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Bayesian networks
I Representations of joint probability distributions

I Consist of:
I The structure is a directed acyclic graph (DAG) that

represents conditional independencies between variables.
I The local conditional probability distributions that are

specified by parameters.



Score-based Structure Discovery



Optimal Structure Discovery (OSD) Problem
I The score of a DAG is the sum of the local scores.

I Problem:
I Input: Local scores for each node and possible parent

set.
I Output: A DAG that maximizes the score.



Feature Probability (FP) Problem
I Problem:

I Input: Local scores for each node and possible parent set
(computed from the data), a structural prior and a
structural feature.

I Output: Posterior probability of the feature given the
data.

I Bayesian averaging.

I Assumptions: Order-modular prior, modular feature (for
example an arc).



Why Time–Space Tradeoffs?
I An exact algorithm is guaranteed to learn an optimal

Bayesian network from data → no uncertainty on the
quality of the output.

I Many exact methods use dynamic programming

I Time and space complexities are within a polynomial
factor of 2n, where n is the number of nodes.

I Space requirement is the bottleneck
I For example Silander–Myllymäki implementation

requires 89 GB of space (memory + disk), when n = 29
and 784 GB, when n = 32.

I If we save space, how much more time do we need?



Partial Order Approach [Parviainen & Koivisto

UAI’09]
I Idea:

1. Fix a set of partial orders to “cover” all possible linear
orders.

2. Choose a partial order from the set.
3. Find an optimal DAG compatible with the chosen partial

order.
4. Repeat steps 2 and 3 for all partial orders in the set.

I Step 3 can be computed in time and space proportional
to the number of ideals.

I An ideal of a partial order P is a set that can start a
linear extension of P.

I Space: the number of ideals (per partial order)

I Time: the number of ideals multiplied by the number of
partial orders.



Linear Orders and Ideals

N = {a, b, c , d}

Number of linear orders = 4! = 24
Number of ideals = 24 = 16
Space = 16, Time = 16



Partial Orders and Ideals

N = {a, b, c , d}, partial order a ≺ b, c ≺ d fixed.

Number of ideals = 3220 = 9
Partial orders needed to cover all linear orders = 22 = 4
Space = 9, Time = 9× 4 = 36



Space–Time Tradeoffs for Permutation Problems

[Koivisto & Parviainen SODA’10]
I Find a permutation of n elements so as to minimize a

given cost function.

I Examples:
I Travelling Salesman
I Feedback Arc Set
I Cutwidth
I Treewidth
I Scheduling
I OSD

I Sum-product problems



Parallel Bucket Orders

Parallel 13 ∗ 13 bucket orders are optimal with respect to
time–space product.



Tradeoffs



Space–Time Tradeoffs for the FP Problem

[Parviainen & Koivisto AISTATS’10]
I In similar fashion as for the OSD problem.
I Requires a fast sparse zeta transform algorithm (a special

case of zeta transform for lattices, see [Björklund,
Husfeldt, Kaski, Koivisto, Nederlof & Parviainen
SODA’12]).



Extensions
I Use exact algorithms as building blocks to develop better

heuristics [Niinimäki, Parviainen & Koivisto UAI’11].

I FP problem with nonmodular features → learning
ancestor relations [Parviainen & Koivisto ECML
PKDD’11].



Future Work
I Unobserved variables in score-based structure discovery

I Local learning

I Learning under structural constraints (e.g. treewidth)



Thank you!


