Introduction to Bioinformatics (autumn 2005)

Excercise 4

Group	1	
Riikka Kaven	Tuesday 8.11 at 12.15–14.00	BK106

1. (Problem 6.18 in J & P) What is the optimal global alignment for MOAT and BOAST? Show all optimal alignments and the corresponding paths under the scoring matrix below and indel penalty -1.

	Α	В	M	Ο	\mathbf{S}	${ m T}$
	1	-1	-1	-2	-2	-3
В		1	-1	-1	-2	-2
M			2	-1	-1	-2
Ο				1	-1	-1
\mathbf{S}					1	-1
\mathbf{T}						2

- 2. (Problem 6.20) Consider the sequences v = TACGGGTAT and w = GGACGTACG. Assume that the match premium is +1 and that the mismatch and indel penalties are -1.
 - Fill out the dynamic programming table for a local alignment between v and w. Draw arrows in the cells to store the backtrack information. What is the score of the optimal local alignment and what alignment achieves this score.
- 3. (Problem 6.22) Define an overlap alignment between two sequences $v = v_1 \cdots v_m$ and $w = w_1 \cdots w_n$ to be an alignment between a suffix of v and a prefix of w. For example, if v = TATATA and w = AAATTT, then a (not necessary optimal) overlap alignment between v and w is

ATA AAA

Optimal overlap alignment is an alignment that maximizes the global alignment score between $v_i \cdots v_m$ and $w_1 \cdots w_j$, where the maximum is taken over all suffixes $v_i \cdots v_n$ of v and all prefixes $w_1 \cdots w_j$ of w.

Give an algorithm which computes the optimal overlap alignment, and runs in time O(mn).

- 4. (Problem 7.5) Develop a linear-space version of the local alignment algorithm.
- 5. The Exact Gene Finding problem is defined as follows. Given a DNA sequence D and a protein sequence P, find a subsequence (gene) S of D with minimum number of blocks (exons) such that S codes for P. A block in S is its maximal substring that also is a substring of D. DNA sequence S codes for protein sequence P if

 (s_1,s_2,s_3) is codon producing amino acid p_1 , (s_4,s_5,s_6) is codon producing amino acid p_2 , and so on. For example, given $D={\tt GATAAAAGAGTGGTT}$ and $P={\tt LFHQ}$, the solution is $S={\tt GATAAAGTGGTT}$ with two blocks ${\tt GATAAA}$ and ${\tt GTGGTT}$: ${\tt GAT}$ codes for Leucine L, AAA codes for Phenylalanine F, ${\tt GTG}$ codes for Histidine H, and ${\tt GTT}$ codes for Glutamine Q.

Give a dynamic programming algorithm to solve the Exact Gene Finding problem. Simulate your algorithm on the above example.

Hint: Find a recurrence for values b_{ij} that give the minimum number of blocks to align $d_1 \cdots d_i$ with $p_1 \cdots p_j$.