY, 1..1 Item as HEAD,
SUPPORT, CONFIDENCE

WHERE HEAD.Item=« umbrellas »
FROM Purchase

GROUP BY Tid

HAVING COUNT(*)<6

EXTRACTING RULES WITH SUPPORT: 0.06,
CONFIDENCE: 0.9

E.g., jacket flight_Dublin = umbrellas (0.02,0.93)

Boulicaut and De Raedt - August 2002
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MINE RULE (3)

MINE RULE WordOfMouth as

SELECT DISTINCT 1..1 Customer as BODY,
1..n Customer as HEAD,
SUPPORT, CONFIDENCE

WHERE BODY.Date <= HEAD.Date

FROM Purchase

GROUP BY Item

EXTRACTING RULES WITH SUPPORT: 0.01,

CONFIDENCE: 0.9

E.g.,c7 = ¢3 c12 (0.02,0.93)
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MINE RULE (4)

el

Data selection by means of « full » SQL
Query evaluation can be effective

Dedicated to association rules

Poor possibilities for expressing background
knowledge

No specific mechanism for rule post-processing
(results are stored in relational tables)
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MSQL (1)

® Further integration within SQL

job=research [age = [26,38] = position=AssProf
(0.31,0.95)

Emp(ld, Age, Job, Salary, Position)

GET RULES (Emp)

INTO Rules
WHERE support > 0.1 and confidence > 0.8

SELECT_RULES (Rules)

WHERE body has { (Age=*) (Job=%*)}
and head is { (Position=*)}
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MSQL (2)

Emp(Id, Age, Job, Salary, Position)

SELECT [
FROM Emp
WHERE violates all ( GET RULES (Emp)
WHERE body is {(Age=0)}
and head is {(Salary=0)}

Connecting patterns and confidence > 0.3 )

to data

Boulicaut and De Raedt - August 2002



MSQL (3)

GET _RULES (Source) INTO R1

WHERE body has {(Age=0)}
and head has {(Salary=0)}
and support > 0.1
and confidence > 0.9
and not exists (GET_RULES (Source) INTO R2
WHERE body has {(Age=0)}
and head has {(Salary=0)}
A correlated query and support > 0.1
and confidence > 0.9
and R2.body has R1.body)
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el

MSQL (4)

Query evaluation can be effective on data and
persistently stored rules

Useful operators for association rule mining
(discretization, crossing over data and patterns)

Dedicated to association rules

Limits of the underlying relational framework (e.g.,
for the definition of background knowledge)

Boulicaut and De Raedt - August 2002



A first synthesis

€ DMQVL Han & al. 1996 (kdd) Han & Kamber 2001 (m-k)

A typical example of « syntactic sugar » for using
many different data mining algorithms

But what are the fundamental primitives ?

® A critical evaluation of data mining query languages
for association rule mining

Deliverable DO cInQ (01) - Botta & al. 02 (dawak)

Pre and post-processing are poorly supported

40 Boulicaut and De Raedt - August 2002



Logic-based frameworks

® Data mining primitives embedded in logic
programming / deductive databases

@ Underlying idea :
Exploit similarity with constraint programming

& Two frameworks :
LDL++ Manco and Giannotti 99 (pkdd)

RDM De Raedt 0O (ilp)
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LDL++

€ Use LDL (deductive database language)

¢ Implement special « aggregate » primitives in LDL++ that can be
used to implement data mining

€ Various domains and tasks have been addressed

q(Z,, .., Zy, u_d_aggr<(Xy, .., X,)>)

<- r'(yl, ey ym)
E.g..
p(X1i, .., Xa, patterns<(¥Y ,m_s, m_c)>)
<- r'(ZI, e Zm)
computes

p(t1, ..., tnlhs,rhs,f,c) See Ph.D. 6. Manco (2001)
42 Boulicaut and De Raedt - August 2002



RDM

€ From Inductive Logic Programming to Data mining
primitives
Pattern language framework is based upon
Dehaspe’'s Warmr (dmkd 99)

Patterns : queries

?- customer(C),transaction(C,T1,D1P1), transaction(C,T2,D2,P2), D1> D2, P2 < P1.
Frequent query framework
€ Same constraints as in MolFea

€ Not yet fully implemented, but see Lee and De Raedt (kdid 02)
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LDL++/RDM ...

++

Nice theoretical framework

A number of data mining processes have been specified
within that framework

Representational issues: background knowledge, data but
also patterns are expressed in the same formalism

Power of embedding in logic programming language

Efficiency (query optimisation issues)

44 Boulicaut and De Raedt - August 2002



3. Solving inductive queries

@ Inductive Query Answering
€ How to compute ?
Th(LOE,r,q) = {(p,e)00 LOEDOq(r,9) is true}

— q is an inductive query

- L a language of patterns

- r an inductive database

— e is a property of the pattern (e.g. frequency)

® « Generate and test » is generally impossible
@ « Pushing constraints » can be difficult

45 Boulicaut and De Raedt - August 2002



Properties of constraints

@ Anti-monotonicity of qw.r.t. <
q is anti-monotone w.r.t. < if and only if

— For all g,s: g <sand s satisfies q implies g satisfies q

- E.g., The minimal frequency is anti-monotone w.r.t.
generality (molecular fragments, itemsets)

The levelwise algorithm Mannila & Toivonen 97 (dmkd)

Many other examples (See, e.g., Ng & al. 98 (sigmod))

46 Boulicaut and De Raedt - August 2002



A String example

freq(f,D) 22 where D= ABCD BDEF
ABDF ABCF

E
Consider E

A B C D F E is not frequent,

Therefore no string containing Eis frequent

AB AC BD Consider ABC

ABC is frequent
ABC Therefore dl substrings of ABC are frequent

Characterized by S={ ABC, BD, F}

47 Boulicaut and De Raedt - August 2002



Another string example
Let A< ABD

E
A B D
AB BD
ABD

Characterized by S ={ ABD}

48 Boulicaut and De Raedt - August 2002



Most general sentences
w.r.t. g

Border(s) w.r.t. anti-
Most specific monotone constraints

sentences w.r.t. g
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Application to frequent set mining
(Apriori)

ABCD

_— O O = K= | >

50

0 @ ABD ACD BCD
] T e
1 @“Q (BC) @,Q

= = = = O | W
= O = = = |0

{}
Frequency threshold 0.3
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Borders of theories

@ Positive border
The most specific interesting sentences
E.g., the maximal frequent sets

In Machine Learning terminology : the S-set of the version
space (Mitchell, Hirsh, Mellish)

€ Negative border
The most general sentences that are not interesting
E.g., the minimal infrequent sets

® Single border can represent the whole theory
Pro and Cons

® Borders are a condensed representation !
They store only a selection of the relevant solutions

51 Computing borders or theories ?poylicaut and De Raedt - August 2002



Example (Apriori type)
freq(f,D) 22 where D= ABCD BDEF

ABDF ABCF
E
E
AC AD AF BF CD CF DF
ABD

Characterized by S={ ABC,BD, F}

52 Boulicaut and De Raedt - August 2002



« Guess and Correct » Mannila & Toivonen 97 (dmkd)

C := Bd*(9) Clean the guess S
E:. =[O
While C is not empty
do E:izEOC
S:=S\{p OCOq(r.9) is false}
C:=Bd*(S)\E
od
C:=Bd(S)\E Expand the corrected S

While C is not empty
do S:=S0O{¢ OCOq(r,9) is true}
C:=Bd(S)\E
od
Output S S=Th(L,rq)

53 Boulicaut and De Raedt - August 2002



Computing Frequent Sets

® Many variants exist, for theories
Fp Tree (Han et al.)
Apriori (Agrawal et al.)

& Borders, condensed
MaxMiner (Bayardo)
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Representing solutions w.r.t. monotone
constraints

@ The maximal frequency constraint

Let ¢ be freq(f, Act) < x, ¢ is monotone w.r.t. <
—If we have a fragment g<s, thenif gisa
solution then s is a solution as well

® Monotone constraints impose a border G on the
space of solutions

q is monotone w.r.t. < if and only if not(q) is anti-
monotone w.r.t. <

55 Boulicaut and De Raedt - August 2002



A String example
Let "B” < Fand Freqg(f,D)< 2 with D= ABCD  BDEF

ABDF ABCF
E
A B C D F
AB BC
AB AC BD
ABC
ABC

Characterized by S ={ ABC}
Characterized by S={ ABC,BD,F}  and G={C}
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Mitchell's Version Spaces (1)

&® Consider now two constraints :

c, = freq(f,D)=x
c, = freq(f,E)<y

€ We want to compute

sol(c, Uc,) ={f |[5S,glG:g<s f <5
where S and G are defined w.r.t. ¢ [Ic,

57 Boulicaut and De Raedt - August 2002



Mitchell's Version Spaces

Too frequent w.r.t. ¢,

IS mpre
general

Infrequent w.r.t. ¢
Too specific

58 Boulicaut and De Raedt - August 2002



Most general sentences
w.r.t. g

Border(s) w.r.t.
mohotone constraints

/

Border(s) w.r.t. anti-
Most specific monotone constraints

sentences w.r.t. g
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Constraints

Anti-monotonic

freq(f,D) =X
f<P
not(P< f)

In ML

f<P

~

P isapositive example

60

Monotonic

freq(f,D) < X
f=P
not(P = f)

In ML

not(f <P)

—~

P is anegative example

Boulicaut and De Raedt - August 2002



Computing borders

® Borders completely characterize the set of
solutions

Pro and cons

€ Combination of well-known algorithms
Levelwise algorithm

Mitchell's and Mellish's version space algorithms

61 Boulicaut and De Raedt - August 2002



Generic algorithms for solving
conjunctive constraints

® Condensed representation
Level wise version space algorithm (De Raedt 01)

® Theory level
Dual Miner (Gehrke et al. Kdd 02)

A generic levelwise algorithm for pushing
conjunctions of anti-monotone and monotone
constraints Boulicaut & Jeudy 01,02 ideas-ida

— Using anti-monotone constraints for pruning
— Using monotone constraints for candidate generation
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Mellish's Description Identification

Algorithm
f < ABCD
G=G'={AB,C}
Incrementally process constraints c S={BCDE, FABC}
S'={BCD, ABC}

Casec of f <P (P isapositive example)
G={glUG|g=P}
S=min{l || Jlub(s,P) ands0Sand [ G:g<l}

Herelub(s,P) =min{l || <sand | < P}

63 Boulicaut and De Raedt - August 2002



Levelwise Version Spaces

Minimum frequency

W
Is mpre

S

general
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Minimum frequency constraints

Let ¢ be a constraint of type freq(f, D) > m
Lo =G y 1:=10
while L; # @ do
F;:={p|p € L; and p satisfies constraint c}
I; := L; — F; the set of infrequent fragments considered
Liy1:={p|3q € F;:p € ps(q)
and 3s€ S:p<sand p,(p)N(U;I;) =0 }
1:=1+1
endwhile

G = Fo
S := min(U; F}) /\



Dual computation

G

\>]‘ ’\C S’ Is more
general
V. s
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Levelwise Version Space algorithm

A

Maximal frequency

G

e e A
/\ /\ G’ Is more

general
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Levelwise Version Space algorithm

@ Dudlities
General to specific versus Specific to general

Minimum / Maximum frequency

@ Use refinement operators on single fragments
(and check) instead of self joining two fragments

® Hashing is important

® Generalizes both description identification and
levelwise algorithm

68 Boulicaut and De Raedt - August 2002



Consended representations: application to
frequency queries

®Th(LOE,rq) = {(9pe)0 LOEOq(r,9) is true}

@ Other types of condensed representatoins

Requires e (e.g. frequency) to be known or
approximated !

In version spaces E/e is not used

Based on closedness concept

69 Boulicaut and De Raedt - August 2002
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Constraints on itemsets

» Ctreq (S) See e.g., Ng & al. 98 (sigmod)
»AOS AOS

»{ABCD}OS {ABCD}OS
»Sn{ABC}=0O Sn{ABC}20

» sum(S.Price)<v  sum(S.Price) > v

4 )ZI/ A 02", Interest(A) > Interest (S)

Primitive constraints based on closures

Boulicaut and De Raedt - August 2002



The “closure” evaluation function

® The closure of X is the maximal superset of X
that has the same frequency

closure (X,r) = Items (Object (X,r),r)

closure{A} ={A,C}

_ O O = K= | >
= = = = O |

= O = o= = |0
© - ~ o o |o
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Closed s

ets

® A closed set is equal to its closure. It is a maximal
set of items that support the same transactions

72

_ O O = K= | >

—_ = = = O | W

_ O = = = |0

D
0
0
1
1
0

{AC}is

CCIose(S)

closed {A,B}is not closed
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.. introducing condensed representations

Extraction of frequent sets

Boolean
data

73
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Data mining

-

o

/

Ii‘ Knowl edge::l

-

Interpretation
and evaluation
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Frequent set mining in difficult cases

- N L koo |

Frequent closed sets
&—— -

Patterns
Similarities :

, = In’rerpre’ra’r!on

and evaluation

(Olusiers

Data mining \_ )

Boolean
data
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An up-to-date view

/ \ Ii‘ Knowledge::l
Condensed representation
of frequent sets P 4

(e
D

&im”a”“e; Interpretation

and evaluation

Data mining \_ )

Boolean
data
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e-adequate representations

® Assume the class of queries that returns the
frequency of an itemset, look for alternative
representations of data on which we can provide its
frequency with a precision of at most €

e.g., the collection of y-frequent sets is y/2-
adequate

Is it possible to find smaller representations, i.e.,
condensed representations

@ This concept is quite general Mannila & Toivonen 96 (kdd)
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Condensed representations of frequent
Itemsets

€ Maximal itemsets e.g., Bayardo 97 (sigmod) Max-Miner
@ Version spaces e.g. De Raedt 01 (ijcai)
2 Pasquier & al. 99 (icdt) - Boulicaut & Bykowski

00 (pakdd) - Han & Pei 00 (wdmkd) - Zaki 00
(sigkdd) Close - Closet - Charm

J

Boulicaut & al. 00 (pkdd) - Bastide & al.

4 " 00 (sigkdd explorations) Min-Ex - Pascal

@ d-free sets °

¢ Bykowski & Rigotti 01 (pods) - Kryskiewicz 01
(icdm)

@ Extraction complexity vs. compacity vs. accuracy
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Apriori vs. Close

Dataset/ Time | ||FSe|| | Scans | Time in sec. | ||FCs|| | Scans
Frequency in sec. (152" step)
threshold

ANPE/0=0.05 14639 25781 | 11 69.2 /6.2 | 11125 9
Census/0=0.05 | 7377.6 | 90755 | 13 61.7/25.8 | 10 513 9
ANPE/0=0.1 254.5 | 6370 10 25.5/1.1 2 798 8
Census/o=0.1 | 2316.9 | 26307 | 12 34.6 / 6.0 4 041 9
ANPE/0=0.2 108.4 | 1516 9 11.8 /0.2 638 /

9

Census/o=0.2 565.5 5771 11 18.0/ 1.1 1 064
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Freeness

® A free-set is such that there is no logical rules
that holds between its subsets

_ O O = K= | >

—_ = = = O | W

_ O = = = |0

D
0
0
1
1
0

{A B} is free {A,C}is not free

CFr'ee(S)

checking freeness ?

® Closed sets are the closures of free sets

79
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Free and closed sets

closure({ABC})={ABC}

closure({A})={A,B,C}
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d-freeness

® A d-free-set is such that there is no d-strong
rules that holds between its subsets

X =3 Y is 0-strong if it has at most & exceptions

{A B} was free but is not 1-free

Cs.rree(S) checking &-freeness ?

_ O O = K= | >
= = = = O |

= O = o= = |0
© - ~ o o |o
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An example of a 2-free sets

B,C O closure,({A})
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Examples of condensed representations

1| ABCD 16 frequent sets

2| AC 1 maximal frequent set

3| AC Frequent closed sets

4| ABCD C, AC, BC, ABC, ABCD

> | BC Frequent free sets

6 | ABC
d,A,B,D, AB

Threshold 2 Frequent 1-free sets

d,B,D
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« Approximation » from closed sets

® c-adequate representation

If Sis not included in a y-frequent closed set

Then S is not frequent (return Freq(S,r) =0)
Else S is frequent

Let choose the frequent closed set X s.t.
S O X that has the maximal support and
return Freq(S,r) = Freq(X,r)
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Approximation from o-free sets

® c-adequate representation

If Sis a superset of an element from FreeBd"
Then S is not frequent (return Freq(S,r) =0)
Else S is frequent

Let choose the frequent d-free set Y O X

that has the minimal support and
Freq(Y.r) - Freq(X,r) < |X \ Y|
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Computing frequent &-free-sets

@ Min-Ex is an effective levelwise algorithm that
computes every frequent d-free set inr

thanks to freeness anti-monotonicity and an
effective freeness test ...

® Forthcoming Ph. D thesis by A. Bykowski

® Promising experimental validation on dense datasets

- High condensation and pruning even for low &
- Low error in practice even for « large » o values
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Experimental validation

@ Experiment

PUMSB* data set (size=49046 rows), y= 0.3
432699 y-frequent sets, the largest has N = 16 items

Condensed representation for 6 = 20, 11079 frequent
d-free-sets

Theoretical error bound: maximal absolute (resp.
relative) support error 8N = 2016 = 320 rows (resp.
O(N / sizelyy= 2.18 %

Practical observed error: maximal absolute (resp.
relative) support error 45 rows (resp. 0.29 %), average
absolute (resp. relative) support error 6.01 rows (resp.
0.037 %)
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4. Where to go from here ?

® Other forms of primitives ?
E.g. accuracy of rule / hypotheses is larger than x

E.g. average cost of transaction is larger than x

Neither monotone nor anti-monotone

@ Optimization primitives ?
Find item sets with maximum frequency

Find rule with maximum accuracy
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@ Other forms of tasks ?
Clustering (some initial works exist)

— Formulate constraints on no. of desired clusters, and cluster
membership

Prediction

— Some approaches to decision tree learning exist

@ Other forms of algorithms ?
Instead of “all solutions” find "best” or "plausible” solutions

Approximation/heuristic algorithms

Cf. constraint programming
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@ Other form of queries
Boolean inductive queries

€ Query optimisation
E.g. Baralis and Psaila Dawak 98

® Operations on solution sets

E.g. version spaces

E.g. version space trees
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Query Optimisation and Reasoning

Claim (subsumption)
Let g, and g,be two queries such that g,|=q, .
Then sol (g,) U sol(q,)

Background knowledge can aso be used in this process.
E.g. freq(f,D)>xandx=>y - freg(f,D)>y
E.g.freq(f,D1) >xand D10 D2 - freg(f,D2) > x
E.g.freq(f2,D)>xandfl<s f2 - freq(f1L,D) > X

Useful :
axioms about sets, generality, number theory

Subsumption is useful in the light of interactive querying
and reuse of the results of previous queries
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Memory organisation

€ Consider
ql : freq(f,D)>m

q2: freq(f,.D UM)>m (q1 |= q2)

q3:freq(f,D) > m OR freq(f.M) > m (q3 |= q2)
€ Scenario's

ql answered and stored; q2 asked

q2 answered and stored; q1 asked

@ Keep track of subset relations among pattern sets / data sets

@ Keep track of relations among patterns (generality - lattice
structure) within given pattern set

@ Operations on solution sets ? On border sets ?
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Boolean Inductive Queries

Any monotonic or anti-monotonic constraint c,

and any membership function (e.g. f L P)

IS an atom.

An inductive guery is aboolean formula over atoms.

E.g. (f UOP) and[freg(f,D1) > x or freq(f,D2) < y]and f < abbbcccc

The query evaluation problem
Given

an inductive database

an inductive query q
Find acharacterisation of sol (Q)

So far ;. solutions for conjunction of anti-monotonic and monotonic
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Query Evaluation

Theorem
Let g be and inductive query.
Then sol (g) can be represented using a set of versionspaces

(aset of versionspaces represents the union of the versionspaces)
Pr oof

Write g in Digunctive Normal Form, i.e.

In the form of digunction of conjunctions of theform a, [...a, Um [..m,
Each conjunction corresponds to a versionspace

sol (g) can be represented using digjunctive versionspace (Cf. Gunther Sablon)
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Query Evaluation

Theorem
Let g be and inductive query.
Then sol (g) can be represented using a set of versionspaces

(aset of versionspaces represents the union of the versionspaces)
Pr oof

Write g in Digunctive Normal Form, i.e.

In the form of digunction of conjunctions of theform a, [...a, Um [..m,
Each conjunction corresponds to a versionspace

sol (g) can be represented using digjunctive versionspace (Cf. Gunther Sablon)
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Divide and conquer approach

To evaluate/solve a query
rewrite in DNF
for each conjunct in DNF
call level wise version space algo.
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Query Optimisation

Claim
Let g, and g,be two queries that are logically equivalent.
Then sol (q,) = sol(q,)

Using logical rewrites to optimize the mining process.
E.g. (a, Ua,) U(m UOm,) islogically equivalent to

(&, 00m) U(a, Um) U(a, Um,) U(a, m,)
One versionspace versus the digunction of four

What is best ?
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Operations on solution spaces

@ Logical operations on primitives have a set
oriented counter part ?

®E.g. g1 or g2 corresponds to sol(ql) U sol(q2)

€ What can we say about the corresponding
operations on solution sets ?

Analogy with relational database
We assume solution sets are version spaces

Version spaces closed under intersection but not
for union | Difference ?
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Version space union

Let sol (q,) and sol(q,) be boundary set representable,
|.e. representable using a versionspace.

Theningeneral G(q, Uq,) # G(qg,) UG(q,) and
q Ua,) # S(q) US(a,)

Counter Example
A
AB AC
ABC
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