Design Document

Group: Canvas

Software Engineering Project
Department of Computer Science
University of Helsinki

02/09/2005

Project Members:
Duku-Kaakyire Michael,
Karppinen Tony Henrik,

Lamsal Pragya,

Viliméki Niko Petteri

Instructor:
Raine Kauppinen

Customer:
Inkeri Verkamo

Supervisor:
Juha Taina

Table of Contents

1. INErOAUCTION. ceeeeiiciirrnriecnissantecssssnneecssssssscsssnssssssssssssssssssnssssssssssssessssssassssssssassssssssassassse 3
2. Purpose of this dOCUMENT.......cccccvvveriieiiirssnriicssisssnnriicssssssnssasssssssssssssssssssssssssssssssssssssss 3
3. Architectural deSi@M......cciueiervericssnrrenssnnessnicssnncssssncssssesssssesssssssssssessssssssssssssasssssssssssnns 3
4. ClaSS deSISM.cuuuuuueerrreesssssssnnrrccsssssssrsenssns 5
4.1 Model, view and controller CLASSES...........ccoeviiureiieeeieeeiiiieee e 6
4.2 Element related CIaSSES.......eiivuviiieiiiieiie ettt et 8
4.3 OthET ClASSES...eeieuiiiiee ettt eet e e e e ettt e e e et e e e eeeaa e e e eeeaaaeeeeennaaaeean 10
5. USEr INEEITACE...cueeiiieiirirrnnetiiccisssssnnntiecsssssssnssssesssssssssssesssssssssssssssssssssssasssssssssssssassssssss 12
ST IMEIUDALttt e e e e et e e e e e et e e e e e e e e aaaaaaaaaan 12
5.2 TOOIDAT......uiiiiiiiei e et e et e et e e et ae e ebee e enbeeeenraeeenraeas 13
S.3 ELEMENE LISt et e e e e e a e e e eaees 13
5.4, DIAZIAM VIBW.....eeiutiiiiiieeiieeiie ettt et sit ettt e e ite e st e s bt eenbeesbeeenbeeeateeseeenneeesseeenneeens 13
6. Use cases and object cOllaboration...........coeeeicecceiccsssnnicissnrecsssnnncsssnnsscssssssssssnssessens 14
6.1 BaSIC fUNCHIONS.eiiiiiiiee ettt ettt e e et e e e e e e eaate e e e e eeaaaeeeeeeenes 14
6.2 DIagram AIaAWING..........cevieerieeriieeiieeteeeteeeteesteeteeeteeebeesseessseesseeenseessaesnseessseens 15
6.3 E1eMENt €AItING.....cceiiuiiieeiiiieeeciiee et e et e e ere e e et ee e e taeeeeesbeeeeesaaeeesnnaeens 21
T MAINEEIIANICE. «..cceererrrrrrceennnnsansessesssesteseesesssssssssssssssssesssnsans 22
7.1 Extendibility of the application............c.coovvieriiiiiiieiiiieie e 22

1. Introduction

This is a project for design and development of a diagram drawing software on the course
named Software Engineering Project at the department of Computer Science of the
University of Helsinki.

The aim of this project is to develop a functional application that can realize the core
requirements of the customer, while leaving a room for extension of the application in the

future by other developers.

The homepage of this project group is http://www.cs.helsinki.fi/group/canvas/.

2. Purpose of this document

This document will describe the architecture of the application with such detail that one
can implement the application by resting only to this document. This document is written
based on the Requirements document. Class structure and object collaboration of the
application are derived from user requirements, system requirements and use cases listed
in the Requirements document. The requirements document can be found from the
project group's homepage.

This document will serve also as an implementation document and it will be updated
during the implementation phase. This version of the document has been has been
updated at the end of the implementation phase and contains the most current description
of the application.

The updated version and the frozen design document can be both found from the project
group's homepage.

3. Architectural design

Canvasl
Tral1sformation| Data displayl Execution/behavior

Picture 1: The three subsystems of the application

System is divided into three subsystems. The subsystems are Transformation,
Execution/behavior and Data display as shown in picture 1. In this project we will mostly
be concentrating on the Data display subsystem, and just provide an extendable interface
for future development of the Transformation and Execution/behavior subsystems.

The Transformation subsystem contains all the export functionality. The
Execution/behavior subsystem is used for processing rules associated with diagrams or
elements.

Tr'ansforma'tionl Execution/behavior

Export % Rules processing

User interface Controller state | | View state

=

Model state

Picture 2: The Data display subsystem

The Data display subsystem is divided into modules that are User interface, Controller
state, View state and Model state as shown in picture 2. The User interface module
handles all user interaction and takes care of the graphical user interface. The Controller
state module handles all actions requested by the User interface module.

The View state module draws diagrams according to the diagram data and update
requests from the Model state module. The Model state module stores the actual diagram
data and provides an interface for reading and editing diagram information.

Interfaces to the Transformation and Execution/behavior subsystems are in the Controller
state module.

4. Class design

Picture 3 shows the class diagram of the Data display subsystem. Detailed description
about attributes and methods are provided for the core classes.

Observer Observable Properties Coordinates

A lﬁ A imlenents |
1
implements hildren

i bel t h
1 Diagram Oleﬂngl?: Element

PropertiesDialog

DiagramView

CompositeElement

DiagramController

Rectangle Line Circle Reference Text
File
CanvasMenu |- -
1implements
1
Clipboard = — — —2>Observer
1
Canvas ToolbarView |- -1
CanvasHelp
ElementRepository ToolbarController

Picture 3: Class diagram of the Data display subsystem

Model-view-controller (MVC) architecture is used with implementation of graphical user
interface in Canvas. Table 1 shows how the classes are divided.

Model View Controller (inside the view)
Canvas Canvas Canvas
Diagram DiagramView DiagramController
CanvasMenu CanvasMenu
ToolbarView ToolbarController

Table 1: Model-view-controller architecture

The view implements the visual display of the model and there can be several different
views of the same model: E.g. DiagramView in Canvas. Anytime the model is changed,
each view of the model is notified so that it can change the visual representation of the
model on the screen. All the view classes implement the Observer interface.

The model is the information that the application is manipulating. The model notifies
each view of the changes in the model data. All the model classes extend the Observable
class.

The controller receives all the input events from the user and translates them into possible
changes on the model. The controller communicates with the view to determine what
object is being manipulated. As there is no need for several different controllers for one
single view and the controller and the view are so tightly intertwined controllers are inner
classes of the views in Canvas.

All is put together by creating the model first, then the view and a reference is put to the

model as a member variable of the view. Controllers are created inside the view.

4.1 Model, view and controller classes

This section describes MVC classes Canvas, Diagram, DiagramController,
DiagramView, CanvasMenu, ToolbarController and ToolbarView.

Diagram

Diagram class holds the diagram data and provides accessor methods for modifying the
diagram. It holds references to all elements in a diagram. Table 2 describes some of the
methods of the Diagram class.

Observers will be notified after every modification to the diagram.

Method Description

paintElements() Paints all the elements in the diagram. Graphics2D object
must be passed as a parameter.

addElement() Adds an element to the diagram. The element must be given as
an parameter.

removeElement() Removes the given element from the diagram.

getElements() Returns an Iterator object of the array of elements.

performSelection() Selects/deselects elements within the given mouse position.

clearAll() Clears all the element selections.

moveElement() Moves the currently selected elements to the given mouse
position.

updateElementEndLocation() | Updates the animation of the element being drawn.

Method Description

groupElements() Groups the selected elements.
ungroupElement() Ungroups the selected element.
performResizing() Resize the currently selected element at the given point.

Table 2: Diagram class

DiagramController

This class handles all the events associated with a diagram in the graphical user interface.
This is an inner class of DiagramView and it implements interfaces MouseListener,
MouseMotionListener and KeyListener. Table 3 shows the list of methods implemented.

Method Description
mousePressed() Handles motion and mouse motion events.
mouseDragged() Handles dragging events of the mouse.
mouseReleased() Handles events of mouse button release.
mouseClicked() Handles counting mouse clicks.
keyPressed() Listens for key presses.
keyRelease() Listens for key releases.
getElement() Gets the currently selected element from the toolbar.

Table 3: DiagramController class

DiagramView

DiagramView class represents a drawing area in an internal frame. It handles repainting
diagrams as necessary via Observer interface. See table 4 for description of methods.

Method Description
DiagramView() Constructor takes a Diagram object as a parameter.
getFrame() Returns the internal frame that this diagram is contained in.
paintComponent() Repaints this diagram view.

Table 4: DiagramView class

Canvas

This is the application level class that is instantiated when the application starts. It
handles initialization of other classes needed to run the program and all the required GUI
classes. It is also a controller that handles the application level functions. This is the main
controller of that program that is connected to all other classes. Methods of this class are
described in table 5.

Method Description
Canvas() Constructor initializes the application's main window.
createAndShowGUI() Create the GUI and show it. For thread safety, this method
should be invoked from the event-dispatching thread.
main() Application's start point. Schedules a job for the event-
dispatching thread.

Table 5: Canvas class

ToolbarView

This is the class that handles the layout of the toolbar. Toolbar contains all the tools
needed to draw the diagrams. This class is instantiated with the generic drawing tools
when the application starts.

Method Description

ToolbarView() Private constructor. Get an instance of this class by calling
getlnstance() method.

getlnstance() Returns an instance of this class.
getSelectedTool() Returns an enumeration value of the currently selected tool.
getSelectedElement() Returns an instance of the currently selected element.
getSelectedColor() Returns an instance of the currently selected color.
addElement() Adds an element to the element repository.

Table 6: ToolbarView class

ToolbarController

Toolbar controller handles the events related to the ToolbarView class. It is called when
something is done with the toolbar. For example when an element selection is made.

4.2 Element related classes

Element

Element class is an abstract class that provides an interface for build in elements and for
composing of elements. An element can be a single element or a composite of several
composite elements and single elements. Table 7 shows the methods that all the
subclasses of Element should implement.

Method Description

paintElement() Paints the element.

setCoordinates() Sets the current position of an element.

getCoordinates() Returns the element's coordinates.

move() Moves the element to a new position.

resize() Resize element with the given values.

contains() Checks if the element contains the given point.

selectElementAt() Checks if the element is contained inside the given area.

updateEndLocation() Updates the animation of the element being drawn.

addElement() This method is overloaded only in CompositeElement.
Element can't be added to other element than composite
element.

removeElement() This method is overloaded only in CompositeElement.
Element can't be removed from other element than composite
element.

getChildren() Returns an empty Iterator for other elements than composite
element.

Table 7: Element class
CompositeElement

CompositeElement class is a composite of single elements or composite elements. The
CompositeElement class contains information only about its child elements. When an
operation is called for a composite element, it will call all the children with the given

operation.

This class is the only class that implements methods addElement(), removeElement() and
getChildren(). Calling these methods from any other subclass of Element will result in

runtime exception.

Circle, Rectangle, Line

These classes implement the basic shapes, which are a line, a circle and a rectangle. Line,
Circle and Rectangle classes are subclasses of Element. They implement the actual
functionality of each basic shape.

Text

Text class represents an element containing text. Text has special properties like font and
font size. Text can also be divided over multiple lines.

ElementRepository

Holds the elements used in the program. Element repository is shown in the toolbar.
Composite elements can be added to and removed from the element repository. This class
extends DefaultListModel class which implements a simple vector data structure that is
used to store all the elements.

Properties

This is the class that defines a common properties interface for all the elements.

Coordinates

This class stores the element's coordinates as x, y, width and height values.

4.3 Other classes
CanvasHelp

This class is responsible for showing the built-in help system for the user. The help
system basically includes the same information as the manual for the application does and
this is opened in new window.

Instance is created by the Canvas class when the Help command is selected from menu.
The CanvasMenu class calls the methods of Help.

Clipboard

Clipboard is used for copy/paste actions of the application. Clipboard can contain both
graphical data (element(s)) and text.

Instance is created by the Canvas class while the application is starting, methods are
called by the Canvas class.

10

File

File class is responsible for the file actions (save, save as, load) of the application.
Instance of a File class is created when the save or load command is selected.

PropertiesDialog

Shows the element's properties in a modal dialog.

11

5. User interface

An example of the application's graphical user interface is shown in picture 4.

] InternalFrameDema
File Edit View Tools Help

Toolbar - Diagram #1 0 A B ORI PO D00 H“ m X
(Tab1 | Tab2 | Tab3 [Tab4 |
X+ |T) :
Basic elements v Properties
NS IOIO)
| | | hildren
m“;:’: Diagram G—-——L—'—:dn" 1o lha: Elememt
lhramView ﬁ
amController
-l
" i : Shape Reference Text Conl
i g File

IE Diagram list I

I open diagrams

= Ij Diagram #1 FrameController FrameView
nandHistory ——
Exceptions [—— TreeController TreeView
Menu [—
— ApplicationController MenubarController Menubarv)

Clipboard

Picture 4: The graphical user interface

The application has a main window on which combines all other elements. The main
window consists of five main elements - the fixed elements are the menubar on the top of
the window and the Status bar on the bottom of the screen. Floating elements are Toolbar,
and the open Diagram views. It is possible to show and hide the Toolbar from the
menubar. Open diagram views can be resized, minimized and maximized. It is possible to
resize also the Toolbar.

5.1 Menubar

The Menubar is accessible and visible all the time and on the top level it contains the
following items: File, Edit, View, Element, Tools and Help. File includes the basic file
operations such as New, Open, Save and Quit.

12

Edit includes the commands to copy, cut and paste the elements in diagrams and from
View it is possible to hide some of the UI elements.

Element provides the tools for combining the elements.

5.2 Toolbar

The Toolbar consists of Select button, Move button, Text button, list of elements and a
color picker. There are also tools for editing the element list. The user can add new
elements, rename elements and remove elements from the element list.

Select is the default tool and will be active when the program is started. With select it is
possible to select one or more elements in the diagram as well as move them. Moving the
selected elements can be done with the Move button. Text can be added to a diagram with
the Text button.

5.3 Element list

The element list contains all elements that can be used to draw diagrams. The user can
add new composite elements to the element list, and maintain the element list by
renaming and removing elements.

The element list is saved to a file so the user can use the same elements again later.
Element list can be returned to default values by removing the file
ElementRepository.dat.

5.4. Diagram view

The Diagram view is the graphical representation of the diagram. One diagram view
window represents a physical document, and the diagram view window is divided on
several tabs, first tab represents the root diagram of the document and the other included
diagrams are divided on the following tabs. Tabs are created and removed automatically
as new diagrams are created and destroyed.

This is the view where all the drawing takes place. Some of the tools on the Toolbar

(move, text, element) are used only on this this view, while some (colour, line width) can
be used together with the diagram list as well.

13

6. Use cases and object collaboration

This paragraph will list use cases and describe object collaboration needed in each use
case. There is also an example and error handling descriptions for every use case.

6.1 Basic functions
Opening a diagram from a file

Use case: The user selects the correct diagram file from a file listing or types in the
correct path and filename. The program checks if the file is in the valid diagram format
and loads the diagram to the program memory for viewing and processing. The program
would also check through any syntactic rules defined to the diagram.

Example: The user opens a diagram from the file MyDiagram.cnv for editing.

Object collaboration: The class CanvasMenu gets an event from menubar for opening an
existing file. The application controller calls an openDiagram method of File class. The
openDiagram method takes the name of the file as an input parameter and opens that file
for use by the user.

Saving and exporting to a file

Use case: The user chooses to either export or save the current diagram. When saving a
file, the user must give a filename for storing the diagram data. If the diagram is opened
from an existing file, it can be stored over the old file. Exporting can be done in
encapsulated postscript format. When exporting a diagram, the user must give a filename.
The user must be notified before writing over existing files. The program also handles
writing of the actual diagram data to the file.

Example: The user saves the current open diagram to the file MyDiagram.cnv.
Object collaboration: The CanvasMenu class gets an event from the system. Then it
creates an instance of File class, and activates File's saveDiagram -method with a

reference to the diagram to be saved. SaveDiagram -method serializes Diagram -instance
including all the diagram's elements and saves the serialized data to the user assigned file.

Closing a diagram

Use case: The user chooses to close the diagram. Diagram is closed by closing
all open views of the diagram. When closing the last view of the diagram, user must be

14

notified for unsaved changes. All open diagrams are closed when the application is
closed.

Example: The user closes the active diagram.

Object collaboration: The CanvasMenu class gets an event from the system and checks if
the diagram has been saved. If it is saved, it closes the diagram, otherwise it asks the user
whether to save the diagram or not by using a message box. If the user clicks yes, it calls
the saveDiagram method with a reference to the diagram to be saved. If the user clicks no,
it simply removes diagram from memory and discards any modification.

6.2 Diagram drawing

Inserting a new element into a diagram

Use case: The user has to select the correct element to be inserted and then draw the
element into the diagram. Drawing technique depends on the element. E.g. a rectangle is
drawn by clicking the two corners of the rectangle. The program checks if the inserted
element meets the syntactic requirements. If the element is not syntactically valid, it
cannot be inserted into the diagram and the user would be notified.

Example: The user selects a circle element. He draws it by first selecting the center point
and then specifying the radius.

Object collaboration: ToolbarController gets an event from the system when a user clicks
on a tool in the toolbar in order to insert into the diagram. ToolbarController stores the
information about which tool or element is currently selected. When the user draws the
element DiagramController gets the event. The DiagramController creates an instance of
the element and inserts the element into the diagram. The Diagram class notifies
observers.

Connecting elements together
Use case: The user selects a connection line element and draws the connection by
selecting elements to be connected together The program makes syntactic checks for the

connection line and the connected elements.

Example: The user draws two rectangles and connects them with a straight line.

15

ToolbarController ApplicationController

! |
ol ik

DiagramController
—ag-lreference todiagram) _:. Diagram DiagramView
betToolbarController T
lf———————————

\ |
T

|
loadTool |

repaint

TreeController TreeView

R T I
[
[
|
[
[
[

]

Picture 5: Object collaboration diagram

Object collaboration: DiagramController gets the event and asks ToolBar for currently
selected tool. Diagram is updated using the connection elements and the connecting
element. The Diagram class notifies observers.

Editing an element

Use case: The user selects an element from the diagram to be edited. The selected
element can be modified by resizing, moving or changing the properties of the element.
The program retains connections between elements.

Example: The user writes a few lines of text into a rectangle.

Object collaboration: DiagramController gets an event from the graphical user interface.
DiagramController has to process the event and decide what action the user is currently
doing. Different actions that can be committed by the user are for example moving and
resizing of elements. DiagramController updates Diagram class accordingly. The
Diagram class notifies observers.

Copying, cutting and pasting elements

Use case: The user can select one or more elements, and copy or cut them to the
clipboard. Elements in clipboard can be pasted to another location on the diagram. The

16

program checks if the operation is valid from syntactic properties of the affected

elements.

Example: The user copies a rectangle to the clipboard and pastes several copies of it to

the diagram.

(1) Copying/Cutting

DiagramController

1
mminne

Lt (element data)

Diagram

DiagramView

|
e

getFlementData

ApplicationController

Clipboard

I
-

Y

aetTreeController

]

Y

(reference tntree)

TreeController

TreeView

sendiodelnfn

|
e

Picture 6: Object collaboration diagram

Object collaboration: DiagramController gets an event and a reference to the selected
element is received from Diagram. If operation is cutting then the element is removed
from the Diagram. The Clipboard contents is then set to the copied/cut element's data.
The Diagram class notifies observers.

17

(ii)Paste

DiagramController

ApplicationController
! Clipboard
ol 1
getElementdata m T
- ey
getContents
—
| [plement data) | g—(elementdatal
nt getTresController g
 g—Leforencetnienl]
I
I
Diagram —
T I
DiagramView | | TreeController TreeView
addElement
T | |
——" o vy
[
repaint '
I
I
sendModelnfo >

Picture 7: Object collaboration diagram
Object collaboration: DiagramController gets an event and requests the element to be

pasted from the the Canvas class which gets the current contents from the Clipboard. The
Diagram class notifies observers.

18

Including a text into the diagram

Use case: The user can include text independent of any element into the diagram. The
user can also add links to external text files into elements. Text can be later modified or
deleted by the user and the text will be saved with the diagram

Example: The user adds generic written information about the diagram within the
diagram.

(i1)Including text into elements

DiagramController Diagram
| I
— 1 | DiagramView
getSelected Flement e
|
Jg—(clomentdara) i
addText -
I nt.datal
e
-
|
[epaint I -

Picture 8: Object collaboration diagram

Object Collaboration: DiagramController gets an event and obtains the selected element.
The text is added to the element and the Diagram class notifies observers..

19

(i1)including a reference to element

DiagramController Diagram
! T
== L
getSelectedE lement -
i (element datal
File
|
it
oefFile
| (reference to file
|
addReferenceTol lementielement datal -
DiagramView |
1
T
renajnt

|
Picture 9: Object collaboration diagram

Object Collaboration: DiagramController gets an event and obtains the selected element

as shown in picture 9. The referenced file is obtained from File and the Diagram class
notifies observers.

Starting the application

Use case: The application is started by issuing a command or selected in a menu from the
system.

Example: The user starts the application from Linux shell by issuing the command “java
canvas”.

20

System Application ApplicationController

start - |initialiseAppController ge.

initialiseOtherGui

—— ¥

[
Picture 10: Object collaboration diagram

Object collaboration: The application Canvas receives an event from the system to start.
Then it initializes the Canvas and all GUI classes as shown in picture 10.

6.3 Element editing
Defining a new element by composition

Use case: The user defines new elements by constructing them from other elements.
Syntactic rules can be given to determine the behavior of the new element. The program
provides basic shapes for the user to work with. New syntactic rules can be implemented
with Java.

Example: The user creates a new by combining rectangle and circle shapes.
Object collaboration: DiagramController calls Diagram object with method

groupElements. GroupElements method creates a new composite element from associated
elements. The Diagram class notifies observers.

Editing existing elements

Use case: The user can edit the existing elements of the program by modifying the
element's shape or by changing element's properties. Syntactic rules can be modified with
Java. The program updates the diagram according to the rules associated with affected
elements.

Example: The user modifies an old element by adding a new circle shape to it.

21

Object collaboration: DiagramController calls Diagram object with method
updateElement. UpdateElement method modifies the composite element accordingly. The
Diagram class notifies observers.

7. Maintenance

7.1 Extendibility of the application
Defining a new basic element

The user can extend the application by defining new elements using Java. The application
provides an API for creating new elements. For example one could create a bezier line
element for the application. New elements should follow the interface definition of class
Element. Object collaboration works the same way as it works with build in elements.

Defining a new syntactic rule

One can create new syntactic rules for the application using Java. The application
provides an API for creating new rules. For example one could create a must include rule
for the application. New syntactic rules should follow the interface definition of rules
processing subsystem. Object collaboration works the same way as it works with build in
rules.

22

