
582364 Data mining, 4 cu
Lecture 4: Finding frequent
itemsets - concepts and algorithms

Spring 2010
Lecturer: Juho Rousu
Teaching assistant: Taru Itäpelto

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Itemset lattice

  Itemsets that can be constructed
from a set of items have a partial
order with respect to the subset
operator

  i.e. a set is larger than its proper

subsets

 This induces a lattice where nodes
correspond to itemsets and arcs
correspond to the subset relation

 The lattice is called the itemset
lattice

 For d items, the size of the lattice
is 2d

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemsets on the itemset lattice

  The Apriori principle is
illustrated on the Itemset
lattice
 The subsets of a frequent

itemset are frequent
 They span a sublattice of the

original lattice (the grey area)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemsets on the itemset lattice

  Conversely
 The supersets of an infrequent

itemset are infrequent
 They also span a sublattice of

the original lattice (the crossed
out nodes)

 If we know that {a,b} is
infrequent, we never need to
check any of the supersets
 This fact is used in support-

based pruning

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Compact Representation of Frequent Itemsets

 In practise, the number of frequent itemsets produced
from transaction data can be very large
 when the database is dense i.e. many items per transaction on

average
 when the number of transactions is high
 when the minimum support level is set too low

 We will look at methods that
 use the properties of the itemset lattice and the support

function...
 to compress the collection of frequent itemsets in a more

manageable size...
 so that all frequent itemsets can be derived from the compressed

representation

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Maximal Frequent Itemsets

 The minimum support threshold
induces a partition of the itemset
lattice into frequent and infrequent
itemsets (grey nodes)

 Frequent itemsets that cannot be
extended with any item without
making them infrequent are called
maximal frequent itemsets

 We can derive all frequent
itemsets from the set of maximal
itemsets

 Use of the Apriori principle

“backwards”
Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Infrequent
itemsets

Frequent
itemsets

Maximal Frequent Itemsets

  {A,C} is not maximal as it can be
extended to frequent itemset
{A,C,E} although its supersets
{A,B,C}, {A,C,D} are infrequent

  {A,D} is maximal as all its
immediate supersets {A,B,D},
{A,C,D} and {A,D,E} are
infrequent

  {B,D} is not maximal as it can be
extended to frequent itemsets
{B,C,D} and {B,D,E}

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Infrequent
itemsets

Frequent
itemsets

Maximal frequent itemsets

 The number of maximal
frequent itemsets is typically
considerably smaller than the
number of all frequent itemsets

  In worst case, the number can
still be exponential in the
number of items:

 e.g. consider the case where

all itemsets of size d/2 are

frequent and no itemset of size

d/2+1 is frequent.

 Still need efficient algorithms

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Infrequent
itemsets

Frequent
itemsets

Border

Maximal frequent itemsets

 Exact support counts of the
subsets cannot be directly
derived from support of the
maximal frequent itemset

 From Apriori principle we only
know that the subsets must be
frequent, but not how frequent

 Need to do support counting for
the subsets of the maximal
frequent itemset to create
association rules

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Infrequent
itemsets

Frequent
itemsets

Border

Closed itemsets

 An alternative approach is to try
to retain some of the support
information in the compacted
representation

 A closed itemset is an itemset
whose all immediate supersets
have different support count

 A closed frequent itemset is a
closed itemset that satisfies the
minimum support threshold

 Maximal frequent itemsets are
closed by definition

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Example: Closed frequent itemsets

 Assume minimum support
threshold 40%

  {b} is frequent: σ({b})=3, but not
closed: σ({b}) = σ({b,c}) = 3

  {b,c} is frequent: σ({b,c})= 3, and
closed: σ({a,b,c}) = 2,
σ({b,c,d})=1,σ({b,c,e})=1

  {b,c,d} is not frequent: σ({b,c,d}) =
1, and not closed : σ({a,b,c,d}) = 1

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Maximal vs Closed Itemsets
Transaction
Ids

Not supported
by any
transactions

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Maximal vs Closed Frequent Itemsets

Minimum support = 2

Closed = 9

Maximal = 4

Closed and
maximal

Closed but
not maximal

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Maximal vs Closed Itemsets

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Determining the support of non-closed
frequent itemsets

 Consider a non-closed
frequent itemset {a,d}
 assume we have not stored

its support count
 By definition, there must be

at least one immediate
superset that has the same
support count

 It must be that σ({a,d}) =
σ(X) for some immediate
superset X of {a,d}

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Determining the support of non-closed
frequent itemsets

 From the Apriori principle
we know that no superset
can have higher support
than {a,d}

 It must be that the
support equals the
support of the most
frequent superset

σ({a,d}) =
max(σ(abd),σ(acd),σ(ade))

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Determining the support of non-closed
frequent itemsets

 Algorithm sketch:
1.  kmax = size of largest closed frequent itemset

2.  Fkmax = closed frequent itemsets of size kmax

3.  for k = kmax-1 downto 1 do

4.  Fk = {f | f immediate subset of f’ in Fk+1 or f is closed, |f|=k }

5.  for every f in Fk do

6.  if f is not closed

7.  f.support = max(f’.support | f’ in Fk+1, f’ is a superset of f)

8.  endif

9.  endfor

10.  endfor

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Characteristics of Apriori algorithm

 Breadth-first search algorithm:
 all frequent itemsets of given

size are kept in the algorithms

processing queue

 General-to-specific search:
  start with itemsets with large

support, work towards lower-

support region

 Generate-and-test strategy:
 generate candidates, test by

support counting

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Weaknesses of Apriori

 Apriori is one of the first algorithms that succesfully
tackled the exponential size of the frequent itemset space

 Nevertheless the Apriori suffers from two main
weaknesses:

 High I/O overhead from the generate-and-test strategy:

several passes are required over the database to find the

frequent itemsets

 The performance can degrade significantly on dense

databases, as large portion of the itemset lattice becomes

frequent

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Alternative methods for generating frequent
itemsets: Traversal of itemset lattice

 Apriori uses general-to-specific search: start from most highly
supported itemsets, work towards lower support region

 Works well if the frequent itemset border is close to the top of the lattice

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Alternative methods for generating frequent
itemsets: Traversal of itemset lattice

 Specific-to-general search: look first for the most specific frequent
itemsets, work towards higher support region

 Works well if the border is close to the bottom of the lattice
 Dense databases

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Alternative Methods for Frequent Itemset
Generation: Breadth-first vs Depth-first

 Apriori traverses the itemset lattice in breadth-first manner
 Alternatively, the lattice can be searched in depth-first manner:

extend single itemset until it cannot be extended
 often used to find maximal frequent itemsets

 hits the border of frequent itemsets quickly

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Alternative Methods for Frequent Itemset
Generation: Breadth-first vs Depth-first

 Depth-first search allows
different kind of pruning of the
search space

 Example: if {b,c,d,e} is found
maximal frequent by the search
algorithm, the region of the
lattice consisting of subsets of
{b,c,d,e} does not need to be
traversed

  known to be frequent non-maximal

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Alternative methods for generating frequent
itemsets: Equivalence classes

 Many search algorithms can be seen to conceptually
partition the itemset lattice into equivalence classes

 The itemsets in one equivalence class are processed before

moving into the next

 Several ways of defining equivalence classes
 Levels defined by itemset size (used by Apriori)

 Prefix labels: two itemsets that share a prefix of length k

belong to the same class e.g. {a,c,d}, {a,c,e} if k <= 2

 Suffix labels: two itemsets that share a suffix of length k

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Prefix and suffix trees

  Left: prefix tree and equivalence classes defined by for prefixes of length k=1

  Right: suffix tree and equivalence classes defined by for prefixes of length k=1

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

FP-growth algorithm

 FP-growth avoids the repeated scans of the database of Apriori by
using a compressed representation of the transaction database
using a data structure called FP-tree

 Once an FP-tree has been constructed, it uses a recursive divide-
and-conquer approach to mine the frequent itemsets

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

FP-tree

 FP-tree is a compressed representation of the transaction database
 Each transaction is mapped onto a path in the tree
 Each node contains an item and the support count corresponding to

the number of transactions with the prefix corresponding to the path
from root

 Nodes having the same item label are cross-linked: this helps
finding the frequent itemsets ending with a particular item

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

FP-tree construction
null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

FP-Tree Construction

D:1

E:1

Pointers are used to assist
frequent itemset generation

Transaction
Database

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1 C:3

D:1

E:1
D:1

E:1

Header table

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

FP-Tree vs. original database

  If the transactions share a significant number of items, FP-tree
can be considerably smaller as the common subset of the items
is likely to share paths

 There is a storage overhead from the links as well from the
support counts, so in worst case may even be larger than original

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemset generation in FP-growth

 FP-growth uses a divide-
and-conquer approach to
find frequent itemsets

 It searches frequent
itemsets ending with item
E first, then itemsets
ending with D,C,B,A
 i.e. uses equivalence classes

based on length-1 suffixes
 Paths corresponding to

different suffixes are
extracted from the FP-tree

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

E:1
D:1

E:1
D:1

E:1

Frequent itemset generation in FP-growth

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemset generation in FP-growth

 To find all frequent itemsets ending with given last item
(e.g. E), we first need to compute the support of the
item

 This is given by the sum of support counts of all nodes
labeled with the item (σ(E)=3)
 found by following the cross-links connecting the nodes with

the same item
 If last item is found frequent, FP-growth next iteratively

looks for all frequent itemsets ending with given
length-2 suffix (DE,CE,BE, and AE),
 and recursively with length-3 suffix, length-4 suffix

until no more frequent itemsets are found
 Conditional FP-tree is constructed for each different

suffix to speed up the computation
Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent itemset generation in FP-growth

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

