RLE COMPRESSION

RLE is a simple compression algorithm used to compress sequences containing subsequent repetitions of the same character. By compressing a particular sequence, we obtain its code. The idea is to replace repetitions of a given character (like aaaaa) with a counter saying how many repetitions there are. Namely, we represent it by a triple containing a repetition mark, the repeating character and an integer representing the number of repetitions. For example, aaaaa can be encoded as \#a5 (where \# represents the repetition mark).

We need to somehow represent the alphabet, the repetition mark, and the counter. Let the alphabet consist of n characters represented by integers from the set $\Sigma=\{0,1, \ldots, n-1\}$. The code of a sequence of characters from \sum is also a sequence of characters from Σ. At any moment, the repetition mark is represented by a character from \sum, denoted by e. Initially e is 0 , but it may change during the coding.
The code is interpreted as follows:

- any character a in the code, except the repetition mark, represents itself,
- if the repetition mark e occurs in the code, then the two following characters have special meaning:
o if e is followed by $e k$, then it represents $k+1$ repetitions of e,
o otherwise, if e is followed by $b 0$ (where $b \neq e$), then b will be the repetition mark from that point on,
$0 \quad$ otherwise, if e is followed by $b k$ (where $b \neq e$ and $k>0$), then it represents $k+3$ repetitions of b.

Using the above scheme, we can encode any sequence of characters from \sum. For instance, for $n=4$, the sequence 1002222223333303020000 can be encoded as 10010230320100302101 . First character of the code 1 means simply 1 . Next 001 encodes 00 . Then, 023 represents 222222, 032 represents 33333 , and 010 switches the repetition mark to 1 . Then 0302 represents itself and finally 101 encodes 0000 .

A sequence may be encoded in many ways and code length may vary. Given an already encoded sequence, your task is to find a code with the least number of characters.

Write a program that:

- Reads the size of the alphabet and the code of a sequence.
- Finds the shortest code for that sequence.
- Writes the result.

INPUT

The input is read from a text file named rle.in. The first line contains one integer n ($2 \leq n \leq 100000$): the size of the alphabet. The second line contains one integer m ($1 \leq m \leq 2000000$): the length of the code. The last line contains m integers from the set $\{0,1, \ldots, n-1\}$ separated by single spaces, representing the code of a sequence.

OUTPUT

The output is written into a text file named rle.out. The first line should contain one integer m^{\prime} : the least number of characters in a code representing the given sequence. The last line of the output should contain m^{\prime} integers from the set $\{0,1, \ldots, n-1\}$ separated by single spaces: the code of the sequence. If there exist several shortest sequences, your program should output any one of them.

EXAMPLES

For the input file rle.in:

4

20
10010230320100302101
the correct output file rle.out is as follows:
19
1010000122313203002101
And for the input file rle.in:
14
15
$\begin{array}{llllllllllllll}10 & 10 & 10 & 0 & 10 & 0 & 10 & 10 & 13 & 10 & 10 & 13 & 10 & 10 \\ 13\end{array}$
the correct output file rle.out is as follows:

9

$\begin{array}{lllllllll}0 & 10 & 13 & 0 & 10 & 13 & 0 & 10 & 10\end{array}$

