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ABSTRACT
There is little information from independent sources in the
public domain about mobile malware infection rates. The
only previous independent estimate (0.0009%) [11], was based
on indirect measurements obtained from domain-name reso-
lution traces. In this paper, we present the first independent
study of malware infection rates and associated risk factors
using data collected directly from over 55,000 Android de-
vices. We find that the malware infection rates in Android
devices estimated using two malware datasets (0.28% and
0.26%), though small, are significantly higher than the pre-
vious independent estimate.

Based on the hypothesis that some application stores have
a greater density of malicious applications and that adver-
tising within applications and cross-promotional deals may
act as infection vectors, we investigate whether the set of
applications used on a device can serve as an indicator for
infection of that device. Our analysis indicates that, while
not an accurate indicator of infection by itself, the applica-
tion set does serve as an inexpensive method for identify-
ing the pool of devices on which more expensive monitoring
and analysis mechanisms should be deployed. Using our two
malware datasets we show that this indicator performs up to
about five times better at identifying infected devices than
the baseline of random checks. Such indicators can be used,
for example, in the search for new or previously undetected
malware. It is therefore a technique that can complement
standard malware scanning. Our analysis also demonstrates
a marginally significant difference in battery use between
infected and clean devices.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software
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1. INTRODUCTION
How prevalent is mobile malware? There has been a

steady stream of popular news articles and commercial press
releases asserting that the mobile malware problem, espe-
cially on the Android platform, is dire [10, 5, 15]. For ex-
ample, a recent press release [15] claims that 32.8 million
Android devices were infected in 2012, which, given the es-
timated 750 million Android devices [17], works out to an
infection rate of 4.3%. Lookout mobile reported that the
global malware infection rate (which they call “likelihood of
encountering application-based mobile threats”) for Lookout
users is 2.61%, consisting of various types of threats rang-
ing from adware (most prevalent at 1.6%) to spyware (least
prevalent at 0.1%) in their latest published estimate (June
2013) [13].

Some reports, however, speculate the opposite—that ac-
tual infections in the wild are rare, especially in the West [14].
There are other indications that the malware problem in
mobile devices may indeed not be severe. Google Play, and
other legitimate application markets, actively use malware
scanners to detect and remove malware. Kostiainen et al. [9]
describe the widespread availability of hardware and soft-
ware platform security mechanisms on mobile devices, which
could make them more robust against malware compared to
traditional personal computers.

The research community has focused primarily on analyz-
ing malware to detect if a given software package is malware
or not and studying how malware may spread. The only
independent research so far to address the question of mal-
ware infection rate was by Lever et al. [11] which used an
indirect method of inferring infection by analyzing domain
name resolution queries. They concluded that the infection
rate in the United States is less than 0.0009% (c.f. 2.61%
and 4.3% above). What accounts for this disparity?

There has been little direct measurement of malware in-
fection rates in the wild by independent sources. In order
to address this dearth, we carry out a large-scale study by
gathering data from tens of thousands of Android devices in
the wild. We instrumented Carat [16], a popular Android
application, to collect information about the identities of



applications run on devices. We used the resulting dataset
to look for the presence of malware based on three different
Android malware datasets.

Furthermore, we used our dataset to study the likely in-
fluence of several potential risk factors. First, hypothesiz-
ing that malware may be a battery hog, we compared the
distribution of battery lifetime estimates between the sets
of infected and clean devices. Second, following the adage
“you are the company you keep,” we hypothesized that the
set of applications used on a device may predict the likeli-
hood of the device being classified as infected in the future.
Our intuition behind this hypothesis is the possibility that
the set of applications used on a device is indicative of user
behavior, such as which application stores they use.

Our intent is to identify a small set of “vulnerable” de-
vices (from among a large population) based on indicators
that can be measured inexpensively on the device. More
extensive monitoring and analysis techniques can then be
deployed on that subset of devices. Such an approach can
complement and support anti-malware tools in several ways.
First, since our technique focuses on estimating the infec-
tion susceptibility of a device (rather than on classifying
whether a given package is malware), it may help in the
search for previously undetected malware by allowing anti-
malware vendors to focus on the applications present on
the small set of vulnerable devices. Second, it can provide
an early warning to enterprise administrators, especially in
those enterprises with a Bring Your Own Device policy to
identify vulnerable users for whom they can provide addi-
tional help or training.

The contributions of this paper are:

• The first independent, directly measured esti-
mate of mobile malware infection rate. Taking a
conservative approach to identifying malware, we used
two malware datasets to find infection rates of 0.28%
and 0.26%, which is significantly more than the previ-
ous independent estimate [11] (Section 4).

• A lightweight technique to detect susceptibility
of a device to infection. We propose a new approach
to quantify susceptibility of a device to malware infec-
tion based only on a set of identifiers representing the
applications used on a device. Compared with random
selection, our method—which requires only lightweight
instrumentation—shows a five-fold improvement (Sec-
tion 5.2).

We begin by discussing the background of our data col-
lection methodology (Section 2), and the datasets we use
(Section 3). We then present infection rates inferred from
the datasets (Section 4) before analyzing potential infection
indicators and explaining the method for building detection
models (Section 5). We then discuss the big picture (Sec-
tion 6) and provide an account of related work (Section 7),
before concluding (Section 8).

2. BACKGROUND

2.1 Identifying Android Packages
An Android package is identified by a Java language-style

package name that is intended to be globally unique. To
ensure uniqueness, the recommended naming scheme is for
developers to base the package name on an Internet domain

name that they own. An example of such a package name is
com.facebook.katana, which is the official Facebook appli-
cation. An Android device enforces uniqueness of package
names within it. Google Play, the official Android applica-
tion market, also enforces unique package names across the
application market. However, using unique package names
is mere convention, and nothing prevents any developer from
generating a package with any name. For example, the
name com.facebook.katana is used in many malware pack-
ages. Zhou et al. [29] demonstrated that repackaging pop-
ular Android applications with a malicious payload is a fa-
vorite technique of Android malware authors. Therefore the
package name alone is not a reliable identifier for uniquely
identifying an Android package.

All Android packages must be signed. Google recom-
mends that each developer have a long-term key pair for
signing all their applications1. Developer signing keys are
often used with self-signed certificates. The certificate(s)
(devcert) can be extracted from the certificate files in the
META-INF directory within an Android package or by an
application from within an Android device from the (mis-
leadingly named) Signature field of the PackageInfo object
via the PackageManager class. A package may be signed
with multiple keys. We use the terms package and applica-
tion interchangeably.

Each Android package also has version information in
the form of a numeric “versionCode” (integer) and “version-
Name” (string, intended to be displayed to users). A devel-
oper is required to update the versionCode whenever they
release a new version of a package because versionCode is
used to decide if a package on a device needs to be updated.
Therefore instead of just the package name we can use the
combination of the package name, devcert, and versionCode
as a reliable unique identifier for Android packages. We use
the tuple <dc,p,v> to identify a package, where:

• dc: a statistically unique ID for the developer (de-
vcert), generated as a SHA1 hash of devcert;

• p: the Android package name, extracted from An-

droidManifest.xml, or from the system process list
on the device;

• v: the versionCode the package, also obtained from
AndroidManifest.xml.

2.2 Carat Application
We collected data using a modified version of Carat [16],

a mobile application that runs on stock Android and iOS
devices. Carat uses energy-efficient, non-invasive instru-
mentation to intermittently record the state of the device,
including the battery level and process list, and uses this
information to recommend actions that help users improve
the device’s battery life. The application is deployed to over
650,000 devices (41% Android) and is publicly available from
Google’s Play Store and Apple’s App Store. In this paper,
we discuss data from the Android version.

Carat records several pieces of information when the de-
vice battery level changes (sampling is triggered by the BAT-

TERY_CHANGED Intent), including:

• Process list with package names, human-readable names,
application type (system application or not), its priority
and process id;

1
http://developer.android.com/tools/publishing/app-signing.html

http://developer.android.com/tools/publishing/app-signing.html


• Network type (Wi-Fi, cellular, or disconnected)

• Battery information (level, health, voltage, temperature
and status)

Carat sends the collected data to a collaborative anal-
ysis backend running on a cloud-based cluster of Amazon
EC2 instances. The analysis identifies applications that use
anomalously large amounts of energy, either relative to other
applications or to other instances of the same application on
other devices, and reports any discovered anomalies back to
the affected devices.

We chose Carat because of its high visibility, large user
base, and the willingness of the Carat development team
to let us instrument Carat as needed. Carat has an inter-
national user base, representative of current mobile device
users. Roughly 36% of Carat users are based in North Amer-
ica, 24% in Asia, 23% in Europe, and 10% in the Middle
East. Section 3.1 explains how we changed the application
to help identify potential infection.

3. DATASETS

3.1 Carat Dataset
We modified the open-source2 Carat application to record

the unique developer IDs dc, as described in Section 2.1.
The Carat development team published our modified ver-
sion of Carat on March 11, 2013 and provided us with data
collected from that date until October 15, 2013. There are
55, 278 Android devices that were updated to the new ver-
sion during the data collection period and reported package
identification information.

Each device running Carat is identified by a Carat ID
which is a statistically unique, Carat-specific device iden-
tifier, computed by applying SHA-1 to a concatenation of
available device identifiers (e.g., IMEI and WiFi MAC ad-
dress) and the Carat installation time. When Carat takes a
sample, it walks the process list and generates a record for
each running application. Package information is extracted
on-device directly from PackageInfo. In addition to Carat
ID and package identifiers, Carat also records the translated
name of the package (the human-readable string identifying
the application to users), the permissions of the package,
and the timestamp when the package was recorded by Carat.
The additional information is used for a different analysis,
described in Section 5. An entry in the Carat dataset, sum-
marized in Table 1, is of the form <ID, dc, p, v>. The

Type Count

distinct devices 55,278
unique package names 64,916
unique devcerts (dc) 41,809
unique <dc,p> tuples 83,226
unique <dc,p,v> tuples 192,080
total unique records 5,358,819

Table 1: Summary of the Carat dataset.

authors of Carat provide more details about the privacy pro-
tection mechanisms used by Carat [16]. Data collection by
Carat is subject to the IRB process of UC Berkeley3. For

2
http://carat.cs.berkeley.edu/

3
http://cphs.berkeley.edu/

privacy reasons, Carat does not collect any personally iden-
tifying information about the user of the device. Carat users
are informed about and provide consent to the data collected
from their devices.

The changes we made to Carat are to collect dc values
of packages in addition to the package names (p values)
already being collected. Since dc values carry no additional
information about the user, our data collection technique
does not have any impact on the privacy of Carat users.

We have made our Carat dataset available for research
use4. In order to protect the privacy of Carat users, we have
made the following changes to the shared dataset:

• Compute a device pseudonym for the published data set
by computing a randomized cryptographic hash (SHA-1)
of Carat ID using a fixed, secret salt. This will prevent
an adversary from correlating a device pseudonym with
its Carat ID or any of the other device identifiers that
contributed to the computation of the Carat ID.

• Transform the package name (p) by computing its SHA-1
hash. This is intended to hide the names of any unpub-
lished package names that may have been present on a
Carat device of a developer or tester, while ensuring that
the presence of a package in the dataset with a known
package name can be verified.

3.2 Malware Datasets
We used malware data from three different sources: the

Malware Genome dataset5 provided by Zhou et al. [29],
the Mobile Sandbox dataset6 provided by Spreitzenbarth et
al. [23], and the McAfee dataset provided by McAfee7.

The source of each malware dataset used their own unique
set of criteria to decide whether to include an Android pack-
age in the dataset. McAfee uses a proprietary classification
technique. Using the Mobile Sandbox web interface, anyone
can submit a package to Mobile Sandbox for consideration.
Mobile Sandbox includes a package in their malware dataset
if any one of over 40 anti-virus tools they use flag the pack-
age as malware. Malware Genome is a fixed set of known
malware samples collected during the period from August
2010 to October 2011 [29].

From each Android package (.apk file) in a dataset, we
extract the package identifier in the form of a <dc,p,v>
tuple. A malware dataset is therefore a table of records,
where each record is a <dc,p,v> tuple. Table 2 summarizes
the malware datasets.

Type Mobile
Sandbox

McAfee Mobile
Genome

Union

unique dc 3,879 1,456 136 4,809
unique <dc,p> 13,080 2,979 756 15,084
unique <dc,p,v> 16,743 3,182 1,039 19,094
unique .apk files 96,500 5,935 1,260 103,695

Table 2: Summary of malware datasets.

4
http://se-sy.org/projects/malware/

5
http://www.malgenomeproject.org/

6
http://mobilesandbox.org/

7
http://mcafee.com
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4. ANALYSIS OF INFECTION RATES
The instrumentation of Carat—intended to be a battery

saving app—is necessarily lightweight. In particular, we can-
not perform detailed analysis of the applications on the de-
vice to decide whether it is infected or not. Given the limited
information in the Carat dataset, we assessed infection rates
by examining if any of the malware packages (indicated by a
malware dataset) match any of the applications in the Carat
dataset.

4.1 Finding malware matches in Carat dataset
We consider two types of “match”: matching devcert only

(<dc>) and matching devcert, package name and version
(<dc,p,v>).
<dc>: One approach to identifying malware matches is to
deem a device in the Carat dataset as infected if it has any
package signed with respect to a devcert found in a malware
dataset. This way, when a dc associated with a record in a
malware dataset is seen in a Carat dataset record, we flag
that Carat record as infected. We proceed to compute the
number of unique bad devcerts (NC), the number of unique
packages that correspond to bad devcerts (NP ), and the
number of infected devices as a whole (NI:C). If the same
devcert is used to sign malware as well as benign packages,
the <dc> approach may lead to an over-estimate of infection
rate. However, it could serve as a way to detect previously
undetected malware, as Barrera et al. [1] point out.
<dc,p,v> matching: We can be more conservative by
marking an entry in the Carat dataset as infected if and
only if every component of the reliable package identifier
(Section 2.1) <dc,p,v> of that entry matches a record in
the malware dataset. This type of matching will underes-
timate the infection rate, giving a lower bound. Table 3
summarizes the results of applying these two approaches on
the Carat dataset with the three malware datasets, both
separately and combined. We can make a number of ob-
servations. First, there is a significant disparity in infection
rates computed using the two different approaches. Second,
the number of infected devices using <dc,p,v> matching
is largely disjoint for each malware dataset, leading to the
question of whether there is common agreement as to what
constitutes malware. In subsections 4.2 and 4.3, we exam-
ine these issues in more detail. No <dc,p,v> tuples from
the Carat data matched the two-year-old Malware Genome
dataset. This suggests that in the long run, malware on
Android devices is detected and removed.

4.2 Disparity in <dc> vs. <dc,p,v> Matching
Figure 1 shows the distribution of infected devices using

<dc> and <dc,p,v> matching. We now discuss two reasons
for the discrepancy between <dc> matching and <dc,p,v>
matching.

Reuse of devcerts: The first reason is that some de-
vcerts are used to sign both malware and clean packages.
Consider the case of the popular Brightest Flashlight Free
application: v17 was flagged as malware by a number of
anti–malware vendors, presumably because an ad library
it was using was malicious. Subsequent versions are not
flagged as malware. All versions, however, are signed with
respect to the same devcert8, which appeared in 2210 de-

8
https://androidobservatory.org/cert/

27DDACF8860D2857AFC62638C2E5944EA15172D2

vices in our Carat dataset, but never with v17. The An-
droid “same-origin” policy that allows applications signed
using the same developer key to share data among them-
selves discourages (even legitimate) developers from chang-
ing their devcerts even if an earlier version of their package
was flagged as malware.

A malware developer may also have non-malware pack-
ages, and it is known that malware developers are actively
seeking to purchase verified developer accounts [10].

Widely available signing keys: The second reason is
that some signing keys are widely available (either because
they were leaked or because they were test keys). Surpris-
ingly, some legitimate developers use these widely available
signing keys to sign their packages. One particular devcert9

is a widely available “test key”. 544 packages in our mal-
ware datasets were signed with it. However, 1948 innocuous
packages in our Carat dataset (several of them used to be
in Google Play) were also signed with the same key. In the
Carat dataset, 8188 devices had at least one package signed
with it but only 11 devices had a package that matched the
full <dc,p,v> of a known malware package.

In all of these cases, the same key is used to sign both mal-
ware and non-malware. Consequently the <dc> method of
identifying applications results in an overestimate of mal-
ware infection rate. While it provides an upper bound of
infection rate, the estimate is too high to be useful, marking
more than 16% of devices as infected for all datasets, and
over 30% for Mobile Sandbox and McAfee. Therefore, in the
rest of this paper, we use only <dc,p,v> matching.

Figure 2 shows more details of how devcerts associated
with malware are reused. Unsurprisingly, most malware de-
vcerts are used to sign only one package each. However
out of a total of 155 devcerts associated with malware (in
both Mobile Sandbox and McAfee malware datasets taken
together), there are still 13 devcerts signing more than one
malware package, and 70 devcerts signing more than one
package in general.

Interestingly, we found that com.android.settings.mt

signed by a devcert10 controlled by Samsung was flagged as
malware by multiple anti-malware vendors11. (The same key
is widely used by Samsung to sign their packages including
some available on Google Play like com.sec.yosemite.phone,
and com.airwatch.admin.samsung). Samsung has since up-
dated the package, which is no longer flagged as malware,
but continues to use the same the version code (1) for all ver-
sions. Consequently, <dc,p,v> matching resulted in devices
containing all variants of this package (7845 devices in the
Carat dataset) being labeled as infected. We were therefore
forced to discount this package from our analysis because we
have no way to distinguish between its malware and non-
malware variants. We maintain that <dc,p,v> matching is
still a reasonable approach for identifying malware because
ordinary developers are required to update the version code
when they release new versions12.

9
https://androidobservatory.org/cert/

61ED377E85D386A8DFEE6B864BD85B0BFAA5AF81
10

https://androidobservatory.org/cert/

9CA5170F381919DFE0446FCDAB18B19A143B3163
11

http://bit.ly/IFDMyl
12

http://developer.android.com/tools/publishing/versioning.html

https://androidobservatory.org/cert/27DDACF8860D2857AFC62638C2E5944EA15172D2
https://androidobservatory.org/cert/27DDACF8860D2857AFC62638C2E5944EA15172D2
https://androidobservatory.org/cert/61ED377E85D386A8DFEE6B864BD85B0BFAA5AF81
https://androidobservatory.org/cert/61ED377E85D386A8DFEE6B864BD85B0BFAA5AF81
https://androidobservatory.org/cert/9CA5170F381919DFE0446FCDAB18B19A143B3163
https://androidobservatory.org/cert/9CA5170F381919DFE0446FCDAB18B19A143B3163
http://bit.ly/IFDMyl
http://developer.android.com/tools/publishing/versioning.html


Malware dataset Mobile McAfee Malware Union of
Type Sandbox % % Genome % all sets %

NC : # of <dc> matches (bad devcerts) 337 0.81 343 0.82 8 0.019 534 1.3
NP : # of packages (<dc,p,v>) matching malware <dc> 10,030 5.2 10,062 5.2 6137 3.2 11,510 6
NC,P,V : # of packages matching malware <dc,p,v> 100 0.15 62 0.096 0 0 155 0.24
NI:C : # of infected devices (<dc> match) 18,719 34 16,416 30 9240 17 20,182 37
NI:C,P,V : # of infected devices (<dc,p,v> match) 154 0.28 144 0.26 0 0 285 0.52

Table 3: Incidence of infection in the Carat dataset.
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Figure 1: The number of infected devices based on <dc> matching is orders of magnitude larger than with <dc,p,v> matching.
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(a) Mobile Sandbox dataset
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(b) McAfee dataset

Figure 2: Packages signed with respect to a potentially malicious <dc>.

4.3 Disagreement about What is Malware
Figure 3 shows the distribution of malware packages in

the three datasets we used. As can be seen, a significant
fraction of each dataset contains malware samples included
only in that set, leading to the question whether there is any
common agreement about what constitutes malware. This
issue is illustrated even more dramatically in Table 3, which
shows the number of devices labeled as infected according to
each individual malware dataset. There were 154 and 144
devices labeled as infected according to the Mobile Sand-
box and McAfee datasets, respectively, but only 13 devices
were common to these sets. Table 4 lists the most frequent
malware packages—those that were detected in five or more
devices—in our Carat dataset. Each package was scanned
by over 40 different anti-malware tools; none of the malware
packages that match our Carat dataset is flagged as malware
by a majority of anti-malware tools.

All of these observations confirm that there is no wide
agreement among anti-malware tools about what constitutes
malware. Given the extent of disagreement, we conclude
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Figure 3: Sizes of the three malware datasets and the extent
of overlaps among them.



Package name Package hash MD5 & SHA1 #infa #detb Description Source

it.evilsocket.dsploit
7dedeca3c23462202f86e52dcc004231

23 11 Monitoring McAfee
07d522ab602352ab27523f92f94bd2ee9b10e40e

com.noshufou.android.su
1e74b778765d2e49caaa06772c68edbc

23 17 Rooting McAfee
600621d4c04fb3a699c292cd7aec21676510351d

ty.com.android.SmsService
af15196deb350db09eafe3e1cb751f2e

22 4 Trojan Mobile Sandbox
7658d936fd559c3dbe0d30ab669269c5d0e7e512

com.mixzing.basic
30cf001554ef0c10bc0012e3a75950ba

15 15 Adware McAfee
6dc4477f570d77fdb4adf5db3ee3347a2e9a4b11

pl.thalion.mobile.battery
2e0a763029636ee3555c59f92bd8bd92

10 11 Adware McAfee
4cf39278dba8453f1f58c28d08a8478bb2f18a30

com.bslapps1.gbc
e911ba9d519c36eb02b19268ee67de35

9 7 Adware McAfee
f00ab5a4d720fc1489530354cb9fd6d11242a77b

com.android.antidroidtheft
2d6130aaa0caa1a170fb0ed1c0d687c7

8 3 Monitoring Mobile Sandbox
fcfa52c70c29f0b6712cb02ba31c053fbcf102e4

com.androidlab.gpsfix
9f6e1d4fad04d866f1635b20b9170368

7 9 Adware McAfee
e1c1661a4278d572adbf7439f30f1dcc1f0d5ea5

com.adhapps.QesasElanbiaa
3a818a3a8c8da5bebbefdc447f1f782f

7 15 Adware McAfee
7b8d16c362e8ac19ceed6ec0e43f837ee811ac7a

download.youtube.downloader.pro7
6bad5fa9b87d0a5d7e81994d8e6e4d38

5 6 Adware Mobile Sandbox
074385ac4938cadc1f93f4a92b811786d2f01ac6

com.android.settings.mt
fa037c0c6dcfe0963d9e243ee6989dc1

5 4 Monitoring McAfee
c1c72cd10f3714c2fb4b1ca281b5f33192d2d872

aNumber of devices infected by this package
bNumber of anti-malware tools flagging this package as malware according to http://mobilesandbox.org

Table 4: Most frequent malware.

that it is more appropriate to report infection rates sepa-
rately for each malware dataset (0.26% for Mobile Sandbox
and 0.28% for McAfee) rather than combined (0.51%).

One reason for the disagreement is that some packages
are considered “potentially unwanted programs” (PUPs) by
some anti-malware tools, but not outright malware. For
example, Superuser (com.noshufou.android.su), a popular
rooting application, cannot be considered malicious if it is
installed intentionally by the user but is certainly danger-
ous if installed without the user’s knowledge. Similarly, a
WiFi-cracking tool is dangerous but not malicious towards
the user. Some anti-malware tools consider applications con-
taining intrusive adware libraries as malware while others do
not. Some vendors eschew the term “malware” altogether
and resort to identifying threats in different categories sep-
arately [13].

On the other hand, the disagreement among anti-malware
tools is puzzling because there is evidence that anti-malware
vendors use systems that monitor how other vendors rate a
package and incorporate this information into their own rat-
ing. Sometimes, this can lead to mistakes being propagated
widely. We encountered one such example in our dataset in
the form of the package com.android.vending.sectool.v1

signed with respect to a legitimate devcert, controlled by
Google13. It corresponds to a malware removal tool pub-
lished by Google almost three years ago14. Shortly there-
after, a malware package with the same name emerged [25]15.
Presumably some anti-malware vendor mistakenly labeled
both packages as malware which consequently led the some
of the rest to follow suit. The legitimate Google-signed pack-

13
https://www.androidobservatory.org/cert/

24BB24C05E47E0AEFA68A58A766179D9B613A600
14

http://googlemobile.blogspot.com/2011/03/update-on-android-

market-security.html
15

http://bit.ly/IDjR3W

age is flagged as malware by no less than 13 anti-malware
tools to this day16.

4.4 Geographic Regions
Mobile malware infection rates in China and Russia are

reported to be higher than in the West [12]. Since we do
not have demographic information about Carat users, we do
not know their location and thus cannot verify this claim di-
rectly. However, the translated name (transname) of a pack-
age can sometimes indicate the local language of the device.
The length of the string is too short for robust automated
language detection. However, we can, based on the presence
of operator-specific (e.g., com.vzw.hss.myverizon, “My Ver-
izon Mobile”) and currency-specific (e.g., com.fdj.euro,
“Euro Millions”) package names, estimate the number of in-
fected devices in certain regions like the US, Europe, and
Japan. Consequently, we can conjecture that the infection
rate in USA is likely to be more than 0.02% based on the fact
that 13 infected devices (as per McAfee malware dataset)
have USA-specific packages.

5. DETECTING POTENTIAL INFECTION
Mobile device owners, enterprise IT administrators, and

vendors of anti-malware tools would all benefit from tech-
niques that can provide early warnings about the suscepti-
bility to malware infection. In this section, we report on the
in-depth analyses of our data and look at factors that have
a strong influence on the risk of malware infection.

5.1 Energy and Number of Applications
We first considered two factors: the extent of energy con-

sumption on the device, and the number of applications in-
stalled on a device. Our dataset exhibits the patterns one
might expect: the average battery life of infected devices

16
http://bit.ly/IDjWos

http://mobilesandbox.org
https://www.androidobservatory.org/cert/24BB24C05E47E0AEFA68A58A766179D9B613A600
https://www.androidobservatory.org/cert/24BB24C05E47E0AEFA68A58A766179D9B613A600
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://bit.ly/IDjR3W
http://bit.ly/IDjWos


was less than that of clean devices and the average num-
ber of installed applications on infected devices was larger
than that in clean devices. However, the differences were
not always significant.

To examine the relationship between infection and en-
ergy consumption, we analyzed the mean battery life be-
tween infected devices and the subset of clean devices that
match the models and OS versions of infected devices. The
mean battery life after outlier removal for the infected de-
vices was 6.56 hours (median 6.06), and 7.88 hours for the
clean devices (median 7.5) for Mobile Sandbox. A Wilcoxon
rank sum test indicated statistical significance in the life-
time distributions (Z = -4.2215, p < 0.01). For McAfee, the
mean battery life was 7.88 hours for infected (median 7.74)
and 8.27 hours for clean (median 7.9). The difference was
marginally significant (Z = -1.199, p = 0.23).

The average number of applications observed on the in-
fected devices (93, median 83 for Mobile Sandbox / 115,
median 93 for McAfee) was higher than the average num-
ber of applications on the clean devices (88, median 73 for
Mobile Sandbox / 90, median 72 for McAfee) during our ob-
servation period. This would match with the intuition that
every newly installed application is an opportunity for infec-
tion and that users who install and run more applications
would therefore be more likely to become infected. To assess
this hypothesis more rigorously, we used the Wilcoxon rank
sum test to compare the number of installed packages be-
tween infected and clean devices. The difference was statis-
tically significant for McAfee (Z = -3.086946, p < 0.01) and
marginally significant for Mobile Sandbox (Z = -1.287166,
p = 0.1980). More details of these analyses are found in the
full version of this paper [26].

5.2 Applications Used on a Device
The density of malware in different application stores tends

to vary considerably, with some stores having a high malware
incidence rate [30]. The set of applications used on a device
can serve as a (weak) proxy for the application stores used
by the user of the device, thus potentially providing infor-
mation about the device’s susceptibility to malware. Cross-
application promotions and on-device advertising are other
factors that can affect susceptibility to malware infections.
As the next step of analysis, we examined how much infor-
mation about malware infection the applications run on the
device can provide.

We conduct our investigation by considering malware de-
tection as a classification task where the goal is to classify
the device as infected or clean using the set of applications
used on the device as the input feature. As discussed earlier,
each anti-malware vendor may have their own proprietary
algorithm to classify applications as malware or not. There-
fore, we report our detection experiments separately for each
malware dataset.

Analogously to, e.g., some spam filters, we rely on (Multi-
nomial) Näıve Bayes classifiers in our experiments. Despite
making a strong independence assumption, Näıve Bayes clas-
sifier is a powerful and computationally efficient tool for an-
alyzing sparse, large-scale data. As the input features to the
classifier we consider bag-of-applications vectors, i.e., sparse
binary vectors containing value one for each application run
on the device and the value zero otherwise. If a device con-
tains an application that is present within the list of known

malware applications, we label the device as infected. Oth-
erwise, the device is labeled as clean.

As we are interested in looking at associations between
malware and other applications, and as anti-malware tools
would easily detect known malware applications, all applica-
tions known as malware were removed from the data before
carrying out the classification experiments (they are used
only to label devices). Since our data has been collected
over a period of multiple months, we also removed all appli-
cations that corresponded to earlier (or newer) versions of
one of the malware applications (i.e., which have the same
devcert and package key, but different version code) to avoid
any potential temporal effects.

We start with a simple cross-validation experiment (de-
tecting infection by known malware) and then describe two
variants of detecting infection by new malware. Finally we
report on a real-life scenario of detecting infection by previ-
ously undetected malware. In each experiment, the baseline
for detection is the success rate of finding an infected device
by randomly selecting a subset of supposedly clean devices.

5.2.1 Cross-Validation
We used stratified 5-fold cross-validation. Accordingly,

the set of devices was partitioned into five subsets, each hav-
ing a similar class distribution as the entire dataset. Four
of the subsets were used to train the classifier and the re-
maining subset was used for testing. This process was re-
peated five times so that each subset served once as the test
set. Classification results were aggregated over the five folds.
The results are shown in Table 5 (lines 1-2).

The results clearly indicate the difficulty in accurately dis-
tinguishing malware infections solely on the basis of applica-
tions run on the device. Only a small number of the actually
infected devices were correctly identified, however, the clas-
sification algorithm also made relatively few false detections
(approximately 1000 devices out of over 55, 000). The preci-
sion is significantly better than baseline (1.37% and 1.07%),
random chance (it is also comparable to what some anti-
virus tools provide for these applications [29]). More impor-
tantly, considering the relatively low level of false positives,
the results indicate that applications run on the device could
potentially be used as one of the features for detecting like-
lihood of malware infection.

5.2.2 Infection by New Malware
Next we evaluate the potential of using the set of applica-

tions used on a device as an indicator for infection by new,
previously unknown malware. To do this, we partitioned the
set of clean devices into a training set consisting of 80% and a
test set consisting of 20%, chosen randomly. We partitioned
the malware five ways, according to the number of infected
devices. These groups therefore correspond to roughly equal
number of infected devices.

In each run (of a total of five runs), four groups were
used as “known malware” and the devices they infected were
combined with the training set (80% clean devices). The
remaining group was used as “unknown malware” and its
infected devices combined with the test set (20% clean de-
vices).

No two devices infected by the same malware applica-
tion appear in both (training and test) sets in the same run
to ensure that malware applications for testing are truly
unknown. In line with our other experiment, we also re-



Experiments TP FN FP TN Precision Baseline Gain

1. (§5.2.1) Mobile Sandbox, Cross-validation 14 140 1008 54116 1.37% 0.28% 3.8 times
2. (§5.2.1) McAfee, Cross-validation 11 133 1020 54114 1.07% 0.26% 4.1 times
3. (§5.2.2) Mobile Sandbox, new malware 53 687 5100 267450 1.03% 0.05% 3.8 times
4. (§5.2.2) McAfee, new malware 40 680 5146 267654 0.77% 0.26% 2.9 times
5. (§5.2.3) Mobile Sandbox, undetected malware 5 132 5098 270572 0.10% 0.05% 2.0 times
6. (§5.2.3) McAfee, undetected malware 7 120 5044 270721 0.14% 0.05% 3.0 times
7. (§5.2.4) Mobile Sandbox, real-life set 4 71 609 54515 0.65% 0.14% 4.8 times
8. (§5.2.4) McAfee, real-life set 4 112 407 54727 0.97% 0.21% 4.6 times

Table 5: Detection of infection based on the set of applications used on a device. TP – True Positive, FN – False Negative,
FP – False Positive, TN – True Negative.

moved all application features corresponding to newer or
older versions of a malware application. Lastly, to mitigate
the influence of random partitioning, we repeated the entire
experiment five times and report the summed results (the
aggregation was done over 25 runs). Results are reported in
Table 5 (lines 3-4).

The classification results for detecting infection by new
malware are 3.8 (Mobile Sandbox) and 2.9 (McAfee) times
better than baseline.

In the experiment, all the devices that had an application
from the set of “undetected malware” were always assigned
to the test set. While this is reasonable for truly new, un-
known malware, in reality, it is possible that undetected
malware was present on some devices in the set of devices
used to train the model (naturally those devices would have
been classified as “clean” at the time of training). We next
investigate the potential for detecting infection by previously
undetected malware.

5.2.3 Infection by Previously Undetected Malware
Infection by previously undetected malware (including new

as well as old but previously undetected malware) may also
be detectable using the same classification approach. To
evaluate this possibility, we ran a new experiment. We par-
titioned the set of all devices randomly into two sets: a
training set containing 80% of the devices and a test set
containing the remaining 20%. Next, we partitioned the set
of malware applications five ways according to the number of
infected devices. In each run, only the malware applications
from four malware sets (i.e., “known malware” sets) were
used to label “infected” devices in the training set. Any de-
vice in the training set that contains an application from the
remaining malware set (i.e., “undetected malware”) was la-
beled as“clean”to reflect the fact that at the time of training
such devices were not known to be infected. We moved any
device in the test set that is infected by “known malware” to
the training set. To minimize the effect of random partition-
ing, as before, we repeated the entire experiment five times,
with five runs in each round, and report the summed results
of 25 runs in Table 5 (lines 5-6). The results are 2 (Mobile
Sandbox) and 3 (McAfee) times better than the baseline.

5.2.4 Detection of ‘Real life” Infections
So far, we simulated“new”or“previously undetected”mal-

ware by dividing our malware datasets randomly. For each
of our malware datasets we received a first version (the“orig-
inal” set) in March 2013 and an updated version (the “up-
dated” set) in subsequently (in September 2013 for Mobile
Sandbox and November 2013 for McAfee). This allowed us
to validate our model for detection of infection by previously

undetected malware under “real life” conditions. Let us de-
note the difference between the updated set and the original
set as the “new” set. We labeled the full set of devices us-
ing the original malware set, trained our model using the
resulting set and used the set of all “clean” devices (with re-
spect to the original set) as the test set to detect infection.
We compared the results with respect to infections labeled
by the “new” set. The results are shown in Table 5 (lines
7-8). The detection performance is 4.8 (Mobile Sandbox)
and 4.6 (McAfee) times better than the baseline of random
selection.

6. DISCUSSION
Infection rates: The infection rates we find are nowhere
as high as the more alarmist claims from some in the anti-
malware industry [15]. But even our most conservative es-
timates (0.28% and 0.26%) are still (statistically) signifi-
cantly17 higher than what was reported by Lever et al. [11].
There are a number of possible explanations:

• Lever et al. looked at devices in the United States only.
It is believed that the prevalence of mobile malware in-
fection is much higher in China and Russia. We cannot
be certain about how many of the infected devices we
found are located in those regions. However, as we dis-
cussed in Section 4.4, we can estimate a lower bound
of at least 13 infected devices (0.02%) as being in the
United States.

• Lever et al. identified infected devices by examining
device DNS requests for tainted hosts. Not all mal-
ware generates DNS requests (e.g., malware that aims
to send premium SMS messages may not bother with
DNS requests). Malware authors presumably change
their data collection and command and control ad-
dresses frequently or may have used hardwired IP ad-
dresses. Both of these factors may have led to an un-
derestimation of the infection rate.

Our conservative malware infection rate estimates are closer
to Google’s recent estimate, 0.12% [19]. However, Google’s
estimate refers to the percentage of application installations
that they have marked as potentially harmful, while ours is
the percentage of infected devices in a community of mostly
clean devices. Also, Google affects the result by warning

17A two-sample proportions test (Chi-squared) verified that
the difference is statistically highly significant (Mobile
Sandbox: χ2=44132.24, df=1, p<0.001, and McAfee:
χ2=38657.59, df=1, p<0.001.)



the user at installation time, while Carat collects the infor-
mation on running applications after installation. Further,
installation of an application does not guarantee that it will
ever be run.
Detecting infection: The results of the classification ex-
periments in Section 5.2 demonstrate that the set of ap-
plications used on the device is a potential source of in-
formation for detecting malware applications. The detec-
tion techniques discussed in Section 5.2, are not intended
to replace the standard anti-malware scanning for infection
by known malware. Rather they can complement standard
anti-malware tools in a number of ways. We foresee two
ways in which early warning could be used:

• Search for previously undetected malware: An anti-
malware vendor can, after doing the standard scan-
ning for malware using known malware signatures, ap-
ply our detection technique to the list of applications
used on a device to determine if the device falls in
the “vulnerable” class and inform the vendor of the
tool if it does. The vendor can then apply expensive
analysis techniques on all the applications in vulnera-
ble devices. Without such a detection mechanism, the
vendor would have had to take a random sample of
devices.

• Training enterprise users: Consider an enterprise that
has a small budget for training users on good applica-
tion hygiene. Rather than selecting trainees at ran-
dom, the enterprise administrators could target the
training towards users of the “vulnerable” class of de-
vices.

For example, in the case shown in Table 5 (line 8), the suc-
cess rate for finding infection by previously unknown mal-
ware by taking a random sample of devices is 0.21%. Our
detection mechanism results in an almost five-fold improve-
ment (precision=0.97%). It is important to note that this
improvement comes at virtually no cost because the instru-
mentation needed to collect the data is extremely lightweight.
Our detections were based only on the set of applications
used on a device, where each application is identified only
by the <dc,p,v> tuple. Measuring this set of active appli-
cations intermittently using Carat incurs negligible perfor-
mance or battery overhead (literally below the precision of
our hardware instrumentation).

The effectiveness of the detections could be improved with
more data, and with additional features, such as battery con-
sumption and the amount and extent of permissions required
by the application. More effective detection techniques can
lead to other early warning applications. For example, Carat
or a standalone mobile security application on the device
might visualize the detection as a traffic light indicator of
“threat level”.
Predicting expected time before infection: Our ap-
proach is well–suited to answering the question of the ex-
pected time before infection. This is an interesting and im-
portant question and a solution would provide a much needed
temporal risk measure for end users. In this section, we out-
line our simple solution for this problem that will be verified
in our future work. In order to fully develop and deploy a
solution, we need the application specific time-to-infection
distributions from devices. We expect to see more such cases
as we continue the data collection over the next few months.

Once we have enough such cases, how can we predict the ex-
pected time to infection?

Our proposed solution is based on the application–specific
time-to-infection distributions. For a given application and
device, we record the time the application has been installed
on a clean device until the device became infected. This
time is zero for applications installed on already infected
devices and infinite for clean devices. Thus we obtain per
application distributions of the time-to-infection.

Based on the application specific time-to-infection dis-
tributions we then determine the device specific time-to-
infection. This is performed by considering each application
on the given clean device and then determining the expected
minimum time-to-infection based on the application specific
distributions. We believe that the minimum time is a rea-
sonable starting point for assessing the risk to the user.

The three important parts of the process are the sum-
mary statistic for the application specific distributions, ap-
plication correlations, and the determination of the expected
minimum time.

Our initial solution uses the median to summarize the
application specific distributions. The median is a robust
statistic and it copes well with outliers. We take correla-
tions between applications into account by considering also
subsets of applications. The motivation is that the summary
statistic may hide interesting patterns pertaining to certain
groups of applications that together significantly reduce the
time-to-infection. A group is included in the analysis if its
time to infection value is lower than the respective values of
its elements. Given the application and group statistics, it
is then easy to choose the minimum value.
Energy consumption: We found a marginally significant
difference between infected and clean devices in terms of re-
maining battery life. Our results show that malware reduces
the remaining operating time of the devices by an average of
1.3 hours (Mobile Sandbox) and 0.4 hours (McAfee). We are
incentivized to detect and remove malware in order to con-
serve energy. In addition, we can use this observation to de-
tect malware. The combination of installed and running ap-
plications with the energy consumption data make for a new
way to assess the risk of having malware. Crowdsourcing
of malware detection has been proposed before [2], however,
our approach is unique because it only uses knowledge of the
installed, running applications and the energy consumption,
making it non-intrusive and lightweight. The combination
of these two features—applications and energy—appears to
be a promising avenue for future research.
Reliable malware detection: A typical anti-virus tool
performs extensive analysis of a package on a device in or-
der to determine if it is malware. We did not have this lux-
ury because we wanted to minimize the overhead we add to
Carat. Consequently, we resorted to identifying malware by
comparing reliable identifiers for packages (e.g., <dc,p,v>
tuples) with those in known malware datasets. This may
underestimate the incidence of malware in the sense that it
will not detect any previously unknown malware, just as any
other signature-based malware detection mechanism. De-
spite this limitation, our results provide new, and more accu-
rate, information about malware infection rates which sug-
gests that mobile malware infection may be more widespread
than previous rigorous independent estimates.

Our detection techniques are independent of the method
used to decide if a device is infected or not. Consequently,



their efficacy will be improved when they are used together
with better techniques for identifying malware.
Limitations: In our Carat dataset, we did not make use
of the time information associated with Carat samples. It
is possible that users infected by malware go on to install
anti-malware or other performance analysis tool in order to
troubleshoot. Since our analysis technique is based on ap-
plications occurring together on infected and clean devices,
it may incorrectly infer that the presence of such applica-
tions is an indicator of potential infection. Removing such
applications from the analysis would be one way to address
this problem. For privacy reasons, Carat does not collect
any demographic data about its users. Consequently, we
cannot be certain that the Carat dataset corresponds to a
representative sample of Android users in general besides
the geographical distribution information we presented in
Section 2.2.

7. RELATED WORK
Work by Lever et al. [11] was the first (and until now,

to the best of our knowledge, the only) public, independent
study of mobile malware infection rates. They used large
datasets consisting of DNS requests made by the customers
of a US-based Internet service provider and a cellular carrier
and tried to identify infected mobile devices based on DNS
requests to known tainted hostnames. Our work, in contrast,
uses data collected directly from the mobile devices.

Analyzing mobile malware has been an active research
area. Felt et al. [6] presented one of the first surveys of mal-
ware on three different mobile platforms. Zhou and Jiang
[29] provide a detailed, systematic analysis and classification
of Android malware based on a large set of malware samples.
Some researchers have explored collaborative techniques for
malware detection [2, 28]. Our work differs from these in
that rather than detecting malware as such, we use data
collected from a large number of devices to quantify the sus-
ceptibility of infection for a given device.

This paper proposes using proxy signals, like energy use
or the set of applications run on a device, to detect or pre-
dict infection. That kind of approach bears a resemblance to
anomaly detection, especially in the intrusion detection field,
which has a rich history [20, 22]. Kim et al. [8] proposed a
power-aware malware detection framework for mobile de-
vices targeted for detecting battery exhaustion malware.
One paper suggests that energy is an insufficient metric for
detecting malware [7], but energy issues have been success-
fully attributed to buggy and malicious applications [18, 16].

Motivated by the prohibitive cost of doing comprehensive
malware detection on mobile phones, Portokalidis et al. pro-
posed Paranoid Android [21] which maintains exact virtual
replicas of mobile devices on a server where the expensive
malware analysis is done. Maintaining exact replicas may
be considered privacy-invasive [3]. Also, analyzing applica-
tion permissions has been done [4], but also safe applications
often request extensive permissions, making application per-
missions an insufficient indicator of malware.

Our approach of using lightweight instrumentation to iden-
tify potentially vulnerable devices can help reduce the im-
pact of the privacy concern. Our work uses data collected
from a large number of clients (sometimes called a commu-
nity) to build statistical models. Much of the academic re-
search in applying statistical analysis and machine learning
to the problem of mobile malware takes a software-centric

view, focusing on analyzing software packages to determine
if they are malware. In contrast, we take a device-centric
view, attempting to estimate the propensity of a device for
infection. The closest prior work in this aspect was by Wag-
ner et al. [27] and subsequently Sumber and Wald [24] who
took a similar approach in the context of Twitter. They use
publicly visible characteristics of Twitter users to predict
their susceptibility to fall victim to social bots.

Finally, some recent activity focuses on collecting and col-
lating mobile applications (both malware and otherwise) and
making them available publicly in a systematic manner with
well-designed interfaces [1, 23]. These have been extremely
useful in our work.

8. CONCLUSION
In this paper, we addressed a gap in the research litera-

ture regarding malware infection rates on mobile devices by
direct measurement on tens of thousands of mobile devices.
Our estimates for infection rate of mobile malware, although
small (0.26% for Mobile Sandbox and 0.28% for McAfee), is
still higher than previous estimates.

We also investigated whether we can build models that
can detect malware infection based on the set of applica-
tions currently installed on a device. Although the precision
and recall of this initial detection attempt are not high, the
approach can still constitute one line of defense in a suite of
techniques, especially given that the data collection needed
for the detection is extremely lightweight. In particular,
our models can be used by enterprise IT administrators and
anti-malware vendors to identify a small pool of vulnerable
devices, e.g., to deploy more expensive analysis techniques
on them or to provide training to their users. In our exper-
iments, the precision of the model is up to five times better
than the baseline of random selection of devices.

There are several interesting directions to continue the
work, including the following:

• Using a larger dataset : Repeating and improving our
analysis using the larger Carat dataset.

• Improving detection accuracy : Using additional fea-
tures and/or experimenting with better detection tech-
niques to improve the precision and recall.

• Predicting expected time to infection: Validating our
proposed approach for predicting expected time to in-
fection using a larger dataset from Carat.

• Energy vs. infection: Investigating whether malware
infection has an impact on the expected battery life
and whether another proxy for energy use could be
predictive or indicative of infection.

An extended version of this paper is available [26].
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