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Itemset lattice 

  Itemsets that can be constructed 
from a set of items have a partial 
order with respect to the subset 
operator 

  i.e. a set is larger than its proper 

subsets 

 This induces a lattice where nodes 
correspond to itemsets and arcs 
correspond to the subset relation 

 The lattice is called the itemset 
lattice 

 For d items, the size of the lattice 
is 2d 
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Frequent itemsets on the itemset lattice 

  The Apriori principle is 
illustrated on the Itemset 
lattice 
 The subsets of a frequent 

itemset are frequent 
 They span a sublattice of the 

original lattice (the grey area) 
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Frequent itemsets on the itemset lattice 

  Conversely 
 The supersets of an infrequent 

itemset are infrequent 
 They also span a sublattice of 

the original lattice (the crossed 
out nodes) 

 If we know that {a,b} is 
infrequent, we never need to 
check any of the supersets 
 This fact is used in support-

based pruning  
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Compact Representation of Frequent Itemsets 

 In practise, the number of frequent itemsets produced 
from transaction data can be very large 
 when the database is dense i.e. many items per transaction on 

average 
 when the number of transactions is high 
 when the minimum support level is set too low 

 We will look at methods that  
 use the properties of the itemset lattice and the support 

function... 
 to compress the collection of frequent itemsets in a more 

manageable size... 
 so that all frequent itemsets can be derived from the compressed 

representation 
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Maximal Frequent Itemsets 

 The minimum support threshold 
induces a partition of the itemset 
lattice into frequent and infrequent 
itemsets (grey nodes) 

 Frequent itemsets that cannot be 
extended with any item without 
making them infrequent are called 
maximal frequent itemsets 

 We can derive all frequent 
itemsets from the set of maximal 
itemsets 

 Use of the Apriori principle 

“backwards” 
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Maximal Frequent Itemsets 

  {A,C} is not maximal as it can be 
extended to frequent itemset 
{A,C,E} although its supersets 
{A,B,C}, {A,C,D} are infrequent 

  {A,D} is maximal as all its 
immediate supersets {A,B,D}, 
{A,C,D} and {A,D,E} are 
infrequent 

  {B,D} is not maximal as it can be 
extended to frequent itemsets 
{B,C,D} and {B,D,E} 
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Maximal frequent itemsets 

 The number of maximal 
frequent itemsets is typically 
considerably smaller than the 
number of all frequent itemsets 

  In worst case, the number can 
still be exponential in the 
number of items:  

 e.g. consider the case where 

all itemsets of size d/2 are 

frequent and no itemset of size 

d/2+1 is frequent. 

 Still need efficient algorithms  
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Maximal frequent itemsets 

 Exact support counts of the 
subsets cannot be directly 
derived from support of the 
maximal frequent itemset 

 From Apriori principle we only 
know that the subsets must be 
frequent, but not how frequent 

 Need to do support counting for 
the subsets of the maximal 
frequent itemset to create 
association rules  
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Closed itemsets 

 An alternative approach is to try 
to retain some of the support 
information in the compacted 
representation 

 A closed itemset is an itemset 
whose all immediate supersets 
have different support count 

 A closed frequent itemset is a 
closed itemset that satisfies the 
minimum support threshold 

 Maximal frequent itemsets are 
closed by definition 
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Example: Closed frequent itemsets 

 Assume minimum support 
threshold 40% 

  {b} is frequent: σ({b})=3, but not 
closed: σ({b}) = σ({b,c}) = 3 

  {b,c} is frequent: σ({b,c})= 3, and 
closed: σ({a,b,c}) = 2, 
σ({b,c,d})=1,σ({b,c,e})=1 

  {b,c,d} is not frequent: σ({b,c,d}) = 
1, and not closed : σ({a,b,c,d}) = 1 
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Maximal vs Closed Itemsets 
Transaction 
Ids 

Not supported 
by any 
transactions 
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Maximal vs Closed Frequent Itemsets 

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed and 
maximal 

Closed but 
not maximal 
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Maximal vs Closed Itemsets 
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Determining the support of non-closed 
frequent itemsets 

 Consider a non-closed 
frequent itemset {a,d}  
 assume we have not stored 

its support count 
 By definition, there must be 

at least one immediate 
superset that has the same 
support count 

 It must be that σ({a,d}) = 
σ(X) for some immediate 
superset X of {a,d} 
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Determining the support of non-closed 
frequent itemsets 

 From the Apriori principle 
we know that no superset 
can have higher support 
than {a,d} 

 It must be that the 
support equals the 
support of the most 
frequent superset 

σ({a,d}) = 
max(σ(abd),σ(acd),σ(ade)) 
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Determining the support of non-closed 
frequent itemsets 

 Algorithm sketch: 
1.  kmax = size of largest closed frequent itemset 

2.  Fkmax = closed frequent itemsets of size kmax 

3.  for k = kmax-1 downto 1 do 

4.     Fk =  {f | f immediate subset of f’ in Fk+1 or f is closed, |f|=k } 

5.     for every f in Fk do 

6.        if f is not closed 

7.           f.support = max(f’.support | f’ in Fk+1, f’ is a superset of f ) 

8.        endif 

9.     endfor 

10.  endfor 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Characteristics of Apriori algorithm 

 Breadth-first search algorithm:  
 all frequent itemsets of given 

size are kept in the algorithms 

processing queue 

 General-to-specific search: 
  start with itemsets with large 

support, work towards lower-

support region 

 Generate-and-test strategy: 
 generate candidates, test by 

support counting 
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Weaknesses of Apriori 

 Apriori is one of the first algorithms that succesfully 
tackled the exponential size of the frequent itemset space 

 Nevertheless the Apriori suffers from two main 
weaknesses: 

 High I/O overhead from the generate-and-test strategy: 

several passes are required over the database to find the 

frequent itemsets 

 The performance can degrade significantly on dense 

databases, as large portion of the itemset lattice becomes 

frequent 
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Alternative methods for generating frequent 
itemsets: Traversal of itemset lattice 

 Apriori uses general-to-specific search: start from most highly 
supported itemsets, work towards lower support region 

 Works well if the frequent itemset border is close to the top of the lattice 
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Alternative methods for generating frequent 
itemsets: Traversal of itemset lattice 

 Specific-to-general search: look first for the most specific frequent 
itemsets, work towards higher support region  

 Works well if the border is close to the bottom of the lattice 
 Dense databases 
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Alternative Methods for Frequent Itemset 
Generation: Breadth-first vs Depth-first 

 Apriori traverses the itemset lattice in breadth-first manner 
 Alternatively, the lattice can be searched in depth-first manner: 

extend single itemset until it cannot be extended 
 often used to find maximal frequent itemsets 

 hits the border of frequent itemsets quickly 
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Alternative Methods for Frequent Itemset 
Generation: Breadth-first vs Depth-first 

 Depth-first search allows 
different kind of pruning of the 
search space 

 Example: if  {b,c,d,e} is found 
maximal frequent by the search 
algorithm, the region of the 
lattice consisting of subsets of 
{b,c,d,e} does not need to be 
traversed 

  known to be frequent non-maximal 
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Alternative methods for generating frequent 
itemsets: Equivalence classes 

 Many search algorithms can be seen to conceptually 
partition the itemset lattice into equivalence classes 

 The itemsets in one equivalence class are processed before 

moving into the next 

 Several ways of defining equivalence classes 
 Levels defined by itemset size (used by Apriori) 

 Prefix labels: two itemsets that share a prefix of length k 

belong to the same class e.g. {a,c,d}, {a,c,e} if k <= 2 

 Suffix labels: two itemsets that share a suffix of length k 
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Prefix and suffix trees 

  Left: prefix tree and equivalence classes defined by for prefixes of length k=1 

  Right: suffix tree and equivalence classes defined by for prefixes of length k=1 
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FP-growth algorithm 

 FP-growth avoids the repeated scans of the database of Apriori by 
using a compressed representation of the transaction database 
using a data structure called FP-tree 

 Once an FP-tree has been constructed, it uses a recursive divide-
and-conquer approach to mine the frequent itemsets 
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FP-tree 

 FP-tree is a compressed representation of the transaction database 
 Each transaction is mapped onto a path in the tree 
 Each node contains an item and the support count corresponding to 

the number of transactions with the prefix corresponding to the path 
from root 

 Nodes having the same item label are cross-linked: this helps 
finding the frequent itemsets ending with a particular item   
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FP-tree construction 
null 

A:1 

B:1 

null 

A:1 

B:1 

B:1 

C:1 

D:1 

After reading TID=1: 

After reading TID=2: 
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FP-Tree Construction 

D:1 

E:1 

Pointers are used to assist 
frequent itemset generation 

Transaction 
Database 

null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 C:3 

D:1 

E:1 
D:1 

E:1 

Header table 
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FP-Tree vs. original database 

  If the transactions share a significant  number of items, FP-tree 
can be considerably smaller as the common subset of the items 
is likely to share paths 

 There is a storage overhead from the links as well from the 
support counts, so in worst case may even be larger than original  
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Frequent itemset generation in FP-growth 

 FP-growth uses a divide-
and-conquer approach to 
find frequent itemsets 

 It searches frequent 
itemsets ending with item 
E first, then itemsets 
ending with D,C,B,A 
 i.e. uses equivalence classes 

based on length-1 suffixes 
 Paths corresponding to 

different suffixes are 
extracted from the FP-tree 
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Frequent itemset generation in FP-growth 
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Frequent itemset generation in FP-growth 

 To find all frequent itemsets ending with given last item 
(e.g. E), we first need to compute the support of the 
item 

 This is given by the sum of support counts of all nodes 
labeled with the item (σ(E)=3) 
 found by following the cross-links connecting the nodes with 

the same item  
 If last item is found frequent, FP-growth next iteratively 

looks for all frequent itemsets ending with given 
length-2 suffix (DE,CE,BE, and AE),  
 and recursively with length-3 suffix, length-4 suffix 

until no more frequent itemsets are found 
 Conditional FP-tree is constructed for each different 

suffix to speed up the computation 
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Frequent itemset generation in FP-growth 
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