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. Course topics

B Discovery of frequent patterns from data
m Association rules
m Sequential patterns
B Data mining process
m Data preprocessing
- Discretization, missing value treatment
m Validation of data mining results
- Statistical testing, randomization
B Special topics (to be fixed)

m Graph mining, text mining, web mining
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. Course organization

M | ectures:
m Mon 12-14, Tuesday 10-12 (alternating with group work):
16.3., 30.3, 20.4.
m Juho Rousu (A239B, juho.rousu (at) cs.helsinki.fi)
B Group work sessions:
m Tuesdays 10-12 (alternating with lectures): 23.3, 13.4, 27.4
B Exercises & group work debrief:
m Tuesdays 12-14
m Taru ltapelto-Hu (B333, itapelto (at) cs.helsinki.fi)
B Paper summary deadlines: 22.3, 12.4, 26.4
B Course exam: 4.5. at 9-12, lecture hall B123
B Easter break 1-7.4.: no sessions on 5-6.4
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. Completing the course & grading

B Exercises, completed as homework, reviewed in the
exercise session: 15% of the grade

B Group work, completed during group work session,
presented in debrief session: 15% of the grade

B Paper summarizing, completed as homework: 15% of the
grade

B Course exam: 55% of the grade

B Grading: 50% of total gives 1/5, 80% of total gives 5/5

B Alternatively: next separate exam 4.6 at 16-20 A111
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. Group work & exercises

B Three group work sessions: 23.3., 13.4, B Two ‘normal’ exercise sessions: 29.3
27.4 in B222 and 20.4 in B222
m Group work session 10-12 B Exercises given out the previous
m Group work debrief 12-14 week, completed at home, reviewed
B Organization into groups and in the exercise session

assignments for the groups at the start
of each session

B Groups’ work presented in the debrief
session immediately after the group
session

B Type of assignments may vary
(Technical questions, brainstorming,

figuring out an algorithm, ...)
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. Writing summaries of scientific papers

B Three scientific papers will be given to read and
summarize during the course
B Deadlines: #1: 22.3, #2: 13.4, #3: 26.4
B Summary will looks as the following:
m Length 2-4 pages
m Gathers the main contents of a scientific article and
rephrases it in your own words
m Format of a scientific paper with title, author information
(you), an abstract, section titles and references.
m Summary is to be returned as a PDF file, via email to Taru
( ) by the given deadline.
m Each paper will be graded on a scale of 1-5. Late

submissions will be automatically graded down.
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. Paper #1

B Available from the course web page

B Access restricted to cs.helsinki.fi and hiit.fi domains, so download it when at the
university

B Deadline: Monday 22.3 by 23:59

B Return as pdf file to Taru (itapelto (at) cs.helsinki.fi)

Expert Systems with Applications 36 (2009) 2592-2602

Contents lists available at ScienceDirect gm
with
Expert Systems with Applications e

journal homepage: www.elsevier.com/locate/eswa

Review
Application of data mining techniques in customer relationship management:
A literature review and classification

E.W.T. Ngai®*, Li Xiu® D.CK. Chau?

* Department of Management and Marketing, The Hong Kong Polytechnic University, Hong Kong, PR China
Y Department of Automation, Tsinghua University, Beijing, PR China
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. 582635 Data mining project, 2 cr

B Separate course immediately after this course
W 10.5.-21.5
B Data mining techniques are applied in practice. Students
can complete the course in two ways:
m Either by implementing a data mining algorithm given in the
assignment and by analyzing a given data with it,
m or,by mining given data with a (wider) selection of methods,
e.g. using ready-made software.
B |n both cases, a research report is written describing the
work and a seminar presentation is given.
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." What is Data Mining?
B Many Definitions
m Non-trivial extraction of implicit,
previously unknown and potentially

useful information from data

m Exploration & analysis, by automatic or :.:.:.
semi-automatic means, of 31 T in £ ;’y.-f; 2
large quantities of data in orderto .~ : ) ' It
discover meaningful patterns ng ‘e

———

Figure 1.3. Four of the core data mining tasks.
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‘ Neighbor disciplines of Data Mining

mDraws ideas and methods
from
- machine learning/Al,
- pattern recognition,
- statistics
- database systems
m [raditional Techniques
may be unsuitable due to
- Enormity of data
- High dimensionality of data
- Heterogeneous, distributed

Data Mining

nature of data
m“Algorithms meet statistics”
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i! Why Data Mining? Commercial Viewpoint

< 1|.|'13ri]

B |ots of data is being collected

and warehoused

[HHOMN LI N HOLIY'S

m \Web data, e-commerce

m Loyalty cards

- purchases at department/
grocery stores
m Bank/Credit Card
transactions
m 3G mobile phones with GPS

B Computers have become cheaper and more powerful

B Competitive Pressure is Strong

m Provide better, customized services for an edge (e.g. in Customer
Relationship Management)
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Why Mine Data? Scientific Viewpoint

B Data collected and stored at enormous speeds
(GB/hour)
m remote sensors on a satellite
m telescopes scanning the skies
m  DNA sequencing robots churning out new
genomes

m  Web, social media
B Traditional techniques infeasible for raw data
m Data too large/heterogeneuos

m Patterns too complex/numerous

B Data mining may help scientists faCEbOOk

m in classifying and segmenting data

m in Hypothesis Formation
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. Data Mining: Predictive tasks

B Goal: Use some variables to predict unknown or future values of
pre-defined target variables.
B Major types of predictive tasks
m Classification: predict the value discrete target variable with typically few
values, often binary variable
m Regression: predict the value of a continuous target variable
m Anomaly/novelty detection: predict a deviation from normal/current state
of affairs
B Related concept: supervised machine learning
B More information: courses Introduction to machine learning,
Probabilistic models
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Classification application: credit card fraud
. detection

B Goal: detect fraudulent use of credit card (card and/or
card details stolen and misused)
B Approach:

m Database of credit card purchase transactions (date, place,
store details, card holder details, price of purchased item,
transaction history of the credit card, ...)

m Transactions labeled as “normal” vs. “fraudulent”

M |earn a classifier that predicts the from the transaction
data the correct label

m Many methods: Decision trees, Support vector machine,

Nearest neighbor classifier, Naive Bayes
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. Regression application: house pricing

B Goal: real estate agent wants to predict the selling price of
a house in order to set an appropriate asking price
B Approach:

m Database of transactions of previously sold property
(location, type of house/apartment, details of the property,
asking price, time on market,...)

m Target variable: sale price of the property

B [earn a regression model that predicts the from the
transaction data the sale price

B Many methods: Linear regression, Support vector
regression, Nearest neighbor regression, Regression
trees
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B Goal: a tool that checks if the
process is running within normal
specifications

B Data from problem situations not
available

m e.g. nuclear reactor meltdown

B Collect measurement data from
the process and devise prototype
profile(s) of normal operation

M Large deviation from the
prototype causes an alarm
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. Data Mining: Descriptive tasks

B Goal: Find human-interpretable patterns that describe the data.
B “What has the data have to tell?”
m Typically no specific target variable
B Major types of descriptive tasks
m Clustering: divide the data into internally coherent groups
m Frequent pattern discovery: find combinations of variables’ values that
occur more frequently than expected by chance
B Related concepts: unsupervised machine learning, explorative data
analysis
B Note: the division in to descriptive and predictive tasks is not sharp;, human
experts often want to understand why certain prediction is arrived at —

hence we end up the task of describing the predictive model.
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i Clustering Application: Ecological data

analysis

M Clustering can reveal new groupings
in data

M |n the picture, clustering of the
European map is based on

occurrence of species
M Each cell is a 50x50 km area where

the occurrence of 124 species has

been recorded
M Clusters = similar occurrence profiles

B Many methods available: k-means
clustering, hierarchical clustering, ...
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o Frequent Pattern Discovery Application:
% Recommendation systems

B Many recommendation web

Search oy

The Internet Movie Database

sites are based on collecting R

d ata O n freq u e ntly CO_OCCU rri ng mywmmr:;;::;;endaﬁons News Flash » Actor Corey Haim Is Dead at 3§
items

Avatar (2009) More at IMDbPro »

How do these recommendations work?

Suggested by the database Showtimes | Available | User
. = . 13 . [1] (US only) |@Amazon |Rating
you lIKe e 11m Iens Alens (1960 @ [ & [22[ws | 65
Alien: Resurrection (1997) oz vis 6.1
Own the rights?
. [14 L1) - The Lord of the Rings: The Return of the King & Vis 8.8
you probably like “"Avatar S | o =Tw s
The Transformers: The Movie (1986) op VS 7.2
Discuss in Boards i i
SztgorSWars. Episode Il - Revenge of the Sith oo | wis 7.9
B People that buy book X om0
N . ovo
L) Add to My Movies Terminator Salvation (2009) oar 6.9
Desperate Living (1977) oz ViS 7.0
Update Data
fre u e ntl b u boo k Y The Lord of the Rings: The Two Towers (2002) o2 | wis 8.7
- Serenity (2005) a & |22 | ws | 80
ToplLinks Tip: #f you want to see if a movie is showing in a cinema near you, click the fim roll. (USA only)

AAAAAAAAAAAAAAAAAA

Frequently Bought Together
S Total List Price: $263-95
E Price For All Three: $201.66
— (& Add all three to Cart | | Add all three to Wish List |

Show availability and shipping details

™ This item: Introduction to Data Mining by Pang-Ning Tan
M Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems) by Eibe Frank

™ The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) by Robert
Tibshirani
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Frequent pattern discovery: Basketball scout

B In NBA, rigorous statistics are kept of
events of play and the actions of all
players

B Advanced Scout —system discovers
Interesting patterns

m e.9.”"When player X is on the field the
shooting accuracy of player Y drops
from 75% to 30%

B Bhandaril., Colet, E., Parker, J., Pines Z., Pratap R.,

Ramanujam K. (1997): Advanced Scout: datamining and

knowledge discovery in NBA data. Data Mining and Knowledge

Discovery, 1 (1), 121--125}
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Frequent Pattern Discovery Application:
. Scientific discovery

B Explorative analysis of scientific
data can reveal unexpected

associations e

Abstract Cited By (0)

[
. ESpeCiaI Iy user| in “Weak I Data mining for evolution of association rules for droughts and

floods in India using climate inputs

C. T. Dhanya

theo ry domains where human B e

Department of Civil Engineering, Indian Institute of Science, Bangalore, India

An accurate prediction of extreme rainfall events can significantly aid in policy making and also in
eX e' | S d O n Ot et kn OW aI I th e designing an effective risk management system. Frequent occurrences of droughts and floods in the past
have severely affected the Indian economy, which depends primarily on agriculture. Data mining is a

nawarfil new tarhnnlany which halne in avtractina hidden nradictive infarmatinn (fitire trande and

re I evan t va rl a b I es Behavior Research Methods

2007, 39 (2), 259-266

ARTICLES

BMC Welcome Univerq
Bioinformatics

home | journals A-Z | subject areas | advanced search | authors | reviewers | libraries | about | my BioMed Central An intrOductiOn tO aSSOCiation rule mining:
7oy Research artice An application in counseling and

sstract| Prediction of protein-protein interaction types using help_seekjng behavior of adolescents
sackground | @SSOCiation rule based classification

Methods = Sung Hee Park! 2, José A Reyes2.3 24, David R Gilbert? 2, Ji Woong Kim!.4 24 and Sangsoo Kim? 2

1 Department of Bicinformatics & Life Science, Soongsil University, Seoul, 156-743, Korea 0 . .
Results and | 2 School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, UB8 3PH, UK DIOI\ H GOH AND REBE((A P' ANG
Discussion | 3 Facultad de Ingenieria, Universidad de Talca, Talca, Chile Nanyang Technological University, Singapore
4 Equispharm Co., Ltd, Seoul, 443-766, Korea
Conclusion L. L. . ) . . . )
2 author email = corresponding author email Association rule mining (ARM) is a technique used to discover relationships among a large set of variables
AUthors' | o Bioinformatics 2009, 10:36  doi:10.1186/1471-2105-10-36 1 a data set. It has been applied to a variety of industry settings and disciplines but has, to date, not been widely

contributions
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Frequent sequential patterns: Motif discovery
. In blosequences

B In DNA data, binding sites of
regulatory proteins are characterized by
distinct subsequences

B Biologically important motifs should
occur more frequently than a random
subsequence

B The patterns are typically not
completely fixed but allow variability in

certain locations -
B Sequential pattern: order of items
(letters) important
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. Text mining

B Data mining & Information retrieval for

text
B Topics: audience bIOgS
m Text categorization, & clustering century . .
| . communication
m Named entity extraction form
m Entity relation modeling Mass
m Sentiment analysis m Ed ia
B Many applications: people pla_lto print
- Biomedical data mining pu bl IC rad 10
| o today
- Media monitoring writing

- Marketing
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Web mining

B Web provides many data mining
challenges
M Topics:
m Web Content Mining: mining the
documents in the web
- related field of text mining
m Web Structure Mining: mining the link
structure of the web
- e.g. Google PageRank
m Web Usage Mining: mining the log files
of web for user modeling and web site

optimization
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. Frequent sequential patterns: web log mining

B Find rules that predict strong sequential dependencies among
different events.
B Episode rules
m “When webpage A is accessed, webpage B is accessed within

10 seconds, 70% of times”

Website1, Website2 Start End Conf (%)
Citeseer.com, Rgtu.net 1:00 1:20 70
Newsworld.com, Citeseer.com 2:00 2:10 75
Citeseer.com, Rgtu.net 2:00 2:15 70
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. Challenges of Data Mining

B Scalability
m  Analysis of terabytes of data requires efficient algorithms —
parallelization of computation may be needed
m All data may not fit to the main memory of the computer — need efficient
index structures for secondary memory
B (Curse of) Dimensionality
m Many datasets have thousands, even millions of attributes
m  Statistical problems: easy to find spurious patterns created by random
effects
m  Computational problems: many methods scale badly when number of

attributes increase
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. Challenges of Data Mining

B Complex and Heterogeneous Data
m  Web pages with hyperlink structure
m Images
m  Streaming data: video, speech
m  Sequence data: DNA sequence data, Natural language data
m  Spatio-temporal data: e.g. earth surface temperature over time
B Data Ownership and Distribution
m Data may not be stored in one geographical location or owned by a
single institution

m  Security and Privacy Preservation
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. Challenges of Data Mining

B Non-traditional analysis

m Traditional data analysis mostly deals with data arising from well-
controlled data gathering process
- Scientific experiments testing a hypothesis
- Questionnaries to random population samples

m Data mining many times analyses data collected for a different original
purpose
- Data may not contain the most interesting attributes

- Data may be a biased sample of the population
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. Data mining process

Bl Data mining process consists of several
Interdependent steps
m Preprocessing to make the data suitable for analysis
m Data mining to find the patterns/build models
m Postprocessing to make the results suitable for human analysis
M In reality: iterative process with feedback loops and
human interaction

Input Data Data
Data Preprocessing Mining

— Sl
— ——_
— ——
— T

Feature Selection
Dimensionality Reduction
Normalization

Data Subsetting

p—- POStProcessing p—— Information

Filtering Patterns
Visualization
Pattern Interpretation

Figure 1.1. The process of knowledge discovery in databases (KDD).
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Types of data

B Record

m Data Matrix
m Document Data
m Transaction Data

B Graph
m World Wide Web
m Molecular Structures

B Ordered
m Spatial Data

m Temporal Data
m Sequential Data
m Genetic Sequence Data
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= Record Data

B Data that consists of a collection of records, each of which

consists of a fixed set of attributes

Tid Refund Marital Taxable
Status Income Cheat

1 Yes Single 125K No
2 [No Married | 100K No
3 |No Single 70K No
4 |Yes Married |120K No
5 [No Divorced | 95K Yes
6 |No Married |60K No
7 |Yes Divorced | 220K No
8 [No Single 85K Yes
9 [No Married |75K No
10 |No Single 90K Yes
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! Graph Data

B Examples: Generic graph and HTML Links

<a href="papers/papers.html#bbbb">

Data Mining </a>

<li>

<a href="papers/papers.html#aaaa">

Graph Partitioning </a>

<li>

<a href="papers/papers.html#aaaa">

Parallel Solution of Sparse Linear System of Equations </a>
<li>

<a href="papers/papers.html#ffff'>

N-Body Computation and Dense Linear System Solvers
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Ordered Data

B Sequences of transactions
Items/Events

y

(AB) (D) (CE)

(BD) (C) (E)

\(C D) (B) (AE)
Y

An element of
the sequence




i Ordered Data

B Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG
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“&.  Ordered Data

B Spatio-Temporal Data Jan

Average Monthly
Temperature of land
and ocean
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