
582364 Data mining, 4 cu
Lecture 3: Association analysis

Spring 2010
Lecturer: Juho Rousu
Teaching assistant: Taru Itäpelto

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent Pattern Discovery Application:
Recommendation systems

 Many recommendation web
sites are based on collecting
data on frequently co-occurring
items

  If you liked the film “Aliens”
you probably like “Avatar”

 People that buy book X,
frequently buy book Y

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Association analysis

Goal: Given a set of transactions, find
  items that occur frequently together (Frequent itemsets)

-  “Introduction to Data Mining” & “Elements of Statistical Learning “
are frequently bought together

  rules that will predict the occurrence of an item based on the
occurrences of other items in the transaction (Association rules)
-  People that bought “Introduction to Data Mining”, often buy

“Elements of Statistical Learning “ as well

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Definition: Itemset

  Itemset
  A collection of one or more items

-  Example: {Milk, Bread, Diaper}

  k-itemset

-  An itemset that contains k items

  Support
  Support count (σ): Count of

occurrences of an itemset
-  E.g. σ({Milk, Bread,Diaper}) = 2

  Support: Fraction of transactions that

contain an itemset

-  E.g. s({Milk, Bread, Diaper}) = 2/5

Definition: Frequent Itemset

  Frequent Itemset
  An itemset whose support is greater

than or equal to a minsup threshold

  Example:
  We set minsup = 0.5

  Frequent itemsets:

-  Bread (support = 0.8 > 0.5)

-  Milk (support = 0.8)

-  Diaper (support = 0.8)

-  Beer (support = 0.6)

-  {Bread, Milk} (support = 0.6)

-  {Bread, Diaper} (support = 0.6)

-  {Beer, Diaper} (support = 0.6)

-  {Milk, Diaper} (support = 0.6)

Definition: Association Rule

 An expression of the form
 X → Y,

where X and Y are itemsets
 Semantics: “When X happens, Y frequently happens as well”
 Examples:

{Milk, Diaper} → {Beer}

 {“Introduction to Data Mining”} → {“Elements of Statistical Learning”}

 Different from
 logical implication: “When X happens, Y always happens as

well”
 causal relation: “X causes Y to happen”

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Definition: Association Rule

 The strength of an association
rule X → Y
 is measured by its support and
confidence

 Support s(X → Y): Fraction of
transactions that contain both
the set X and the set Y

  s(X → Y) = σ(X U Y)/|T|

 Confidence c(X → Y): how often
items in Y appear in transactions
that contain X

  c(X → Y) = σ(X U Y)/σ(X)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Example:

Association Rule Mining Task

 Given a set of transactions T, the goal of
association rule mining is to find all rules having

  support ≥ minsup threshold

  confidence ≥ minconf threshold

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

{Bread}→{Milk} (s=0.6,c=0.75)
{Bread}→{Diaper} (s=0.6,c=0.75)
…
{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

minsup =0.4
minconf = 0.5

Association Rule Mining: brute-force approach

 Brute-force approach:
 List all possible association rules

 Compute the support and confidence for each rule

 Prune rules that fail the minsup and minconf thresholds

 How much time this would take?
 For d unique items, there are 3d-2d+1+1 possible rules

-  For d = 100, this gives ca. 5x1047 possible rules to check

against the database

-  Compare to age of universe ca. 5x1017 seconds

 Will not work except for toy examples

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Mining Association Rules

Example of Rules:
{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

Observations:
•  All the above rules are binary partitions of the same itemset:

 {Milk, Diaper, Beer}

•  Rules originating from the same itemset have identical support but
 can have different confidence

•  Thus, we may decouple the support and confidence requirements

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Mining Association Rules

  Two-step approach:
1.  Frequent Itemset Generation

–  Generate all itemsets whose support ≥ minsup
–  e.g. {Milk, Diaper, Beer}

2.  Rule Generation
–  Generate high confidence rules from each frequent

itemset, where each rule is a binary partitioning of a
frequent itemset

  Frequent itemset generation is still computationally expensive
  There are 2d itemsets, which is still too much to enumerate

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent Itemset Generation Strategies

 Reduce the number of candidate itemsets (M)
 Complete search: M=2d

 Use pruning techniques to reduce M

 Reduce the number of comparisons (NM)
 Use efficient data structures to store the candidate itemsets or

transactions

 No need to match every candidate against every transaction

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Reducing the number of candidate itemsets:
Apriori principle

 Apriori principle:
  If an itemset is frequent, then all of its subsets must also be frequent

  i.e. if {Milk,Diaper,Beer} is frequent, then

{Milk,Diaper}, {Milk,Beer}, {Diaper,Beer},{Milk},{Diaper},{Beer} must also be

frequent

 Why this is true (informally):
  In every transaction, subsets always occur if the whole set occurs

 Support of the itemset is given by the sum of occurrences over the

transactions

 Converse does not hold:
 Even though all subsets are frequent, an itemset may be infrequent

 Need to check against the transactions to find the true support

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Reducing the number of candidate itemsets:
Apriori principle

 Apriori principle:
  If an itemset is frequent, then all of its subsets must also be

frequent

 Formally, the principle follows from the anti-monotone property
of the support function:

 When we put more items into the itemset, the support can only

decrease

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Itemset lattice

  Itemsets that can be constructed
from a set of items have a partial
order with respect to the subset
operator

  i.e. a set is larger than its proper

subsets

 This induces a lattice where nodes
correspond to itemsets and arcs
correspond to the subset relation

 The lattice is called the itemset
lattice

 For d items, the size of the lattice
is 2d

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemsets on the itemset lattice

  The Apriori principle is
illustrated on the itemset
lattice
 The subsets of a frequent

itemset are frequent
 They span a sublattice of the

original lattice (the grey area)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemsets on the itemset lattice

  Conversely
 The supersets of an infrequent

itemset are infrequent
 They also span a sublattice of

the original lattice (the crossed
out nodes)

 If we know that {a,b} is
infrequent, we never need to
check any of the supersets
 This fact is used in support-

based pruning

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent items set generation in Apriori Algorithm

  Input: set of items I, set of transactions T, number of transactions N,
minimum support minsup

  Output: frequent k-itemsets Fk, k=1,...
  Method:

  k=1
  Compute support for each 1-itemset (item) by scanning the transactions
  F1 = items that have support above minsup
  Repeat until no new frequent itemsets are identified

1.  Ck+1 = candidate k+1 -itemsets generated from length k frequent
itemsets Fk

2.  Compute the support of each candidate in Ck+1 by scanning the
transactions T

3.  Fk+1 = Candidates in Ck+1 that have support above minsup.

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Illustrating Apriori Principle

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets) Minimum Support = 3

If every subset is considered,
 6C1 + 6C2 + 6C3 = 41

With support-based pruning,
 6 + 6 + 1 = 13

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Characteristics of Apriori algorithm

 Level-wise search algorithm:
  traverses the itemset lattice

level-by-level (1-itemsets, 2-

itemsets ...)

 Generate-and-test strategy:
 new candidate itemsets are

generated from smaller

frequent itemsets

  support is tested to weed out

infrequent itemsets

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Requirements for candidate generation step

1.  It should not generate too many unnecessary
candidates, i.e. itemsets where at least one of the
subsets is infrequent

2.  It should ensure the completeness of the candidate set,
i.e. no frequent itemset is left out

3.  It should not generate the same candidate set more than
once
  e.g. {a,b,c,d} can be generated by merging {a,b,c} with {d}

or {b,d} with {a,c}, {a,b} with {c,d}

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation strategies: Fk-1 x F1 method

 Fk-1 x F1 method: Combine frequent k-1 –itemsets with frequent 1-
itemsets

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation strategies: Fk-1 x F1 method

 Satisfaction of our requirements (#1-3):

1. while many k-itemsets are left ungenerated, can still
generate unnecessary candidates
  e.g. merging {Beer, Diapers} with {Milk} is unnecessary, since
{Beer, Milk} is infrequent

2. method is complete: each frequent itemset consists of
a frequent k-1 –itemset and a frequent 1-itemset ✔

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation strategies: Fk-1 x F1 method

3.  can generate the same set twice (✖)
  e.g. {Bread, Diapers, Milk} can be generated by merging

{Bread,Diapers} with {Milk} or {Bread,Milk} with
{Diapers} or {Diapers, Milk} with {Bread}

  This can be circumvented by keeping all frequent
itemsets in their lexicographical order (✔):
-  e.g. {Bread,Diapers} can be merged with {Milk} as

‘Milk’ comes after ‘Bread’ and ‘Diapers’ in
lexicographical order

-  {Diapers, Milk} is not merged with {Bread}, {Bread,
Milk} is not merged with {Diapers} as that would
violate the lexicographical ordering

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation strategies: Fk-1 x Fk-1 method

 Fk-1 x Fk-1 method: Combine a frequent k-1 –itemset
with another frequent k-1 -itemset

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation strategies: Fk-1 x Fk-1 method

 Items are stored in lexicographical order in the itemset
 When considering merging, only pairs that share first k-2

items are considered
 e.g. {Bread, Diapers} is merged with {Bread,Milk}
 if the pairs share fewer than k-2 items, the resulting

itemset would be larger than k, so we do not need to
generate it yet

 The resulting k-itemset has k subsets of size k-1, which
will be checked against support threshold
 The merging ensures that at least two of the subsets are

frequent
 An additional check is made that the remaining k-2 subsets

are frequent as well
Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation strategies: Fk-1 x Fk-1
method

 Satisfaction of our requirements (#1-3):

1. avoids the generation of many unnecessary
candidates that are generated by the Fk-1 x F1 method
  e.g. will not generate {Beer, Diapers, Milk} as {Beer,

Milk} is infrequent
2. method is complete: every frequent k-itemset can be

formed of two frequent k-1 –itemsets differing in their
last item.

3. each candidate itemset is generated only once

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Support counting

 Given the candidate itemsets Ck and the set of transactions T, we
need to compute the support counts σ(X) for each itemset X in Ck

 Brute-force algorithm would compare each transaction against each
itemset large amount of comparisons

 An alternative approach
 divide the candidate itemsets Ck into buckets by using a hash function

  for each transaction t:

-  hash the itemsets contained in t into buckets using the same hash

function

-  compare the corresponding buckets of candidates and the

transaction

-  increment the support counts of each matching candidate itemset

 A hash tree is used to implement the hash function

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Generate Hash Tree

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

•  Hash function e.g. h(p) = p mod 3

•  Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Matching the transaction against candidates

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 6 2 +

5 6 3 +

1,4,7
2,5,8

3,6,9

Hash Function transaction

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Matching the transaction against candidates

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7
2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Matching the transaction against candidates

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7
2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Rule generation in Apriori

 From a frequent itemset, we still need to generate the association
rules

 From each k-itemset, one can produce 2k-2 association rules
 e.g. {Beer,Bread,Diapers} generates {Beer} {Bread,Diapers}, {Bread}

 {Beer, Diapers}, Diapers {Beer,Bread}, {Beer,Bread} -> {Diapers},

{Beer,Diapers} {Bread}, {Bread, Diapers} {Beer}

 All of the association rules generated from the same frequent
itemset have the same support

 The confidence of the rules will be different, however
 We want to find efficiently the rules that have high confidence

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Rule generation in Apriori

 The confidence of any association rule can be computed from the
support counts of the frequent itemsets:

  c(Beer -> Bread,Diapers) = σ(Beer,Bread,Diapers)/σ(Beer)

 We don’t need to scan the transactions to find the high-confidence rules

 The confidence does not have a similar anti-monotone property as
support has:

 e.g. if c({Beer,Milk} {Bread,Diapers}) exceed the confidence

threshold minconf, it does not follow that {Beer} {Bread} satisfies the

confidence threshold

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Rule generation in Apriori

 However, between rules generated from the same frequent itemset
we have the following property: if X Y-X does not satisfy the
confidence threshold then no rule X’ Y-X’, where X’ is a subset of
X, satisfies the confidence threshold

 e.g. if {Beer,Bread} {Milk} does not satisfy the confidence threshold,

{Beer} {Bread,Milk} and {Bread} {Beer,Milk} also do not

 This property follows from the anti-monotone property of the support
count σ(X’) ≥ σ(X), thus

c(X Y-X) = σ(X U Y-X)/σ(X) ≥ σ(X’ U Y-X’)/σ(X’) = c(X’ Y-X’)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Rule generation in Apriori

 Apriori uses level-wise search
for rule generation

  It starts from empty right-hand
side and all items in the left-
hand side

 To generate a rule in the next
level it merges the left-hand
sides of two confident rules on
the previous level

 When a non-confident rule is
found, an entire subgraph
(grey area) is pruned

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

