Ľ.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

582364 Data mining, 4 cu Lecture 5: Evaluation of Association Patterns

Spring 2010 Lecturer: Juho Rousu Teaching assistant: Taru Itäpelto

Evaluation of Association Patterns

- Association rule algorithms potentially generate large quantities of rules
 - Easily thousands to millions of rules depending on the database and the used support and confidence levels
 - All of the patterns cannot be examined manually
- Problem in using the knowledge contained in the rules
 - All of the rules may not be interesting (e.g. Plastic bag -> Bread)
 - Some rules may be redundant (e.g if {A,B,C} → {D} and {A,B} → {D} have same support & confidence)

Effect of Skewed Support Distribution

- Many real data sets have skewed support distribution
 - Most of items have low to
 - moderate support
 - Small number of items have very high support

Group	G1	G2	G3
Support	<1%	1-90%	> 90%
#items	1735	358	20

Figure 6.29. Support distribution of items in the census data set.

Effect of Skewed Support Distribution

- How to set minsup threshold?
- Too high minsup threshold (e.g. 20%) misses interesting items with low support
 - e.g. customers buying expensive jewelry or other high-profit items
- Too low minsup threshold
 - generates too many rules
 - easily generates spurious crosspatterns relating a low-frequency item to a high-frequency item: e.g. Caviar
 → Bread

Figure 6.29. Support distribution of items in the census data set.

Group	G1	G2	G3
Support	<1%	1-90%	> 90%
#items	1735	358	20

Multiple Minimum Support

- One solution is to apply multiple minimum supports levels
 - MS(i): minimum support for item i
 - e.g.: MS(Milk)=5%, MS(Coke)=3%,

MS(Broccoli)=0.1%, MS(Salmon)=0.5%

- MS({Milk, Broccoli})= min(MS(Milk),MS(Broccoli})=0.1%
- Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent
- Apriori can be modified to accommodate this change (Liu, 1999)
 - The pruning of candidate itemsets needs to be relaxed

Cross-support patterns

- Consider the transaction data on the right
- q → p, r → p and {q,r} → p are all highconfidence patterns that look spurious (caused by p being very frequent)
- Eliminating them by tightening the minsup requirement also drops the rules
 r > g and g > r that "look ok"
 - $r \rightarrow q$ and $q \rightarrow r$ that "look ok" A cross-support pattern is an ite
- A cross-support pattern is an itemset X={X₁,...,X_k} with low ratio

$$r(X) = \frac{\min[s(X_1), ..., s(X_k)]}{\max[s(X_1), ..., s(X_k)]}$$

р	q	r
0	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Eliminating cross-support patterns

Recall the definition of confidence c(X → Y) = σ(X,Y)/σ(X) and its anti-monotone property (confidence can only decrease when items are moved from left to right-hand side of the rule)
 Given an itemset X = {X = X} the lowest confidence rule that

- Given an itemset X = {X₁,...,X_k} the lowest confidence rule that can be generated from X is the one with the highest support item on the left-hand side
- The lowest confidence (or all-confidence) can be used to measure the potential of the itemset to generate cross-support patterns
- Itemsets with low all-confidence can be filtered out before rule generation

$$allconfidence(X) = \frac{s(X_1, \dots, X_k)}{\max[s(X_1), \dots, s(X_k)]}$$

Evaluation of Association Patterns

- We will look at methods that let us rank or prune the discovered set of rules
 - Called "Interestingness measures" in data mining community
- Objective interestingness measures: statistical methods to measure how exceptional the pattern is with respect to background assumptions
- Subjective interestingness measures:
 - Using domain knowledge, e.g. filtering out obvious patterns or patterns that cannot be acted on
 - In general, requires a "human in the loop"
- To some extent, an art rather than science: "one man's trash is another man's treasure"

Properties of Interestingness Measures

- Interestingness measures can be divided into two main categories based on their use
- Symmetric measures M
 - satisfy $M(A \rightarrow B) = M(B \rightarrow A)$
 - used to evaluate itemsets
 - e.g. support
- Asymmetric measures
 - generally give different values for $M(A \rightarrow B)$ and $M(B \rightarrow A)$
 - used to evaluate association rules
 - e.g. confidence

- The contingency table for rule $X \rightarrow Y$ is given by the support of four different combinations of observing X,Y, both or neither of them
- Contingency table contains sufficient information to compute different interestingness measures
- Intuitively: if f₁₁ has high support compared to the other cells, the rule is more likely to be interesting than not

	Y	not Y	
Х	f ₁₁	f ₁₀	f ₁₁ +f ₁₀
not X	f ₀₁	f ₀₀	f ₀₁ +f ₁₀
	f ₁₁ +f ₀₁	f ₁₀ +f ₀₀	T

Contingency table for $X \rightarrow Y$

 f_{11} : support of X and Y f_{10} : support of X and not Y f_{01} : support of not X and Y f_{00} : support of not X and not Y

Properties of Objective Measures: Inversion property

- An evaluation measure is invariant under inversion if its value remains the same when
 - flipping the attribute values from $0 \rightarrow 1$ and $1 \rightarrow 0$, or equivalently,
 - permuting the contingency table, f00 \rightarrow f11 and f01 \rightarrow f10
- This property is not desirable for evaluating asymmetric attributes: e.g. items that are not bought by the customer would provide as strong associations as items the customer bought

	Y	not Y	
Х	60	10	70
not X	10	20	30
	70	30	100

	Y	not Y	
Х	20	10	30
not X	10	60	70
	30	70	100

Properties of Objective Measures: Null Addition Property

- An evaluation property is invariant under null addition if it does not change its value when the value f00 is inreased in the contingency table
- This is useful property in applications such as market-basket analysis where the non-absense of items is not the focus of the analysis

	Y	not Y	
Х	60	10	70
not X	10	20	30
	70	30	100

	Y	not Y	
Х	60	10	70
not X	10	920	930
	70	930	1000

Properties of Objective Measures: Scaling property

- An evaluation measure is invariant under row/column each column and row can be multiplied by a constant without the measure to change its value
- Most evaluation measures do not satisfy this property (odds ratio = f11*f00/(f10*f01) is an exception)
- Below, column 'not Y' has been multiplied by 2, row 'X' by 3 and row 'not X' by 4

	Y	not Y	
Х	6	1	7
not X	1	2	3
	7	3	10

	Y	not Y	
Х	18	6	24
not X	4	16	20
	22	22	44

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female				Male	Female	
High	2	3	5		High	4	30	34
Low	1	4	5		Low	2	40	42
	3	7	10			6	70	76
				-				

2x

10x

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Drawback of Confidence

- Via the use of contingency tables one can illustrate a drawback of the confidence measure
- Consider the rule Tea → Coffee
 - support 15/100 = 15%
 - confidence 15/20 = 75%

Iooks ok?

	Coffee	Coffee	
Теа	15	5	20
Теа	75	5	80
	90	10	100

Drawback of Confidence

■ Consider the rule Tea → Coffee

- support 15/100 = 15%
- confidence 15/20 = 75%
- But the fraction of people drinking coffee regardsless of whether they drink tea is 90%
- Thus knowing that the person drinks tea actually lowers our expectation that the person drinks coffee
- The rule is misleading!

	Coffee	Coffee	
Теа	15	5	20
Теа	75	5	80
	90	10	100

Confidence $c(A \rightarrow B) = \sigma(A,B)/\sigma(A)$ ignores the support of the itemset on the right-hand side of the rule

- Lift is a measure that aims to fix this problem
- For binary variables lift is equal to interest factor
- Lift/interest factor is
 - symmetric
 - not invariant under inversion
 - not invariant under null addition
 - not invariant under scaling

$$Lift = \frac{c(A \rightarrow B)}{s(B)}$$

$$I(A,B) = \frac{s(A,B)}{s(A)s(B)}$$

Interpretation: compare the support of itemset {A,B} to the expected support under the assumption that A and B are statistically independent:

- $s(A,B) \approx P(A \text{ and } B)$
- $s(A) \approx P(A), s(B) \approx P(B)$
- Statistical independence: P(A and B) = P(A)xP(B)

Use of interest factor:

- I(A,B) >1 : A and B occur together more frequently than expected by chance
- I(A,B) < 1 : A and B occur together less frequently than expected by chance

$$I(A,B) = \frac{s(A,B)}{s(A)s(B)}$$

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Example: Lift/interest factor

- Let us compute the interest factor for our Tea → Coffee rule
- I(Tea,Coffee) = c(Tea → Coffee)/s(Coffee) = 0.75/0.9 = 0.83
- I < 1 denotes the pattern occurs less often than expected from independent events
- Conforms to our everyday intuition!

	Coffee	Coffee	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Lift/Interest loses its sensitivity when support of the itemset is very high
 in the above contingency table, X and Y look almost statistically independent (I(X,Y) = 1 for independent items)

$$I(X,Y) = \frac{s(X,Y)}{s(X)s(Y)} = \frac{0.9}{0.9 \times 0.9} = 1.11$$

	Y	not Y		
X	90 0		90	
not X	0	10	10	
	90	10	100	

$$I(X,Y) = \frac{s(X,Y)}{s(X)s(Y)} = \frac{0.1}{0.1 \times 0.1} = 10$$

	Y	not Y	
Х	10	0	10
not X	0	90	90
	10	90	100

Correlation analysis: φ-coefficient

For binary variables, correlation can be measured using the φ-coefficient:
 In our Tea → Coffee example the φ-coefficient amounts to φ = (15*5-75*5)/√(90x20x10x80) =-0.25

$$\phi = \frac{\sigma(XY)\sigma(\overline{X}\overline{Y}) - \sigma(X\overline{Y})\sigma(\overline{X}Y)}{\sqrt{\sigma(X)\sigma(Y)\sigma(\overline{X})\sigma(\overline{Y})}}$$

- φ-coefficient is
 - symmetric
 - Invariant under inversion
 - not invariant under null addition
 - not invariant under scaling

	Coffee	not Coffee	
Теа	15	5	20
not Tea	75	5	80
	90	10	100

Property of ϕ **-Coefficient**

\$\phi\$-Coefficient considers the co-occurence and co-absense equally important: the two contingency tables evaluate to the same value
 This makes the measure more suitable to symmetrical variables

	Y	Y	
Х	60	10	70
Х	10	20	30
	70	30	100

	Y	not Y	
X	20	10	30
not X	10	60	70
	30	70	100

$$\phi = \frac{60 \times 20 - 10 \times 10}{\sqrt{70 \times 30 \times 70 \times 30}}$$

= 0.5238

$$\phi = \frac{20 \times 60 - 10 \times 10}{\sqrt{70 \times 30 \times 70 \times 30}}$$

= 0.5238

IS Measure is an alternative measure proposed for asymmetric binary variables
 Equivalent to the cosine measure used in information retrieval

■IS Measure is

symmetric

not invariant under inversion

- invariant under null addition
- not invariant under scaling

$$IS(A,B) = \frac{s(A,B)}{\sqrt{s(A)s(B)}}$$
$$= \sqrt{I(A,B) \times s(A,B)}$$

$$\cos ine(x,y) = \sum_{t} x_{t} y_{t} / ||x|| ||y||$$

Testing statistical significance: p-values

- The interestingness measures discussed before are related to the concept of statistical hypothesis testing
- In hypothesis testing, we have two competing hypotheses
 - H0: null hypothesis, assuming that the pattern seen in the data is created by random variation
 - e.g. the value $c(X \rightarrow Y)$ is a result of random fluctuation
 - H1: hypothesis that the pattern seen in the data represents true phenomenon
- The probability of observing the pattern if the null hypothesis is true is the p-value smaller p-values are more significant

- Randomization is a general family of methods for assessing the statistical validity of data mining results
- Is used as an alternative to statistical tests, when the test statistic is too difficult to determine
- Basic idea:
 - Given dataset D, generate a large collection of datasets D₁,...,D_N where the statistical association of interest has been broken
 - Run the data mining algorithm on all of the generated datasets and record the distribution of the property of interest
 - If the property we observe in the original data falls into top p% of observations, we consider our data mining results significant

Simple randomization example

- Assume we want to assess the statistical significance of the support
 - s(X \rightarrow Y) and confidence c(X \rightarrow Y) of the association rule X \rightarrow Y
 - Y can contain more than one item
- From the dataset D, generate new datasets D₁,...,D₁₀₀₀ by generating a random permutation R_j of rows and setting D_j(i,Y) = D(R_j,Y)
- Compute support and confidence of the rule X→Y in each version of the data: s_i(X→Y), c_i(X→Y)
- Sort the obtained support and confidence values and record the position from top where the values $s(X \rightarrow Y)$ and $c(X \rightarrow Y)$ fall
- Take the relative positions (fraction from the top) as estimates of statistical significance (p-value)

Swap randomization

- In the previous example, we could have as well computed analytically the probability of observing such support and confidence values
- The power of randomization comes more evident when the baseline hypothesis is more complicated
- Consider situation where we want to keep both the width of each transaction (how many items per transaction) and the support counts of individual items intact
 - keeping a the size of shopping basket intact
 - as well as the overall demand of items
- We look briefly at the approach described in Hanhijärvi et al.: "Tell me Something I don't know: Randomization Strategies for Iterative Data Mining". Proc. KDD'09.

- The row margins (widths of transactions) and column margins (support counts of items) can be preserved by swap randomization
- A randomized version of the dataset is generated via series of swaps
- In each swap,

take two rows s,t and two columns x,y such that D(s,x) = D(t,y) = 1 and D(s,y) = D(t,x) = 0

• swap the contents: $D_j(s,x) = D_j(t,y) = 0$ and $D_j(s,y) = D_j(t,x) = 1$

	X	у
S	0	1
t	1	0

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Algorithm for creating a swap randomized dataset

Algorithm Swap Input : Dataset D, num. of swap attempts K Output : Randomized dataset \hat{D} 1: $\hat{D} = D$ 2: for i = 1 to K do 3: Pick s,t and x,y such that $\hat{D}(s,x) = 1$, $\hat{D}(t,y) = 1$ 4: if $\hat{D}(s,y) = 0$ and $\hat{D}(t,x) = 0$ then 5: \hat{D} = swapped version of \hat{D} 6: end if 7: end for

8: return D

- After generating the collection of randomized datasets D₁,...,D_N, the statistical significance of the quantity of interest (e.g. support, confidence) is extracted
 - Collect the distribution of the quantity of interest from the randomized datasets (e.g. confidence of $c_i(X \rightarrow Y)$ in all of the datasets)
 - Sort the distribution and check how large fraction of the distribution is above the quantity computed from the original dataset
 - This is taken as the statistical significance of the quantity
 - below the confidence value c(X→Y)=0.80 is in place r, so p-value is
 p = r/N

1	2	3	 r	r+1	 N-1	Ν
0.87	0.85	0.85	 0.80	0.79	 0.17	0.15

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Randomization: summary

- Randomization is powerful an general technique for assessing statistical significance
- It is particularly useful in situations where a traditional statistical testing is too difficult, e.g. when it is not evident what is the statistical distribution and the correct test in the given setting
- The drawback in data mining is its high time-complexity:
 - We need to create large numbers of randomized versions of our data
 - May not be possible with very large datasets