
582364 Data mining, 4 cu 
Lecture 8:  
Graph mining 

Spring 2010 
Lecturer: Juho Rousu 
Teaching assistant: Taru Itäpelto 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Frequent Subgraph Mining 

 Extend association rule mining to finding frequent subgraphs 
 Useful for Web Mining, computational chemistry, bioinformatics, 

spatial data sets, etc 
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Graphs in Applications 

Application Graphs used to 
analyze 

Vertices Edges 

Web mining Web browsing 
patterns 

Web pages Hyperlinks 
between pages 

Computational 
chemistry 

Structure of 
chemical 
compounds 

Atoms Bonds 

Networking Internet routing Server computers Interconnection 
between servers 

Bioinformatics Gene/protein 
interaction 

Genes/proteins Regulatory 
relations, physical 
binding 
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Graphs and subgraphs 

 A graph G = (V,E) is composed of vertices (nodes) V and a set of 
edges E.  

  In labeled graphs, vertices, edges or both can have labels 
describing them and differentiating them from each other 

   Graph G’ =(V’ ,E’) is a subgraph of G = (V,E) if V’ is a subset of V 
and E’ is a subset of E 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Induced subgraph 

 Graph G’ =(V’ ,E’) is an induced subgraph of G = (V,E) if  
 V’ is a subset of V, 

 E’ contains all edges in E that have both ends in the set V’ 

 The number of induced subgraphs is typically significantly less than 
the number of general subgraphs 

  in induced subgraph E’ is determined by G and V’ 
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Directed and undirected graphs 

 Graph is directed if the edges are oriented (denoted by 
arrowhead),  
 i.e. edge (u,v) is different object from edge (v,u) 

 Graph is undirected if edges have no orientation 
 (u,v) and (v,u) denote the same object 

 We concentrate in undirected graphs 
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Connected and disconnected graphs 

 Graph G = (V,E) is connected, if there is a path between 
any two nodes in V 

 Otherwise the graph is disconnected 
 A connected component is a maximal connected 

subgraph of a graph 
  below, {1,2,3,4}, {5,8,6} and {7} with the connecting edges 

 We concentrate in connected graphs 
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Support of a subgraph 

 Given a collection of graphs G, the support of subgraph g is defined 
as the fraction of all graphs that contain g as its subgraph 
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Frequent subgraph mining: Definition 

 Given a set of graphs G and a support threshold minsup, the goal is 
to find all subgraphs g with support s(g) at least minsup 
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Brute-force method? 

 Generate all connected subgraphs, 
count the supports, and prune 

 Problem: exponential number of 
subgraphs 

 Considerably higher number of 
subgraphs than itemsets, given the 
same items (=node labels) 

  An item can appear only once in an 

itemset but many times in a subgraph 

  Given a fixed set of nodes, edges can be 

organized and labeled in many ways to 

create a set of different subgraphs 

  Also more subgraphs than subsequences 
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Using itemset Apriori for subgraph mining 

 One approach to mine 
subgraphs efficiently is to 
transform the graph dataset into 
a transaction database 

 Each combination of vertex 

label – edge label – vertex label 

is defined as an item  

 The width of the transaction is 

the number of edges in the 

graph 
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Using itemset Apriori for subgraph mining 

 Problem: Multiple edges will be 
mapped into one item if they 
have the same label 
combination 

  loss of information 

 How to convert a frequent 
itemset into a frequent 
subgraph? 

 Which of the edges in the 

original graph to choose 

 Subgraph structure will be 

ambiquous 
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Note: Representing Transactions as Graphs 

 The other direction, mapping transactions to graphs does not lose 
information 

 Each transaction is a clique (fully connected subgraph) of items, an 
itemset is a subset of the clique 

 So frequent subgraph mining can solve frequent itemset mining (in 
principle), but not vice versa  
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Apriori-like approach for frequent subgraph 
mining 

 Try to follow the usual Apriori scheme: 
1.  Find frequent 1-subgraphs 
2.  Repeat until no more frequent subgraphs are found; 

1.  Candidate generation 

-   Use frequent (k-1)-subgraphs to generate candidate k-subgraph 

2.  Candidate pruning 

-   Prune candidate subgraphs that contain infrequent  

(k-1)-subgraphs  

3.  Support counting 

-   Count the support of each remaining candidate 

4.  Eliminate candidate k-subgraphs that are infrequent 

  Details much more complicated, try to touch the main issues in 
the following 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Example 
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Candidate generation 

 Goal: is to merge  a pair of k-1-subgraphs to create a k-
subgraph 

 First need to define k: 
 Number of vertices: merge two subgraphs that have k-1 

vertices 

 Number of edges: merge two subgraphs that have k-1 edges 

 How to avoid generating the same subgraph many times 
 Require that the k-1 subgraphs share a common k-2 

subgraph, called a core 
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Candidate Generation: difference to itemset 
mining 

 In Apriori: 
 Merging two frequent k-itemsets will produce a candidate (k

+1)-itemset 
 In frequent subgraph mining 

 Merging two frequent k-subgraphs will in general produce 
more than one candidate (k+1)-subgraph 
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Candidate generation via vertex growing 

 Generate a candidate  by merging two subgraphs (G1, G2) that 
have a common core (subgraph of k-2 vertices) plus 1 extra vertex 
each 

 A set of candidates will be generated that differ by one edge (d,e) 
and its label: G3 below is the candidate without the edge (d,e) 
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Adjacency matrix representation 

 The vertex-growing approach can be viewed 
in terms of combining adjacency matrices of 
the subgraphs 

  In our adjacency matrix representation 
 Rows and columns correspond to nodes 

-  non-zero cells along a row (column) 

correspond to neighbors  

 Cells correspond to edges 

-  cell contains edge label (or zero if no edge) 
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Vertex Growing and adjacency matrices 

 Vertex growing takes two adjacency matrices that differ in the last 
row, and creates and augmented matrix by adding the last row and 
last column of the second matrix to the first matrix. 
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Multiplicity of Candidates in vertex growing 

 A separate candidate is generated for each possible label of the edge 
(d,e) 
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Candidate Generation via Edge Growing 

 Edge growing approach inserts a new edge to an existing 
frequent subgraph 

 Number of vertices not necessarily increased 
 Criterion for merging is topological equivalence of the core 
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Topological equivalence 
 All vertices in G1 are topologically equivalent: no matter where we 

add an edge, the resulting graph will have the same topology 
 G2 contains two pairs of topologically equivalent vertices v1 & v4, v2 

& v3: adding an edge to v1 or v4 will give one topology, adding an 
edge to v2 or v3 will give another topology 

 G3 contains no topologically equivalent vertices: any choice of a 
vertex will lead to a different topology  
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Multiplicity of Candidates in  Edge growing 

 Edge growing approach creates multiple candidates of three 
different kinds 

 Case 1: topologically equivalent vertices (e) can be mapped to a 
single vertex or a pair of vertices 
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Multiplicity of Candidates in Edge growing 

 Case 2: Core contains topologically equivalent vertices 
 All symmetric orientations of the core generate potentially a different 

candidate 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



Multiplicity of Candidates in Edge growing 

 Case 3: Core multiplicity 
 Depending on how we select the core, we get different candidates 
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Candidate pruning 

 Given a candidate k-subgraph, we need to check whether all the 
k-1-subgraphs are frequent 

 Approach: 
 Successively remove one edge from the k-subgraph 

  If the resulting k-1 subgraph is connected check whether it is frequent 

  If  not, remove the k-subgraph from the candidates 

 Checking whether a k-1-subgraph is contained in the list of frequent 
k-1-subgraphs is not easy 

 Requires solving graph isomorphism problem, i.e. checking whether two 

graphs are topoplogically equivalent 
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Hardness of graph matching 

 Subgraph isomorphism: 
 Determining if a graph G contains another graph G’ as its subgraph is 

known as the subgraph isomorphism problem 

 One of the classical NP-hard problems, so no polynomial-time algorithm 

likely to exist 

 Needed in identification of the common core and support counting 

 Graph isomorphism: 
 Determining if two graphs are topologically equivalent is the graph 

isomorphism problem 

 Complexity is not known, but no polynomial-time algorithm known 

 Needed: in candidate generation step, to determine whether a 

candidate has been generated and candidate pruning step, to check 

whether its  (k-1)-subgraphs are frequent 
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Redundancy in the Adjacency Matrix Representation 

•  The same graph can be represented in many ways 
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Graph Isomorphism 

 Use canonical labeling to handle isomorphism 
 Map each graph into an ordered string representation 

(known as its code) such that two isomorphic graphs will be 

mapped to the same canonical encoding 

 Example:  

-   Lexicographically largest adjacency matrix 

String: 0010001111010110 Canonical: 0111101011001000 
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Support counting 

 Given a candidate k-subgraph, we need to check its 
support in out set of graphs 

 Basic approach is to solve the subgraph isomorphism for 
each graph in the database 

 More efficient is to  
  store the graphs that contain k-1 subgraphs in list of graph 

IDs (‘TID sets’) 

  intersect the lists of graph IDs of the k-1 subgraphs that 

generated the current graph, and  

 only compute the subgraph isomorphism between the k-

subgraph and the graphs that are contained in the 

intersection 
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Graph mining application: Drug Discovery 



Graph Classification Approach 

Discover Frequent 
Sub-graphs 1 Select Discriminating 

Features 2 

Learn a Classification 
Model 4 

   Transform Graphs 
      in Feature  

Representation 
3 

Graph  
Databases 



Chemical Compound Datasets 

 Predictive Toxicology Challenge (PTC) 
 Predicting toxicity (carcinogenicity) of compounds. 
 Bio assays on four kinds of rodents 
 4 Classification Problems -- Approx 400 chemical compounds. 

 DTP AIDS Antiviral Screen (AIDS) 
 Predicting anti-HIV activity of compounds. 
 Assay to measure protection of human cells against HIV infection. 
 3 Classification problems -- Approx 40,000 chemical compounds. 

 Anthrax 
 Predicting binding ability of compounds with the anthrax toxin. 
 Expensive molecular dynamics simulation 
 Collaboration with Dr. Frank Lebeda, USAMRIID 
 Approx 35,000 chemical compounds 



Most Discriminating  Subbgraphs 

(a) On Toxicology (PTC) Dataset 

(b) On AIDS Dataset 

(c) On Anthrax Dataset 



582671 Graph Mining - Motivation, Algorithms 
and Applications (2 cp) 

 Special course during the intensive period 
 Preliminary dates: 18-27 May 2010 
 Teacher: Professor Ehud Gudes, Ben-Gurion 

University of the Negev Beer-Sheva, Israel 
 Coordinator: Greger Lindén 
 Place: Department of Computer Science, Exactum 

Building. Gustaf Hällströmin katu 2b 
 Enroll at http://ilmo.cs.helsinki.fi/ 
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