
582364 Data mining, 4 cu
Lecture 8:
Graph mining

Spring 2010
Lecturer: Juho Rousu
Teaching assistant: Taru Itäpelto

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent Subgraph Mining

 Extend association rule mining to finding frequent subgraphs
 Useful for Web Mining, computational chemistry, bioinformatics,

spatial data sets, etc

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Graphs in Applications

Application Graphs used to
analyze

Vertices Edges

Web mining Web browsing
patterns

Web pages Hyperlinks
between pages

Computational
chemistry

Structure of
chemical
compounds

Atoms Bonds

Networking Internet routing Server computers Interconnection
between servers

Bioinformatics Gene/protein
interaction

Genes/proteins Regulatory
relations, physical
binding

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Graphs and subgraphs

 A graph G = (V,E) is composed of vertices (nodes) V and a set of
edges E.

  In labeled graphs, vertices, edges or both can have labels
describing them and differentiating them from each other

  Graph G’ =(V’ ,E’) is a subgraph of G = (V,E) if V’ is a subset of V
and E’ is a subset of E

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Induced subgraph

 Graph G’ =(V’ ,E’) is an induced subgraph of G = (V,E) if
 V’ is a subset of V,

 E’ contains all edges in E that have both ends in the set V’

 The number of induced subgraphs is typically significantly less than
the number of general subgraphs

  in induced subgraph E’ is determined by G and V’

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Directed and undirected graphs

 Graph is directed if the edges are oriented (denoted by
arrowhead),
 i.e. edge (u,v) is different object from edge (v,u)

 Graph is undirected if edges have no orientation
 (u,v) and (v,u) denote the same object

 We concentrate in undirected graphs

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Connected and disconnected graphs

 Graph G = (V,E) is connected, if there is a path between
any two nodes in V

 Otherwise the graph is disconnected
 A connected component is a maximal connected

subgraph of a graph
  below, {1,2,3,4}, {5,8,6} and {7} with the connecting edges

 We concentrate in connected graphs

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Support of a subgraph

 Given a collection of graphs G, the support of subgraph g is defined
as the fraction of all graphs that contain g as its subgraph

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Frequent subgraph mining: Definition

 Given a set of graphs G and a support threshold minsup, the goal is
to find all subgraphs g with support s(g) at least minsup

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Brute-force method?

 Generate all connected subgraphs,
count the supports, and prune

 Problem: exponential number of
subgraphs

 Considerably higher number of
subgraphs than itemsets, given the
same items (=node labels)

  An item can appear only once in an

itemset but many times in a subgraph

  Given a fixed set of nodes, edges can be

organized and labeled in many ways to

create a set of different subgraphs

  Also more subgraphs than subsequences

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Using itemset Apriori for subgraph mining

 One approach to mine
subgraphs efficiently is to
transform the graph dataset into
a transaction database

 Each combination of vertex

label – edge label – vertex label

is defined as an item

 The width of the transaction is

the number of edges in the

graph

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Using itemset Apriori for subgraph mining

 Problem: Multiple edges will be
mapped into one item if they
have the same label
combination

  loss of information

 How to convert a frequent
itemset into a frequent
subgraph?

 Which of the edges in the

original graph to choose

 Subgraph structure will be

ambiquous

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Note: Representing Transactions as Graphs

 The other direction, mapping transactions to graphs does not lose
information

 Each transaction is a clique (fully connected subgraph) of items, an
itemset is a subset of the clique

 So frequent subgraph mining can solve frequent itemset mining (in
principle), but not vice versa

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Apriori-like approach for frequent subgraph
mining

 Try to follow the usual Apriori scheme:
1.  Find frequent 1-subgraphs
2.  Repeat until no more frequent subgraphs are found;

1.  Candidate generation

-  Use frequent (k-1)-subgraphs to generate candidate k-subgraph

2.  Candidate pruning

-  Prune candidate subgraphs that contain infrequent

(k-1)-subgraphs

3.  Support counting

-  Count the support of each remaining candidate

4.  Eliminate candidate k-subgraphs that are infrequent

  Details much more complicated, try to touch the main issues in
the following

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Example

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation

 Goal: is to merge a pair of k-1-subgraphs to create a k-
subgraph

 First need to define k:
 Number of vertices: merge two subgraphs that have k-1

vertices

 Number of edges: merge two subgraphs that have k-1 edges

 How to avoid generating the same subgraph many times
 Require that the k-1 subgraphs share a common k-2

subgraph, called a core

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate Generation: difference to itemset
mining

 In Apriori:
 Merging two frequent k-itemsets will produce a candidate (k

+1)-itemset
 In frequent subgraph mining

 Merging two frequent k-subgraphs will in general produce
more than one candidate (k+1)-subgraph

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate generation via vertex growing

 Generate a candidate by merging two subgraphs (G1, G2) that
have a common core (subgraph of k-2 vertices) plus 1 extra vertex
each

 A set of candidates will be generated that differ by one edge (d,e)
and its label: G3 below is the candidate without the edge (d,e)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Adjacency matrix representation

 The vertex-growing approach can be viewed
in terms of combining adjacency matrices of
the subgraphs

  In our adjacency matrix representation
 Rows and columns correspond to nodes

-  non-zero cells along a row (column)

correspond to neighbors

 Cells correspond to edges

-  cell contains edge label (or zero if no edge)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Vertex Growing and adjacency matrices

 Vertex growing takes two adjacency matrices that differ in the last
row, and creates and augmented matrix by adding the last row and
last column of the second matrix to the first matrix.

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Multiplicity of Candidates in vertex growing

 A separate candidate is generated for each possible label of the edge
(d,e)

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate Generation via Edge Growing

 Edge growing approach inserts a new edge to an existing
frequent subgraph

 Number of vertices not necessarily increased
 Criterion for merging is topological equivalence of the core

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Topological equivalence
 All vertices in G1 are topologically equivalent: no matter where we

add an edge, the resulting graph will have the same topology
 G2 contains two pairs of topologically equivalent vertices v1 & v4, v2

& v3: adding an edge to v1 or v4 will give one topology, adding an
edge to v2 or v3 will give another topology

 G3 contains no topologically equivalent vertices: any choice of a
vertex will lead to a different topology

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Multiplicity of Candidates in Edge growing

 Edge growing approach creates multiple candidates of three
different kinds

 Case 1: topologically equivalent vertices (e) can be mapped to a
single vertex or a pair of vertices

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Multiplicity of Candidates in Edge growing

 Case 2: Core contains topologically equivalent vertices
 All symmetric orientations of the core generate potentially a different

candidate

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Multiplicity of Candidates in Edge growing

 Case 3: Core multiplicity
 Depending on how we select the core, we get different candidates

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Candidate pruning

 Given a candidate k-subgraph, we need to check whether all the
k-1-subgraphs are frequent

 Approach:
 Successively remove one edge from the k-subgraph

  If the resulting k-1 subgraph is connected check whether it is frequent

  If not, remove the k-subgraph from the candidates

 Checking whether a k-1-subgraph is contained in the list of frequent
k-1-subgraphs is not easy

 Requires solving graph isomorphism problem, i.e. checking whether two

graphs are topoplogically equivalent

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Hardness of graph matching

 Subgraph isomorphism:
 Determining if a graph G contains another graph G’ as its subgraph is

known as the subgraph isomorphism problem

 One of the classical NP-hard problems, so no polynomial-time algorithm

likely to exist

 Needed in identification of the common core and support counting

 Graph isomorphism:
 Determining if two graphs are topologically equivalent is the graph

isomorphism problem

 Complexity is not known, but no polynomial-time algorithm known

 Needed: in candidate generation step, to determine whether a

candidate has been generated and candidate pruning step, to check

whether its (k-1)-subgraphs are frequent
Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Redundancy in the Adjacency Matrix Representation

•  The same graph can be represented in many ways

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Graph Isomorphism

 Use canonical labeling to handle isomorphism
 Map each graph into an ordered string representation

(known as its code) such that two isomorphic graphs will be

mapped to the same canonical encoding

 Example:

-  Lexicographically largest adjacency matrix

String: 0010001111010110 Canonical: 0111101011001000

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Support counting

 Given a candidate k-subgraph, we need to check its
support in out set of graphs

 Basic approach is to solve the subgraph isomorphism for
each graph in the database

 More efficient is to
  store the graphs that contain k-1 subgraphs in list of graph

IDs (‘TID sets’)

  intersect the lists of graph IDs of the k-1 subgraphs that

generated the current graph, and

 only compute the subgraph isomorphism between the k-

subgraph and the graphs that are contained in the

intersection

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

Graph mining application: Drug Discovery

Graph Classification Approach

Discover Frequent
Sub-graphs 1 Select Discriminating

Features 2

Learn a Classification
Model 4

 Transform Graphs
 in Feature

Representation
3

Graph
Databases

Chemical Compound Datasets

 Predictive Toxicology Challenge (PTC)
 Predicting toxicity (carcinogenicity) of compounds.
 Bio assays on four kinds of rodents
 4 Classification Problems -- Approx 400 chemical compounds.

 DTP AIDS Antiviral Screen (AIDS)
 Predicting anti-HIV activity of compounds.
 Assay to measure protection of human cells against HIV infection.
 3 Classification problems -- Approx 40,000 chemical compounds.

 Anthrax
 Predicting binding ability of compounds with the anthrax toxin.
 Expensive molecular dynamics simulation
 Collaboration with Dr. Frank Lebeda, USAMRIID
 Approx 35,000 chemical compounds

Most Discriminating Subbgraphs

(a) On Toxicology (PTC) Dataset

(b) On AIDS Dataset

(c) On Anthrax Dataset

582671 Graph Mining - Motivation, Algorithms
and Applications (2 cp)

 Special course during the intensive period
 Preliminary dates: 18-27 May 2010
 Teacher: Professor Ehud Gudes, Ben-Gurion

University of the Negev Beer-Sheva, Israel
 Coordinator: Greger Lindén
 Place: Department of Computer Science, Exactum

Building. Gustaf Hällströmin katu 2b
 Enroll at http://ilmo.cs.helsinki.fi/

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar)

