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Abstract. According to objective Bayesianism, an agent’s degrees of belief 

should be determined by a probability function, out of all those that satisfy 

constraints imposed by background knowledge, that maximises entropy. A 

Bayesian net offers a way of efficiently representing a probability function and 

efficiently drawing inferences from that function. An objective Bayesian net is 

a Bayesian net representation of the maximum entropy probability function. In 
this paper we apply the machinery of objective Bayesian nets to breast cancer 

prognosis. Background knowledge is diverse and comes from several different 

sources: a database of clinical data, a database of molecular data, and 

quantitative data from the literature. We show how an objective Bayesian net 

can be constructed from this background knowledge and how it can be applied 

to yield prognoses and aid translation of clinical knowledge to genomics 
research.  
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1 Introduction  

Cancer treatment decisions should be based on all available knowledge. But this 

knowledge is complex and varied: it includes not only the patient's symptoms and 

expert knowledge of the relevant causal processes, but also clinical databases relating 

to past patients, databases of observations made at the molecular level, and 

knowledge encapsulated in scientific papers and medical informatics systems. 

Objective Bayesian nets offer a principled path to knowledge integration. This is 

important from the systems biology perspective, which needs to integrate data that 

concern different levels of analysis, and is also important from the point of view of 

medical informatics. 

Although many risk factors for different cancer types are known, most of the 

genetic background and molecular mechanisms still remain to be elucidated. Systems 

biology seeks to address the complexity of cancer by drawing on a conceptual 

framework based on the current understanding of complex adaptive systems [1; and 



refs therein]. Progression from normal tissue to malignancy is associated with the 

evolution of neoplastic cell lineages with multiple genomic lesions (abnormal 

karyotypes). In cancer, dynamic structural changes of the genome occur at 

dramatically increased frequency and tumour cell – microenvironment interactions 

drive the selection process. Mutations, affecting individual oncogenes and tumour 

suppressors, and extensive chromosomal alterations are selected and give rise to 

rapidly proliferating cell variants that may acquire an aggressive phenotype and 

resistance to drug exposure. Genomic rearrangements, such as amplifications and 

deletions, can affect several megabases of DNA and include a large number of genes. 

Large-scale changes in genome content can be advantageous to the cancer cell by 

simultaneous activation of oncogenes, elimination of tumour suppressors, and 

generation of (bystander) gene copy number changes which can have profound effects 

on the cancer phenotype.  

Genomes are dynamic molecular systems and selection acts on cancer karyotypes 

as integrated wholes, not just on individual oncogenes or tumour suppressors. Given 

the irreversible nature of evolutionary processes, the randomness of mutations and 

rearrangements relative to those processes, and the modularity and redundancy of 

complex systems, there potentially exists a multitude of ways to ‘solve’ the problems 

of achieving a survival advantage in cancer cells. Since each patient's cancer cells 

evolve through an independent set of genomic lesions and selective environments, the 

resulting heterogeneity of cell populations within the same tumour, and of tumours 

from different patients, is a fundamental reason for differences in survival and 

treatment response.  

Since the discovery of oncogenes and tumour suppressors, a reductionist focus on 

single, or a small number of, mutations has resulted in cancer being conceptualized as 

a ‘genetic’ disease. More recently, cancer has been recast as a ‘genomic’ or ‘systems’ 

disease. Here, we apply a systems framework to karyotype evolution and employ 

Bayesian networks (BN) to generate models of non-independent rearrangements at 

chromosomal locations from comparative genome hybridisation data. Furthermore, 

we present a method for integration of genomic BN models with BNs learnt from 

clinical data.  

The method enables the construction of multi-scale nets from BNs learnt from 

independent datasets, with each of the BNs representing the joint probability 

distributions of parameter values obtained from different levels of the biological 

hierarchy, i. e., the genomic and tumour level in the application presented here 

(together with treatment and outcome data). BN integration allows one to capture 

‘more of the physiological system’ and to study dependency relationships across 

scales.  

1.1 Breast Cancer 

The mainstay of treatment for breast cancer remains surgery and radiotherapy, with 

hormonal and chemotherapeutic agents often used to treat presumed micro-metastatic 

disease. Surgery involves removing tumour from the breast, as well as taking out a 

sample from the axillary lymph nodes. These lymph nodes often act as first 

destination for spreading cancer cells, and their removal not only removes any spread 



that may have occurred, but also helps to predict the degree of distant metastatic 

spread. The two main aims of treatment are to prevent breast cancer recurrence and to 

prevent breast cancer related death. Therapy planning seeks to match treatment with 

the risk of recurrence and/or death. Thus those at high risk should be treated 

aggressively while those at low risk could be treated less aggressively.  

Examination of the primary tumour and lymph nodes lets us define certain 

characteristics of the disease that make local recurrence and death more likely. These 

characteristics are primarily the grade of the tumour, (which represents the degree of 

abnormality displayed by the cells, scored 1-3), the size of the tumour (as its 

maximum diameter, in mm) and the number of involved nodes. There are also newer 

tests for the presence or absence of certain proteins on the cell surface that may 

predict tumour behaviour or response to certain drugs. 

These prognostic characteristics are currently modelled using statistical techniques 

to provide an estimate of the probability of survival and local recurrence. Two 

commonly used systems are the Nottingham Prognostic Index (NPI), which uses data 

from large UK studies, and results derived from the American Surveillance, 

Epidemiology and End Results (SEER) database [2]. Both techniques rely on 

multivariate analyses of large volumes of data (based on over 3 million people for 

SEER) to calculate prognostic formulae. 

These tools, and others like them, are effective at providing estimates of risk of death 

and local recurrence. However, they have two major weaknesses. Whilst effective, 

they lack explanatory power in a human-readable form. Extra knowledge that has not 

been captured by the statistical analysis (such as the presence and impact of other co-

existing conditions) cannot be easily incorporated. Secondly, knowledge that post-

dates the formation of the formulae (such as the discovery of Her-2neu, a cell-surface 

protein that is a marker for more aggressive disease) is very difficult to incorporate. 

Therefore, while they excel at providing an accurate assessment of population-based 

risk, they have weaknesses in the individualisation of that risk. 

2 Assembling an Obnet from Molecular and Clinical Sources 

Objective BNs allow one to integrate various knowledge sources [3-5]. According 

to objective Bayesianism, an agent's beliefs should be representative of her knowledge 

in the sense that they should commit to everything that is warranted by her knowledge 

but nothing that is unwarranted. Formally this is explicated via the maximum entropy 

principle: an agent's rational degrees of belief are represented by the probability 

function that has maximum entropy, from all those that satisfy constraints imposed by 

background knowledge. A BN is a representation of a probability function: a directed 

acyclic graph together with the probability distribution of each variable conditional on 

its parents in the graph determines a probability function on the whole domain, as 

long as the Markov condition - which says that each variable is probabilistically 

independent of its non-descendants conditional on its parents - holds. An objective BN 

or obnet is a BN representation of the probability function produced by the maximum 

entropy principle. Thus an obnet is representative of the knowledge sources that are 



used to produce it. The net can be used to calculate prognostic or diagnostic 

probabilities by entering evidence from individual cases. 

The general procedure for constructing an obnet runs as follows. Represent 

background knowledge as a set of quantitative constraints on a probability function. 

Next join variables that occur in the same constraint by an edge to form an undirected 

constraint graph. Transform that undirected graph into a directed acyclic graph; the 

Markov condition is guaranteed to hold. Finally maximise entropy to determine the 

probability distribution of each variable conditional on its parents.  

In our context, knowledge takes the form of a clinical database [2] and two 

molecular databases (data from www.progenetix.de). The clinical database determines 

a probability distribution c over the clinical variables and imposes the constraint p|C = 

c, i.e. the agent's probability function, when restricted to the clinical variables, should 

match the distribution determined by the clinical dataset. Similarly the first molecular 

database imposes the constraint  p|M = m. An additional molecular dataset and a 

study [6] contain observations that define the probability distribution s of three 

variables S, two of which occur in the clinical dataset and the other of which occurs in 

the molecular dataset; it imposes the constraint  p|S = s.  

Given constraints of this form, an obnet on the variables in C and M can be 

constructed in the following way (Fig. 1). First use standard methods, such as Hugin 

software, to learn a Bayesian net from the clinical dataset that represents c, subject to 

the condition that the ‘linking’ variables (positive LN, HR status) are root variables. 

Similarly learn a Bayesian net that represents m, ensuring that the ‘linked’ variable 

(22q12) is a root of the net. Finally join the linking variables, and add the 

corresponding conditional probability distribution determined by s. 

 

 

 
 

Fig. 1. Integrated obnet. Probability for positive lymph node status is set to 1 (black bar), 
and the calculated probability distributions for selected nodes are shown (HR status: 0 negative, 

1 positive; bands: -1 loss, +1 gain, 0 no rearrangement; RT radiotherapy).  



3 Significance and Interpretation 

We have presented a general method for merging two different Bayesian networks 

which model knowledge in different areas. This method was applied to an example 

application linking knowledge about breast cancer genomics and clinical data. As a 

result, we have been able to examine the influence of karyotype pattern on clinical 

parameters (e. g., tumour size, grade, receptor status, likelihood of lymph node 

involvement) and vice versa (Fig. 1).  

Analysis of these relationships may facilitate (i) discovery of genomic markers and 

signatures, and (ii) translation of clinical data to genomics research and discovery of 

novel therapeutic targets:  

(i) Since hormone receptor status and lymph node involvement are well-known 

prognostic factors for survival and disease recurrence in patients with breast cancer, 

the ability to link karyotype patterns to this is clearly of great potential significance. 

Previous tumour genotyping in breast cancer has already shown the usefulness of 

genomic rearrangements as prognostic indicators (see, e.g. [7]).  

For clinical decision making, this technique may also be useful when applied to 

integrate karyotype or other molecular data with parameters that cannot be observed 

in routine clinical practice, but are of clinical significance. An example might be the 

presence of distant metastasis on PET-CT, an imaging modality that may be present 

in the research setting but is not widely available in the clinic, but which may have 

prognostic significance for breast cancer recurrence. The use of such a net would then 

allow practitioners, where PET-CT is not available, to use genomic data to estimate 

the likelihood of a positive scan. There are of course, many different possible options 

for such networks, and it remains an open question as to which will, in clinical terms, 

prove to be the most useful. 

ii) The dependence between 22q12 status and lymph node involvement was 

followed up by analysis of genes with known function on this chromosomal band. 

Significantly, KREMEN1 encodes a high-affinity dickkopf homolog 1 (DKK1) 

transmembrane receptor that functionally cooperates with DKK1 to block wingless 

(WNT)/beta-catenin signalling, a pathway which promotes cell motility [8]. Loss of 

22q12 may therefore contribute to cancer cell migration through loss of the inhibiting 

KREMEN1 protein. The probability distribution for 22q12 is consistent with this 

hypothesis (Fig 1). In addition, eight candidate genes which are also associated with 

cell migration and metastatic potential were identified on the other bands. The 

complex pattern of dependency relationships between them as revealed by BN 

modelling, and the potential of the gene products as novel targets for therapy, will be 

presented in a forthcoming paper.  

Large clinical data sets are extremely expensive and difficult to collect. This is 

particularly true in diseases such as breast cancer, where the risk of recurrence 

extends up to at least 10 years, and hence requires long-term follow-up for accurate 

estimation. However, the generation of potential new predictive markers, such as 

genomic information or cell surface proteins, for exploration is currently a significant 

area of research. The correlation of such markers with better known clinical markers 

is (relatively) simple, in that it does not require long-term follow-up, and can be 

estimated following standard surgical treatment. However, for such information to be 



useful, it must be integrated with the existing databases on long-term outcomes, and it 

is this that we have demonstrated here.  

The technique enables progressive integration of BNs learnt from independently 

conducted studies and diverse data types, e. g., mRNA or proteomic expression, SNP, 

epigenetic, tissue microarray, and clinical data. New knowledge, and new data types, 

can be integrated as they become available over time. Application of our integrative 

BN knowledge discovery method can be envisaged to be valuable in the clinical trials 

arena which is undergoing profound changes with steadily increasing incorporation of 

molecular profiling. It is our aim to assess the potential of the technique for 

integration of different types of clinical trial datasets (with and without molecular 

data). The BN methods described here are highly complementary to ongoing research 

initiatives, such as the Cancergrid project (www.cancergrid.org) and caBIG 

(cabig.nci.nih.gov) which are already addressing pressing informatics requirements 

that result from these changes.   
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