Data mining, Spring 2010. Exercises 2, April 20, 2010

- 1. Given the transactions given in the table 1, draw the itemset lattice induced by the items, and label each node of the lattice with the following letters:
 - M, if the node is a maximal frequent itemset
 - C, if it is a closed frequent itemset
 - N, if it is frequent but neither maximal nor closed
 - I, if it is infrequent.

Assume a *minsup* threshold of 30%.

- 2. Using the transaction data in table 1, draw the FP-tree data structure used by the FP-growth algorithm, using two different ordering for the items:
 - (a) Alphabetical order
 - (b) Descending order of support
- 3. Using the FP-tree structure for transaction data in table 1 using the alphabetical order for items, draw the
 - (a) conditional FP-tree for itemsets ending with $\{d\}$
 - (b) conditional FP-tree for itemsets ending with $\{c,d\}$
- 4. Using the transaction data of table 1, draw a contingency table for each of the following rules

Transaction ID	Items bought				
1	$\{a,b,d,e\}$	4	8	2	5
2	$\{b,c,d\}$	6	1	6	9
3	a,b,d,e	2	10	8	4
4	$\{a,c,d,e\}$	10	4	7	2
5	$\{b,c,d,e\}$	3	2	10	3
6	$\{b,d,e\}$	5	9	3	8
7	{c,d}	7	6	9	7
8	$\{a,b,c\}$	8	5	4	10
9	$\{a,d,e\}$	9	3	5	6
10	$\{b,d\}$	1	7	1	1

Table 1: Marker basket transactions

Table 2: Matrix with randomly permuted columns

- (a) $b \rightarrow c$
- (b) $a \rightarrow d$
- (c) $b \rightarrow d$
- (d) $e \rightarrow c$
- (e) $c \rightarrow a$
- 5. Using the contingency tables computed above, rank the rules $b \to c$, $a \to d$, $e \to c$ into decreasing order using the following measures
 - (a) Confidence
 - (b) Interest factor
 - (c) IS
- 6. Simulate a few steps of the 'simple' randomization method for assessing the statistical significace of the confidence of the association rule b → c. Use the values in the matrix of Table 2 as the source of random numbers. Record the confidence for b → c after each step.
- 7. In table below the distribution of confidence values of the association rules $b \rightarrow c$, $a \rightarrow d$, $e \rightarrow c$ computed from 100 randomly permuted datasets are shown.

Use these distributions to determine the statistical significance (*p*-value) for the confidence values for $b \rightarrow c$, $a \rightarrow d$, $e \rightarrow c$ obtained from the original data. Rank the rules based on the *p*-value.

8. Simulate a few iterations of the swap randomization algorithm on the data in table 1. Use the following sequence of (*row*, *column*) indices as the random source: (8,2), (4,5), (7,2), (1,5), (2,4), (8,1), (4,2), (3,4), (9,5), (2,2).