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Evaluation of Association Patterns 

 Association rule algorithms potentially generate large 
quantities of rules 

 Easily thousands to millions of rules depending on the 

database and the used support and confidence levels 

 All of the patterns cannot be examined manually 

 Problem in using the knowledge contained in the rules 
 All of the rules may not be interesting (e.g. Plastic bag -> 

Bread) 

 Some rules may be redundant (e.g if {A,B,C} → {D} and 

{A,B} → {D} have same support & confidence) 
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Effect of Skewed Support Distribution 

 Many real data sets have 
skewed support distribution 

  Most of items have low to 

moderate support 

  Small number of items have very 

high support 
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Group G1 G2 G3 
Support <1% 1-90% > 90% 
#items 1735 358 20 



Effect of Skewed Support Distribution 

  How to set minsup threshold? 

  Too high minsup threshold (e.g. 20%) 

misses interesting items with low 

support 

  e.g. customers buying expensive 

jewelry or other high-profit items 

  Too low minsup threshold 

  generates too many rules 

  easily generates spurious cross-

patterns relating a low-frequency item 

to a high-frequency item: e.g. Caviar 

 Bread 
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Multiple Minimum Support 

 One solution is to apply multiple minimum supports levels 
 MS(i): minimum support for item i  

 e.g.: MS(Milk)=5%, MS(Coke)=3%, 

       MS(Broccoli)=0.1%, MS(Salmon)=0.5% 

 MS({Milk, Broccoli})= min(MS(Milk),MS(Broccoli})=0.1% 

 Challenge: Support is no longer anti-monotone 

-    Suppose:  Support(Milk, Coke) = 1.5% and 

  Support(Milk, Coke, Broccoli) = 0.5% 

-   {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent 

 Apriori can be modified to accommodate this change (Liu, 1999) 

-  The pruning of candidate itemsets needs to be relaxed 



Cross-support patterns 

 Consider the transaction data on the right 
 q  p , r  p and {q,r}  p are all high-

confidence patterns that look spurious 
(caused by p being very frequent) 

 Eliminating them by tightening the 
minsup requirement also drops the rules 
r  q and q  r that “look ok” 

 A cross-support pattern is an itemset 
X={X1,...,Xk} with low ratio 
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€ 

r(X) =
min[s(X1),...,s(Xk )]
max[s(X1),...,s(Xk )]



Eliminating cross-support patterns 

 Recall the definition of confidence c(X  Y) = σ(X,Y)/σ(X) 
and its anti-monotone property (confidence can only decrease when 

items are moved from left to right-hand side of the rule) 
 Given an itemset X = {X1,...,Xk} the lowest confidence rule that 

can be generated from X is the one with the highest support item 
on the left-hand side 

 The lowest confidence (or all-confidence) can be used to 
measure the potential of the itemset to generate cross-support 
patterns 

  Itemsets with low all-confidence can be filtered out before rule 
generation 
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€ 

allconfidence(X) =
s(X1,...,Xk )

max[s(X1),...,s(Xk )]



Evaluation of Association Patterns 

 We will look at methods that let us rank or prune the 
discovered set of rules 

 Called “Interestingness measures” in data mining community 

 Objective interestingness measures: statistical methods to 
measure how exceptional the pattern is with respect to 
background assumptions 

 Subjective interestingness measures:  
 Using domain knowledge, e.g. filtering out obvious patterns 

or patterns that cannot be acted on 

  In general, requires a “human in the loop” 

 To some extent, an art rather than science: “one man’s 
trash is another man’s treasure” 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Properties of Interestingness Measures 

 Interestingness measures can be divided into two main 
categories based on their use 

 Symmetric measures M  
 satisfy M(AB) = M(BA) 
 used to evaluate itemsets 
 e.g. support 

 Asymmetric measures 
 generally give different values for M(AB) and M(BA) 
 used to evaluate association rules 
 e.g. confidence 
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Contingency table 

 The contingency table for rule X → Y is given by the support of four 
different combinations of observing X,Y, both or neither of them 

 Contingency table contains sufficient information to compute different 
interestingness measures 

  Intuitively: if f11 has high support compared to the other cells, the rule is 
more likely to be interesting than not 

Y not Y 

X f11 f10 f11+f10 

not X  f01 f00 f01+f10 

f11+f01 f10+f00 |T| 

Contingency table for X → Y 

f11: support of X and Y 
f10: support of X and not Y 
f01: support of not X and Y 
f00: support of not X and not Y 
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Properties of Objective Measures: Inversion 
property 

 An evaluation measure is invariant under inversion if its value 
remains the same when 

  flipping the attribute values from 01 and 10, or equivalently, 

 permuting the contingency table, f00 f11 and f01f10  

 This property is not desirable for evaluating asymmetric 
attributes: e.g. items that are not bought by the customer would  
provide as strong associations as items the customer bought 
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Y not Y 
X 60 10 70 

not X 10 20 30 
70 30 100 

Y not Y 
X 20 10 30 

not X 10 60 70 
30 70 100 



Properties of Objective Measures: Null 
Addition Property 

 An evaluation property is invariant under null addition if it does 
not change its value when the value f00 is inreased in the 
contingency table 

 This is useful property in applications such as market-basket 
analysis where the non-absense of items is not the focus of the 
analysis 
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Y not Y 
X 60 10 70 

not X 10 20 30 
70 30 100 

Y not Y 
X 60 10 70 

not X 10 920 930 
70 930 1000 



Properties of Objective Measures: Scaling 
property 

 An evaluation measure is invariant under row/column each 
column and row can be multiplied by a constant without the 
measure to change its value 

 Most evaluation measures do not satisfy this property (odds 
ratio = f11*f00/(f10*f01) is an exception) 

 Below, column ‘not Y’ has been multiplied by 2, row ‘X’ by 3 
and row ‘not X’ by 4   
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Y not Y 
X 6 1 7 

not X 1 2 3 
7 3 10 

Y not Y 
X 18 6 24 

not X 4 16 20 
22 22 44 



Property under Row/Column Scaling 

Male Female 

High 2 3 5 

Low 1 4 5 

3 7 10 

Male Female 

High 4 30 34 

Low 2 40 42 

6 70 76 

Grade-Gender Example (Mosteller, 1968): 

Mosteller:  
 Underlying association should be independent of 
 the relative number of male and female students 
 in the samples 

2x 10x 
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Drawback of Confidence 

 Via the use of contingency 
tables one can illustrate a 
drawback of the confidence 
measure 

 Consider the rule Tea  
Coffee 

  support 15/100 = 15%  

  confidence 15/20 = 75% 

 looks ok? 
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Coffee Coffee 
Tea 15 5 20 
Tea 75 5 80 

90 10 100 



Drawback of Confidence 

 Consider the rule Tea  
Coffee 

  support 15/100 = 15%  

  confidence 15/20 = 75% 

 But the fraction of people 
drinking coffee regardsless of 
whether they drink tea is 90% 

 Thus knowing that the person 
drinks tea actually lowers our 
expectation that the person 
drinks coffee 

 The rule is misleading! 
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Coffee Coffee 
Tea 15 5 20 
Tea 75 5 80 

90 10 100 



Lift and Interest factor 

€ 

Lift =
c(A→ B)
s(B)

 Confidence c(AB) = σ(A,B)/σ(A) 
ignores the support of the itemset 
on the right-hand side of the rule 

 Lift is a measure that aims to fix 
this problem 

 For binary variables lift is equal to 
interest factor 

 Lift/interest factor is  
 symmetric 
 not invariant under inversion 
 not invariant under null addition 
 not invariant under scaling 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 

€ 

I(A,B) =
s(A,B)
s(A)s(B)



Lift and interest factor 

 Interpretation: compare the support of 
itemset {A,B} to the expected support 
under the assumption that A and B are 
statistically independent: 
 s(A,B) ≈ P(A and B) 
 s(A) ≈ P(A), s(B) ≈ P(B) 
 Statistical independence: P(A and B) = 

P(A)xP(B)  
  Use of interest factor: 

 I(A,B) >1 : A and B occur together more 
frequently than expected by chance 

 I(A,B) < 1 : A and B occur together less 
frequently than expected by chance 
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I(A,B) =
s(A,B)
s(A)s(B)



Example: Lift/interest factor 

 Let us compute the interest 
factor for our Tea  Coffee 
rule 

 I(Tea,Coffee) = c(Tea  
Coffee)/s(Coffee) = 0.75/0.9 
= 0.83 

 I < 1 denotes the pattern 
occurs less often than 
expected from independent 
events 

 Conforms to our everyday 
intuition! 
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Coffee Coffee 
Tea 15 5 20 
Tea 75 5 80 

90 10 100 



Drawback of Lift & Interest 

 Lift/Interest loses its sensitivity when support of the itemset is very high 
  in the above contingency table, X and Y look almost statistically 

independent (I(X,Y) = 1 for independent items) 
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Y not Y 
X 10 0 10 

not X 0 90 90 
10 90 100 

Y not Y 
X 90 0 90 

not X 0 10 10 
90 10 100 

€ 

I(X,Y ) =
s(X,Y )
s(X)s(Y )

=
0.1

0.1× 0.1
=10

€ 

I(X,Y ) =
s(X,Y )
s(X)s(Y )

=
0.9

0.9 × 0.9
=1.11



Correlation analysis: ϕ-coefficient 

 For binary variables, correlation can 
be measured using the ϕ-coefficient: 

  In our Tea  Coffee example the ϕ-
coefficient amounts to  

ϕ = (15*5-75*5)/√(90x20x10x80) 
=-0.25 

 ϕ-coefficient is 
  symmetric 

  Invariant under inversion 

 not invariant under null addition 

 not invariant under scaling 
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φ =
σ(XY )σ (X Y ) −σ (XY )σ (X Y )

σ (X)σ (Y )σ (X )σ(Y )

Coffee not 
Coffee 

Tea 15 5 20 
not 
Tea 

75 5 80 

90 10 100 



Property of φ-Coefficient 

 φ-Coefficient considers the co-occurence and co-absense equally 
important: the two contingency tables evaluate to the same value 

 This makes the measure more suitable to symmerical variables  
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Y Y 
X 60 10 70 
X 10 20 30 

70 30 100 

Y not Y 
X 20 10 30 

not X 10 60 70 
30 70 100 

€ 

φ =
60 × 20 −10 ×10
70 × 30 × 70 × 30

= 0.5238

€ 

φ =
20 × 60 −10 ×10
70 × 30 × 70 × 30

= 0.5238



IS Measure 

€ 

IS(A,B) =
s(A,B)
s(A)s(B)

= I(A,B) × s(A,B)

 IS Measure is an alternative 
measure proposed for 
asymmetric binary variables 

 Equivalent to the cosine 
measure used in information 
retrieval  

 IS Measure is 
 symmetric 
 not invariant under inversion 
 invariant under null addition 
 not invariant under scaling 
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€ 

cosine(x,y) = xt yt
t
∑ x y



Testing statistical significance: p-values 

 The interestingness measures discussed 
before are related to the concept of statistical 
hypothesis testing 

 In hypothesis testing, we have two competing 
hypotheses 
 H0: null hypothesis, assuming that the pattern 

seen in the data is created by random variation 
-  e.g. the value  c(XY) is a result of random fluctuation 

 H1: hypothesis that the pattern seen in the data 
represents true phenomenon 

 The probability of observing the pattern if the 
null hypothesis is true is the p-value 
 smaller p-values are more significant  

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Randomization 

 Randomization is a general family of methods for assessing the 
statistical validity of data mining results 

  Is used as an alternative to statistical tests, when the test statistic is 
too difficult to determine 

 Basic idea:  
 Given dataset D, generate a large collection of datasets D1,...,DN where 

the statistical association of interest has been broken 

 Run the data mining algorithm on all of the generated datasets and 

record the distribution of the property of interest 

  If the property we observe in the original data falls into top p% of 

observations, we consider our data mining results significant 
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Simple randomization example 

 Assume we want to assess the statistical significance of the support 
s(XY) and confidence c(XY) of the association rule X Y 

 Y can contain more than one item 

 From the dataset D, generate new datasets D1,...,D1000 by 
generating a random permutation Rj of rows and setting 
  Dj(i,Y) = D(Rj,Y) 

 Compute support and confidence of the rule XY in each version of 
the data: sj(XY), cj(XY) 

 Sort the obtained support and confidence values and record the 
position from top where the values s(XY) and c(XY) fall 

 Take the relative positions (fraction from the top) as estimates  of 
statistical significance (p-value) 
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Swap randomization 

  In the previous example, we could have as well computed 
analytically the probability of observing such support and confidence 
values 

 The power of randomization comes more evident when the baseline 
hypothesis is more complicated 

 Consider situation where we want to keep both the width of each 
transaction (how many items per transaction) and the support 
counts of individual items intact 

  keeping a the size of shopping basket intact 

 as well as the overall demand of items 

 We look briefly at the approach described in Hanhijärvi et al.: “Tell 
me Something I don’t know: Randomization Strategies for Iterative 
Data Mining”. Proc. KDD’09. 
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Swap randomization 

 The row margins (widths of transactions) and column margins 
(support counts of items) can be preserved by swap randomization 

 A randomized version of the dataset is generated via series of 
swaps 

  In each swap,  
  take two rows s,t and two columns x,y such that D(s,x) = D(t,y) = 1 and 

D(s,y) = D(t,x) = 0  

  swap the contents: Dj(s,x) = Dj(t,y) = 0 and Dj(s,y) = Dj(t,x) = 1  
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x y 
s 1 0 

t 0 1 

x y 
s 0 1 

t 1 0 



Algorithm for creating a swap randomized 
dataset 
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Algorithm Swap
Input :  Dataset D, num. of swap attempts K

Output :  Randomized dataset ˆ D 

1:  ˆ D =  D
2 :  for i =   1 to K do

3 :  Pick s,t and x,y such that ˆ D (s,x) =  1, ˆ D (t,y) =  1

4 :  if ˆ D (s,y) =  0 and ˆ D (t,x) =  0 then

5 :  ˆ D =    swapped version of ˆ D 
6 :  end if
7 :  end for

8 :  return ˆ D 



Swap randomization 

 After generating the collection of randomized datasets D1,...,DN, the 
statistical significance of the quantity of interest (e.g. support, 
confidence) is extracted 

 Collect the distribution of the quantity of interest from the randomized 

datasets (e.g. confidence of cj(XY) in all of the datasets) 

   Sort the distribution and check how large fraction of the distribution is 

above the quantity computed from the original dataset  

-  This is taken as the statistical significance of the quantity 

-  below the confidence value c(XY)=0.80 is in place r, so p-value is 

p = r/N 
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1 2 3 ... r r+1 ... N-1 N 
0.87 0.85 0.85 ... 0.80 0.79 ... 0.17 0.15 



Randomization: summary 

 Randomization is powerful an general technique for assessing 
statistical significance 

  It is particularly useful in situations where a traditional statistical 
testing is too difficult, e.g. when it is not evident what is the statistical 
distribution and the correct test in the given setting 

 The drawback in data mining is its high time-complexity: 
 We need to create large numbers of randomized versions of our data 

 May not be possible with very large datasets 
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