On Minimizing Pattern Splitting
in Multi-Track String Matching

Kjell Lemstrom and Veli Mékinen

Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 Helsinki, Finland
{klemstro,vmakinen}@cs.helsinki.fi

Abstract. Given a pattern string P = p1p2 - pm and K parallel text
strings T = {T* =#¥..-t% | 1 < k < K} over an integer alphabet X%, our
task is to find the smallest integer x > 0 such that P can be split into
K pieces P = P'...P", where each P' has an occurrence in some text
track T" and these partial occurrences retain the order. We study some
variations of this minimum splitting problem, such as splittings with
limited gaps and transposition invariance, and show how to use sparse
dynamic programming to solve the variations efficiently. In particular,
we show that the minimum splitting problem can be interpreted as a
shortest path problem on line segments.

1 Introduction

In multi-track string matching [4, 11] the task is to find occurrences of a pattern
across parallel strings. Given a pattern string P = p; - - - p,,, and K parallel text
strings T = {T* = t§-.-tF | 1 <k < K} over an integer alphabet X, there is
such an occurrence at j iff p; = tfimﬂ,---,pm = tf”‘, where k; € [1, K] for
1<j<m.

This basic problem is a generalization of exact string matching for multi-track
texts. An efficient solution is achievable by casting the problem into one of subset
matching; the recent result of Cole and Hariharan [3] gives an O(Knlog® Kn)
time solution. One can also deploy bit-parallelism. It is easy to implement the
naive algorithm to work in time O((Kn + mn)[|X|/w]) by generalizing the
solution of Iliopoulos and Kurokawa [9] for the case |¥| < w, w denoting the
size of machine words in bits.

In a variation of the problem the occurrences may be transposed, i.e., in the
formulation above there is an occurrence if p; = t;“_m pate o, pm = t?’” + ¢ for
some constant ¢. Lemstrém and Tarhio [11] give an efficient bit-parallel filtering
algorithm for solving the transposition invariant multi-track string matching
problem. After an O(nK[|X|/w]) preprocessing phase, the algorithm runs in
time O(n[m/w] + m + d) and space O(n[|X|/w] + €) where d and e denote
factors dependent on the size of the alphabet. The found candidates can then
be confirmed, e.g., by a checking algorithm working in time O(mKn) and space
O(m[|2|/wl) [11].

In some cases it is useful to allow gaps between the matching elements, i.e.,
pi = t?",piﬂ = tfrll“i for 1 <4 <m —1 with some 0 < ¢; < n —j— 1. The
gaps ¢; can be controlled by an integer 0 < a < oo by requiring ¢; < a for all 4.
Limited gaps are considered, for instance, in [6, 9] while unlimited gaps (o = 00)
in [13,14].

In this paper, we are interested in finding the smallest integer x > 0 such that
P may be split into k pieces P = P!... P* where each P’ has an occurrence in
some text track T% and the occurrences of the consecutive pieces must retain
the order. We control the gaps between the occurrences of P! and P? by using
the integer a.

We study this minimum splitting problem with its variations. Our solutions
use sparse dynamic programming based on the match set M = {(4,5,k) | p; =
t;"} The problem of unlimited gaps is solved in time O(|M|+m+ Kn) and space
O(|X| + |M| + m + n). Applying this algorithm to the transposition invariant
case results in time complexity O(mKn). Moreover, the result generalizes to the
case of a-limited gaps. In the case where the matching symbol pairs of M form
relatively long diagonal runs, called line segments, we obtain a more efficient
algorithm solving the problem. Having constructed the set of maximal line seg-
ments S in time O(|Z|* + |Z|m + m? + Kn + Slog K), the minimum splitting
problem is solved in time O(|S|logn). Modifications of this algorithm find the
a-limited gap occurrences in time O(|R|logn), where |R| < min(|$[2, |M]). A
more efficient algorithm, running in time O(kKn), is given for the case a = 0.

The problem has a natural application in content-based music retrieval: the
pattern is a short excerpt of a (monophonic) query melody that may be given,
e.g. by humming. Then the melody is searched for in a multi-track string repre-
senting a music database of polyphonic (multi instrument) music. However, it is
musically more pertinent not to allow the pattern to be totally distributed across
the tracks, but to search for occurrences of the pattern that make as few jumps
as possible between different instruments. The continuity of a “hidden melody”
is considered by limiting the lengths of the gaps.

Consider, for instance, the excerpt given in Fig. 1. The excerpt can be repre-
sented by a pitch string P = efghc, or in a transposition invariant way, by using
the pitch intervals between the notes: P' = +1,+2, +4,+1. Fig. 2 is an excerpt
from a polyphonic, four-track vocal music by Selim Palmgren. The four tracks
(denoted TI, TII, BI, and BII) are divided into two systems, both containing two
tracks. The two tracks within a system can be discriminated by observing the di-
rection of the note beams; the upper track contains notes with upper beams, the
lower tracks with lower beams. The excerpt in Fig. 1 has two 0-limited (o = 0),
transposed occurrences of k = 2 in Fig. 2. The first starts at the second note in
the lowest, BII track, and is distributed across two tracks (BII and TII). The
second occurrence starts at the eighth note and is distributed across tracks BII
and TI. It is noteworthy, that the latter occurrence captures the transition of
the musical melody from the lowest tone to the uppermost tone (the perceived
melody resides in the 10 first notes of track BII, and in the 5 last notes of TT).

'To

Fig.1. A monophonic query melody.

Selim Palmgren: Serenade

TI
TII

kun sul- le tdh- /det syt- tyy tar-hoissaan,/ ja i ta kas- teen

BI
BII

Fig. 2. An excerpt of a four-track vocal composition. The query melody in Fig. 1 has
two transposed occurrences such that xk = 2 and a = 0.

2 Definitions

Let X denote a fixed integer alphabet, i.e. X' C Z. The size of X' is defined as
|¥| = max(X) —min(X)+1. A string A over an integer alphabet X is a sequence
A = ajaz---ay,, where each character a; € 3. The length of A is denoted by
|A| = m. The string of length 0 is denoted by .

A sequence a;---a; = A;.; is a substring of A, where 1 < i < j < m.
Substring A, ; is called a prefir and substring A; ., is called a suffiz of A.

A multi-track text T is a set of equal length strings. The cardinality of T is
denoted by ||T|| = K and the length of each string in T is denoted by |T| = n.
A multi-track text T can be written as {T* = tf...t* | 1 <k < K}, where T*
denotes the string at track k.

Problem 1 Given a pattern string P and a multi-track text T = {T* | 1 <
k < K}, the minimum splitting problem is to find the smallest integer k such
that P can be split into k pieces P = P'P2... P®, where each P occurs in
some text track T* and the consecutive pieces must retain the order, i.e., P* =

TJ€L|Pi\+1...ji’ and j; 1 < ji — [P +1<n—|P*[+1 (jo =0) for k; € [1, K].

3 Solution Based on Sparse Dynamic Programming

We next describe a sparse dynamic programming algorithm for solving the
minimum splitting problem. Let P, T be an instance of the problem. Let
M = M(P,T) be the set of matching character triples between P and each
text in T, i.e.

M ={(,j,k) |pi=t§,1<i<m,1<j<n1<k<K} (1)

Our algorithm fills (sparsely) an m x n x K array (d;;i) such that d;;; stores the
minimum splitting x needed between p; -- - p; and t?,l ---tf“, where 1 < j' < j,
k; € [1, K], and k., = k. Note that only cells (¢, ,k) € M need to be filled. This
sparse matrix is visualized in Fig. 3.

dijofa--mreee s Fe

[o

dijk

Fig. 3. The sparse matrix M.

3.1 Basic Algorithm

The recurrence for values d; ;j is easily derivable from the definition. For
(1,7,k) € M, it is

if (6 —1,j—1,k) € M then d;i_1 1, else 00

di—1,j 1 +1 where (i — 1,5, k') e M,j' <j (*) ’ (2)

di,j,k = min {

with the boundary condition that d; ;, = 0 for each (1,j,k) € M. Value k =
min{dp, ;x| (M, j, k) € M} gives the solution to the minimum splitting problem.

An O(mn) time dynamic programming algorithm is immediate from recur-
rence (2). We next show how to obtain O(|M]) time. First, we need M con-
structed in some proper evaluation order: if dy j ;' is needed for computing
d; j, then (', j', k') must precede (4, j, k) in M. We use the following order.

Definition 2 The reverse column-by-column order of M C {(3,j,k)} is given
by sorting M first by i in ascending order, then by j in descending order, and
then by k in ascending order. That is, (i',5', k') precedes (i,j,k) iff i' < i or
G'=iand (5 >jor(f =7 and k' <k)))

Let us, for now, assume that we are given M sorted in reverse column-by-
column order into an array L(1...|M]|), where L(p) = (3,4,k,d), 1 < p < |M|.
The value d in L(p) will be used to store value d; ;. We denote by L(p).R the
element X of L(p). Moreover, let us assume that given a cell L(p) = (4, , k, d) we
can access an existing cell diag(p) = L(p') = (i — 1,j — 1, k,d') in constant time.
With such representation of M, the following algorithm solves the minimum
splitting problem.

Algorithm 1.

(1) C(0) +

(2) for p+ 1to |M| do begin

(3) L(p).d + min(diag(p).d, C(L(p).i — 1) + 1)
(4) C(L(p).i) + min(C(L(p)-i), L(p).d) end

Having run Algorithm 1, value k = min{L(p).d | L(p).i = m} gives the
solution.

To see that Algorithm 1 evaluates recurrence (2), consider the following.
Array C(0...m) is for keeping the row minima, corresponding to line 2 of re-
currence (2). The reverse column-by-column evaluation guarantees that the row
minimum C(L(p).i — 1) is indeed taken over the correct values once computing
L(p).d. Line 1 of recurrence (2) is taken into account in diag(p).d of row (3): If
diag(p) does not exist, either L(p).; = 1 (first row) in which case we interpret
diag(p).d = 0, or L(p).i # 1 and we interpret diag(p).d = co. This corresponds
to the boundary condition of recurrence (2).

Algorithm 1 runs in time O(|M|).

3.2 Constructing set M

Let us now show how to achieve an O(|X| + m + Kn + |M]|) total running time
by constructing an array L(1...|M|) with pointers diag(p) to represent M as
required.

Lemma 3 Given a pattern string P of length m and a multi-track text T of
cardinality K and of length n, the array L(1...|M|) giving the reverse column-
by-column order of match set M = M(P,T) can be constructed in time O(|X] +

m+ Kn+|M]|). Also the pointers diag(p) = L(p') = (1 —1,7—1,k,d') from each
L(p) = (3,4, k,d) can be assigned within the same time bound.

Proof. First, we construct for each character o € X the list of its consecutive
occurrences in T. This is done for all characters at once by traversing through
T in an order t1,t3,...,t{<,t3,...,t5. At t¥ we insert (j,k) into the end of
a list Occ(t;?). Each insertion takes constant time, since we can use an array
Occ(1...]1X]) to store lists. Thus, this phase is accomplished in O(|X| + Kn)
time.

Second, we traverse through P, and at p; we get the ith row of M by copy-
ing list Occ(p;) and by adding 4 into each cell (j,k) to produce cell (3,7, k).
At the end, we have produced M, but it is in row-by-row order. However, it
is easy to produce the reverse column-by-column order; traverse through M
and add each cell (i,7,k) to the beginning of a list Col(j). Concatenating lists
Col(1)Col(2) - - - Col(n) gives M in reverse column-by-column order. The second
phase requires O(m + |M| + n) time.

Finally, we assign the pointers diag(p): We sort M in diagonal-by-diagonal
order, first by values j — 4, then by j, and then by k. This takes O(|M|) time
(implementation is analogous to the case considered above). Once M is ordered,
the pointers are easy to assign. Consider first that K = 1. Then the cells to
be linked are consecutive, and pointers can be assigned in constant time. When
K > 1, one can still do this in constant time per cell by merging the sets F'(i, j) =
{(Z - 17j - 17k) | (Z - 1’j - Lk) € M} and S(Z’J) = {(Z’Jak) | (Z’Jak) € M}
by value k. When F(i,7) and S(i,j) are merged, the cells to be linked become
consecutive. Each merging can be done in linear time in the size of sets F'(i,j)
and S(1,j), since both sets can be obtained from M already in correct order.
Each cell of M belongs to (at most) one F'(3,j) and to (at most) one S(3,j),
which gives the O(|M|) time for assigning all diag(p) pointers.

Summing all the running times, we get the claimed bound. O

3.3 Limiting Gaps with a

Let us now consider the case of a-limited gaps. We will show that the time bound
O(|X| + m + Kn + |M]) of the unlimited case, can be achieved in this case, as
well.

When gaps are limited, the condition (*) in recurrence (2) becomes j — a <
j' < j. A straightforward generalization of Algorithm 1 would result in time
complexity O(|X| + m + Kn + |M|a). We can do better by applying a queue
data structure @) supporting the following operations:

— v + Q.Min(): Return the minimum value v of elements in the queue;
— @Q.Add(j,v): Add new element j as the first element with value v;

— 7'+ Q.KeyOfLast(): Return the key of the last element; and

— @Q.Remove(): Remove the last element.

The modification for Algorithm 1 is evident: Instead of maintaining each row
minimum in C(3), use a queue Q(¢) for each row i. The algorithm changes into
the following.

Algorithm 2.

(1) for p+ 1 to |M| do begin

(2) L(p).d + min(diag(p).d, Q(L(p).i — 1).Min() + 1)

3 QL()A)-Add(L(p)-j, L(p)-d)

4) while L(p).j —a > Q(i).KeyO f Last() do Q(i).Remove() end

Analogously to Algorithm 1, we interpret diag(p).d = oo if diag(p) does not
exist, except when L(p).i = 1 we interpret diag(p).d = 0.

If the queues are implemented as min-dequeues [7], all the above mentioned
operations can be supported in constant time.! Thus, the algorithm runs in time
O(|Z|+m+ Kn+ |M)).

3.4 Transposition Invariance.

The O(|M]) algorithms are useful for the transposition invariant case, as well. Let
M€ be the set of matches for transposition ¢, i.e. M¢ = M¢(P,T) = {(¢, 5, k) | pi+
c =15} Then 3 . [M¢| = mKn, where C = {t¥ — p;} [12]. Note that C is the
set of relevant transpositions, since for other ¢ € R\ C, the corresponding set
Me¢ is empty. The sets {M° | ¢ € C} can be constructed in O(|X| + mKn) time
on integer alphabets [12]. By repeating the previous O(|M|) algorithms for each
c € C, we get total running time O(|X|+mKn+ > .- |M¢|) = O(|¥| + mKn).

The results of Sect. 3 are summarized below.

Theorem 4 Given a pattern string P of length m and a multi-track text T of
cardinality K and of length n, there is an algorithm solving the minimum splitting
problem (with or without the ac—restriction on gaps) in O(|X| +m + Kn + |M]|)
time on integer alphabet, where M = {(i,j,k) | ps = tf} The transposition
invariant case can be solved in O(|X| + mKn) time.

4 Interpretation as a Shortest Path Problem on Line
Segments

In this section, we interpret the minimum splitting problem as a geometric path
problem on line segments and define the minimum jump distance. For simplicity,
let us assume that we have only one text; the minor modifications for the case
of multiple texts are given in Sect. 4.4.

The set of possible matches M is written as M = M(P,T) = {(¢,7) | pi = t;}
during this section. Consider the m x n matrix, where pairs in M are sparse set of
points. Diagonally consecutive points (¢,7), (i+1,5+1),...,G+£€—1,7+£—1) €
M form a line segment S in this grid. Let us denote by $ = S(P,T) the set of
all mazimal line segments of M. A line segment S = (4,5)--- (i +£—1,7+£—1)

! Min-deques were also used by Crochemore et al. [6] for a similar problem.

is maximal if (i — 1,5 — 1), (¢ + ¢,j + £) ¢ M. Let us denote by start(S) = (3, j)
and end(S) = (i + £ — 1, + £ — 1) the two end points of line segment S € S.
Our problem now equals the following geometric path problem: Find a minimum
cost path from row 1 to row m such that only diagonal steps are allowed when
inside a line segment, otherwise only horizontal steps are allowed. To be precise,
we must also take the discrete nature of the problem into account; one can jump
(using horizontal steps) from segment S’ to segment S only if there is p > 2 such
that (i — 1,5 — p) € S’ for some (i,5) € S. The cost of a path is the number
of line segments in the path —1. Minimum jump distance equals the minimum
cost path from row 1 to row m. This interpretation as a shortest path problem
is visualized in Fig. 4.

start(S)

end(S) N

Fig. 4. Example of line segments. An optimal path from top to the bottom is visualized.

The following subsections considers, whether: (i) the set of line segments §
can be constructed in a time proportional to |S|, and (ii) the minimum jump
distance can be computed in a similar time.

4.1 Constructing Set S

Next we give an algorithm that, after O(m? + |X|m + | X|?) time preprocessing,
constructs set S in time O(n + |S|). We use and extend some results of Ukkonen
and Wood [15].

Let Prefiz(A, B) denote the length of the longest common prefix of A
and B. Let Mazprefiz(j) be max{Prefiz(Pi. .m,Tj.») | 1 < i < m}, and
H(j) some index i of P that gives the maximum. Let Jump(i,j) denote
Prefiz(P;...m,T;j..n). We have the following connection.

Lemma 5 ([15]) Jump(i,j) = min(Mazprefiz(j), Prefiz(P;. m, Pu(j)..m))-

Ukkonen and Wood show that Mazprefiz(j) and H(j) are computable, for
all j, in O(m? + |X| + n) time by using an Aho-Corasick automaton [1] for
all suffices of the pattern (or more precisely its minimized version, the suffix
automaton [5]). At preprocessing, one can construct an array PI(1...m,1...m)
in O(m?) time such that PI(i',i) = Prefiz(Pi...m, P;...m) [10, 8]. From Lemma 5
it follows that, after O(m? + |X| + n) time preprocessing, Jump(i,j) can be
supported in constant time for all pairs 4, j.

Therefore, if we manage to call Jump(i, j) only at points (i,j) = start(S)
for S € S, we will be able to construct S in O(]S]) time. Note that a point (4, §)
equals start(S) for some S € S iff pi—1 # tj—1 and p; = t;. We construct a data
structure £ that supports an operation £.List(z,y) giving the list of positions
{i} in P, where p;_1 #z and p; =y. Assuming that such data structure exists,
the following algorithm constructs set S (represented as pairs of end points) in
time O(n + |S|).

Algorithm 3.

(1) /* construct £ */

(2) S« 0

(3) for j + 1ton do begin

(4) L « L.List(tj_1,t;) /¥ to=¢€*/

(5) for k < 1 to |L| do begin

(6) €+ Jump(L(k), j)

(7) S 8+ ((L(k),4),(L(k) + £ —1,5+£—1)) end end

Let us now explain how to construct £. We build a search tree of depth two
representing all choices to read two characters. Let 2y be two characters leading
to leaf [. We associate a list of pattern positions {7} to [such that p;_1 # = and
p; = y. Then L.List(z,y) is found in linear time in the size of the output by
traversing the path zy (to [) and printing the list associated with [. Now, the
size of this structure is O(|X|? + |X|m), since there are O(|X|?) leaves and each
position i of P is stored in exactly | X| — 1 lists (except position 1 which is stored
in | X| lists, since we assume pg # z for all z). The naive algorithm to construct
the structure (which inserts each ¢ from i = 1 to ¢ = m into £) runs in time
proportional to the size of the structure.

Lemma 6 Given a pattern string P and a text T of lengths m and n, re-
spectively, Algorithm 3 constructs the set of mazimal line segments S(P,T) in
O(m?+|X|m+|Z|2+n+|S|) time. Set S can be obtained in diagonal-by-diagonal
order by a small adjustment of the algorithm.

Proof. The result should be clear from the above discussion, expect for the
diagonal-by-diagonal order. At line (7) of Algorithm 3, we can add the new
line segment into the end of a list D(j — L(k)). Finally, we can catenate all the
listss D(—m), ..., D(n) to get S in diagonal-by-diagonal order. O

4.2 Computing Minimum Jump Distance

Let d((¢, 7)) give the minimum jump distance from row 1 to (i, j). To get a bound
close to O(|S]), we need an algorithm doing computation only at end points of
line segments. To this end, we have the following lemma.

Lemma 7 The minimum jump distance d(end(S)) equals to the minimum jump
distance d(start(S)), for each S € S.

Proof. If this is not true, then there must be a point (i",;") # start(S) in
S and a point (i — 1,j” — p'") in some S” € § (where p" > 2) such that
d((@" —1,3" —p")) < d(start(S)) — 1. A

On the other hand, there must be a point (¢ — 1,5' — p') in some S’ € S
such that start(S) = (¢',j'), p’ > p”, and an optimal path from row 1 to point
(#" — 1,5" — p") traverses through (i’ — 1,5’ — p'). From which follows that
d((i' = 1,5' — p)) < d((i" - 1,5" — p")).

Thus, d((#', ") < d((@' — 1,5/ = p")) +1 < d((#" — 1,7" — p")) + 1, which
contradicts the counter-argument, and the lemma, follows. O

As a consequence of Lemma 7, we also know that d((i", j"")) = d(start(S)) for
each (i",j") € S. Thus, it is enough to consider only end points of line segments,
which are traversed e.g. in row-by-row order. Let d(S) denote the minimum jump
distance on line segment S. A data structure 7 stores the diagonal number j—¢ of
each line segment S together with d(S). Structure 7 is updated only when some
line segment starts or ends. At any point, 7 contains only those line segments
that intersect row ¢ — 1.

Consider now that we are computing value d((i,j)) where (3,7) = start(S)
for some S € 5. We need to query 7.Min([—o0,j —1)), which gives us the value
min{d((i',5')) | S' € 8, start(S") = (i',5'), 8'N([i—1]x[0,n]) # 0, j'—i' < j—i}.
Then d((i,5)) = T.Min([—o0,j —i)) + 1. These queries can be supported by
a binary search tree: use j — i as the sort key, store values d(S) in leaves, and
maintain subtree minima in each internal node. A range query for the minimum
value in a range [l,7] can then be easily supported in O(logn) time. The update
operations can be supported, too: When inserting a line segment, the tree can
be rebalanced and the subtree minima need only be updated in the path from
the new leaf to the root. Same applies for deleting a line segment. Each query
takes O(logn) time, since there can be only O(n) active line segments at a time.

The order of queries on T with respect to segment insertions and deletions
is important; we must delay deletions at row ¢ — 1 until all queries at row ¢ are
done, and insertions at row 7 until all queries in that row are done. As an answer
to question (ii), we conclude that the minimum jump distance can be computed
in time O(|S|logn), once the end points of the line segments are first given in
row-by-row order. By Lemma 6, we get S in diagonal-by-diagonal order. It is
easy to convert S into row-by-row order in O($) time using similar techniques
as in the proof of Lemma 3.

To clarify the above steps, we now give the algorithm in more detail. Let us
first fix the operations described above on 7

10

— v + T.Min(I): Return the minimum value v of elements having keys in
range [;

— T.Insert(e, k,v): Insert new element e with key k£ and value v; and

— T.Delete(k): Remove the element with key k.

Let us then partition the end points of line segments in S by row number and
the type of end point; lists B(i) and E(i) contain all start and end points of line
segments starting/ending at row i, respectively. Each list B(¢), E(i),1...m,isin
increasing order of column numbers j. Each element s of B(i) (or E(¢)) contains
values (i, j, seg), where seg is a pointer to the line segment S whose end point
(3,7) is. Each line segment S is associated with value S.d that is used for storing
the minimum jump distance from row 1 to S. The algorithm is given below.

Algorithm 4.

1) for each s € B(1) do begin /* initialize first row to zero */

2) s.seg.d < 0; T.Insert(s,s.j — s.i,s.seg.d); end

3) for i + 2 to m do begin /* compute row-by-row */

4) for each s € B(i) do /* compute values at row ¢ */

5) s.seg.d + T.Min([—o0,s.5 — 5.i)) + 1

6) for each s € E(i — 1) do /* remove those ending at row s — 1 */

7) T.Delete(s.j — s.i)

8) for each s € B(i) do /* add new line segments starting at row ¢ */
9) T.Insert(s,s.j — s.i,s.seg.d); end

Having executed Algorithm 4, the minimum jump distance d from row 1 to
row m is d = T.Min([—o0, 00]).

Summing up the preprocessing time for constructing S and the computation
time of Algorithm 4, we get the following result.

Theorem 8 Given a pattern string P and text T of lengths m and n, respec-
tively, the minimum splitting problem can be solved in time O(|X|? + |X|m +
m2 +n + |S|logn), where § is the set of mazimal line segments formed by the
diagonally consecutive pairs of M = {(3,7) | pi = t;}.

4.3 Limiting Gaps with a

Note that Lemma 7 does not hold if the lengths of the gaps are limited by
a constant a. To see this, consider situation where there are no line segments
within o distance from start(S). In this case d(start(S)) = oo. Nevertheless,
there can be line segments within « distance from some internal points of .9, in
which case d(end(S)) < d(start(S)) may hold.

We give a weaker lemma stating that there is a sparse set of points R, R C M,
such that similar computation as with S is possible. The size of R is bounded
by min(|S|2, |M|). The intuition of the lemma is, that at each line segment S
it is enough to consider only points s, such that, there is an optimal path that

11

traverses through a start point of a line segment S’ and that leads to s. Moreover,
the part of the path from S’ to S is of a certain, fixed form.

To state the lemma, we need to introduce some concepts. The feasible paths
in the sparse set M can be represented in S as follows; a feasible path in S is
a sequence of line segments visited by the path, and a list of entry and exit
points on them. Let us now define the fixed form of path mentioned above. An
a-straight path IT from start(S') to S (S',S € §) is a sequence IT = 7y - - - 1, of

line segments of S such that m = S, mp = S. Path IT must satisfy the following
conditions:

(i) the gaps between consecutive line segments of IT are limited by «, i.e. j, —
Jg—1 — 1 < @, where 1 < g < p and start(my) = (ig, Jq);

(i) only a single point in each line segment is visited, i.e. point (i1 +¢ — 1,7, +
g + i1 —ig — 1) must be inside line segment 7,, where start(m;) = (iq,7q),
I<qg<p.

Definition 1. An a-greedy path is an a-straight path II whose line segments
are picked greedily mazimizing the length of gaps under constraints (i-ii).

An a-greedy path is visualized in Fig. 5.

Fig. 5. An optimal path from top to the bottom. The path contains an a-greedy part

from the start of the second line segment to the point where it enters the last line
segment.

Lemma 9 Let s = (4,5) be a point on line segment S € S. Then there is an
optimal path from row 1 to point s such that the last part of the path is an

a-greedy path starting from point start(S') of some line segment S' € S to
(i—c,j—c)€S,c>0.

12

Proof. We will first prove that there is an optimal path that has an a-straight
path as a suffix, and then we show that each a-straight path can be replaced by
an a-greedy path.

Let S’ be the last line segment whose start point start(S') is on an optimal
path from row 1 to point s. Such line segment always exists. Let us consider
the last part of this path from start(S’) to s. We can straighten this path by
removing one diagonal movement from each line segment it visits. Notice that
the path is still feasible since the gaps between consecutive line segments do not
change. We can continue straightening without changing the cost of the path
until we meet the first start point of some line segment S” or until the path is
optimally straight, i.e. it is an a-straight path. In the latter case we are done. In
the first case, we can start the same process from S” and then by induction we
finally find some line segment 5"’ which has an a-straight path from start(S"’)
to point (1 — ¢,j —¢) € S. It might happen that line segment S is the one that
limits the straightening process at some point. This is a special case, since then
we have a zero length a-straight path from start(S) to start(S).

Now, we still need to show that we can safely replace an a-straight path with
an a-greedy path. Let X = z1z5 - -- be the sequence of line segments visited by
an a-straight path and Y = y;y2 --- the sequence visited by an a-greedy path
such that both sequences start and end with the same line segments. If we replace
z1 with y1, z2 can still be reached from y;, or x5 is a predecessor of y; in the
diagonal order. In the first case, we can continue on replacing z» with ys. In
the second case, we can omit z» since x3 can be reached from y;, or z3 is a
predecessor of y;. Iterating this replacement for the whole X we get an equal or
cheaper cost path. O

An algorithm computing the minimum jump distance under the o constraint
follows from Lemma 9. In addition to start and end points of line segments, some
computation on the intersection set R, that contains points at the intersection
of § and the a-greedy paths, is needed. Set R can be computed on-the-fly by
extending Algorithm 4 of previous subsection.

We now describe the required modifications to Algorithm 4. Recall data struc-
ture 7 and lists B(3), E(i) from Section 4.2. We need two additional operations
on 7:

— T.Update(e, k,v): Update the value of element having key k£ to v (or
Insert(e, k,v) if key k is not found).
— L = T.List(I): Return the list of elements having keys in range I.

Update-operation can be supported in time O(logn) just like Insert. List-
operation can be supported in time O(logn + occ), where occ is the number
of elements returned. The latter operation is used for listing all line segments
in o distance from the current start point (to update values in the a-greedy
paths). We cannot, however, use this operation as such at each start point, since
then we could report the same intersection points multiple times. To obtain total
running time O(min(|S|2, |M|) logn), we must ensure that we report each inter-
section point only once. This is done by maintaining for each row 7 a list I(— 1)

13

of distinct ranges, where we need to call the List-operation. After computing
the values at row ¢ — 1, and collected list I(i — 1), we query each range of I(i —1)
from 7. We get an increasing list A of line segments. We can merge this list with
B(i) (in linear time in their sizes) to get the list F' of line segments whose values
need to be updated at row i. To proceed, we need to remove from A those line
segments that do not continue any a-greedy path (to ensure |S|?) bound). This
is done by a simultaneous scan over A and over the points that formed I(i — 1).
We get list G of line segments that continue a-greedy paths. By merging G' and
B(i) we get a list U of line segments that continue or start new a-greedy paths.
From U, we get list I(7) of ranges that need to be updated at row i + 1. We have
now described in an informal level one step of the algorithm.

The detailed algorithm is given below. We need two instances of 7 since we
need to be able to query two rows, ¢ — 1 and %, at the same time. We only give
the update operations for 7 corresponding to row ¢ — 1. Structure 7' for row
¢ can be maintained similarly; at any point it contains all line segments that
intersect row i, but do not start at that row. We assume that all non-initialized
values are set to oo.

Algorithm 5. /* Update operations for 7" are not given */

1) for each s € B(1) do begin /* initialize first row to zero */

) s.seg.d < 0; T.Insert(s,s.j — s.i,s.seg.d); end

) U+« B(1)

) for i «+ 2 to m do begin /* compute row-by-row */

) I(i — 1) + GetRanges(U,a); A < 0

) for each range r in I(i — 1) do A + Concatenate(A,T'.List(r))
) F + Merge(A, B(i)) /* line segments to be updated */

) for each s € F do /* compute values at row i */

) s.seg.d + T.Min([s.j — s.i — a,8.] — s.3)) + 1

0) for each s € E(i — 1) do /* remove those ending at row 7 — 1 */
1) T .Delete(s.j — s.i)

2) for each s € F do /* update values at row ¢ */

3) T.Update(s, s.j — s.i, s.seg.d)

4) G < Reduce(A,U) /* remove those not in a-greedy paths */

5) U < Merge(G, B(7)); /* get the set of active line segments */ end

Since the implementations of Concatenate() and Merge() are straight-
forward, we only describe how to implement GetRanges() and Reduce(). In
GetRanges(U, o), we scan over U and report each range once it is ready; Let
[[,7] be the current unfinished range and s € U the next segment to be processed.
If s.j — s.i < r then [[,r] becomes [[,s; — s; + a]. Otherwise, [I,r] is reported
and a new range [s; — s; + 1,s; — s; + a] becomes the new unfinished range.
In Reduce(A,U), the logics is the following; For each s’ € U there is at most
one s € A such that s can be reached from s’ with a jump < a and the jump is
maximal among all segments that can be reached from s’ with jump < « (thus, s

14

continues an a-greedy path). With a simultaneous scan over U and A we can find
all the segments of A that are not mazimal for any s’ € U. This is, because once
a maximal segment s is found for some s’ € U, we can continue with the next
segment in U. Then by scanning A starting from s, we can remove all segments
in between until we found the new maximal segment. Hence, both GetRanges()
and Reduce() can be implemented in linear time in the total lengths of the in-
put lists. Same applies for Merge(). Each call to function Concatenate() takes
constant time.

The correctness of Algorithm 5 follows from the fact that the minimum jump
distance to each line segment is updated when the line segment starts, and at
the intersection points of a-greedy paths.

Due to Lemma 9, these are the only points where updating is needed. The
running time O(min(|S|2,|M]|)logn) follows from two facts: (1) Each of the |S]
a-greedy paths can intersect at most |S| — 1 line segments. Algorithm 5 (due
to lines 14-15) only does computation on the intersections of a-greedy paths
and line segments (those intersection points that are removed in line 14 are end
points of some a-greedy paths, so the computation on them in lines 5-9 is not
only allowed but necessary). (2) Not depending on how many a-greedy paths
intersect a point in M, each such point is accessed constant number of times
(due to lines 5-7). The logn factor is from queries on 7 and 7.

The following theorem summarizes the result.

Theorem 10 Given a pattern string P and text string T of lengths m and n,
respectively, the minimum splitting problem with a-limited gaps can be solved in
time O(|X|?+|Z|m+m2+n+|R|logn), |R| < min(|S|?,|M|), where S is the set
of line segments formed by the diagonally consecutive pairs of M = {(i,J) | pi =

t;}.

4.4 Handling Multiple Texts

The algorithms above work with minor modifications also when K > 1; the
preprocessing now takes O(|X|*> + | X|m +m? + Kn + |S|log K) time. The extra
log K factor comes from the fact that we need to merge the sets of line segments,
which are constructed for each text T* separately. That is, we have to merge
K lists that are already in row-by-row order. This takes O(|S|log K) time. The
algorithm itself takes O(|S|logn) time or O(|R|logn) time if gaps are restricted
with a.. Here § is the set of (possibly parallel) line segments corresponding to the
diagonally consecutive points in the (i, j) plane at fixed k in the sparse matrix
M ={(,5,k) | ps = tf} Set R is the intersection set containing points at the

intersection of S and the a-greedy paths.

Basically, the only modification is that the query range is changed from
ji—i < j—itoj —i < j—1iin the algorithms (to allow jumps between
parallel line segments). Also, the data structure 7 must be modified so that the
key associated with a line segment is not simply j — i, but a combination of j —i
and k; the value of k£ can be ignored in range queries, but it must be used for
separating parallel line segments.

15

5 Allowing no Gaps

We finally consider the special case where gaps are not allowed, i.e. & = 0. The
following fact is easy to see.

Fact 11 Let there be a splitting of the pattern into k pieces, starting at position
7 of the multi-track text T, without gaps between the consecutive pattern piece
occurrences. Then there is an equally good occurrence that can be found by the
following greedy algorithm: Select the text T* whose jth suffix has the longest
common prefiz with the pattern. Let this common prefiz have length 1. Iterate the
same algorithm from position j + | with pattern suffiz Py1, until o splitting to
K pieces is found.

The above greedy algorithm is given more formally below.

Algorithm 6.

(1) for j=1ton —m+1 do begin

(2) (k,3,1) «+ (1,1,0)

(3) while k£ # 0 do begin

(4) (', k) « JumpK(i+1,j+1);l <1+

(5) if I ==m /* An occurrence found */ end end

Function JumpK (i, 7), in Algorithm 6, returns pair (I, k) such that the jth
suffix of text track 7% has the longest common prefix (of length [) with the
pattern suffix P; . If no common prefixes are found, it returns (0, 0).

We can again use the result of Ukkonen and Wood [15] (see Sect. 4.1), and
support JumpK (i,j) in O(K) time (by computing values Mazprefiz(j) for
each text separately). Given a threshold k, we can limit the while-loop at lines
(3-5) of Algorithm 6 so that at most k + 1 calls to function JumpK (i,j) are
made at each position j. This gives an O(m? + |X| + kKn) time algorithm
(O(m? + |X| + Kn) comes from the preprocessing for JumpK (i, j) queries).

Theorem 12 Given a pattern string P = pips---pm and a multi-track text
T={Tk=1tF---tF | 1 <k < K}, the minimum splitting problem with o = 0
can be solved in O(m? + |X| + kKn) time, where k is a given threshold.

6 Conclusions

We have studied the minimum splitting problem of string patterns in multi-track
texts, and introduced efficient solutions to certain variations of the problem. Our
solutions based on sparse dynamic programming (given in Sect. 3), have a direct
application in music retrieval. The algorithm summarized in Theorem 4 has been
implemented and included in our C-BRAHMS music retrieval engine [2].
Interpreting the problem as a shortest path problem on line segments seems
to give even more efficient algorithms. For random strings the line segments are

16

rather short, and the algorithms based on line segments are not practical. In
music, where repetitions are common, the line segment based algorithms are
expected to perform somewhat better. Nevertheless, we expect these algorithms
to be more theoretically than practically interesting.

However, a simple modification to the problem statement makes the line
segment based algorithms practically interesting. Suppose that we are given a
limit v to the minimum length of the pieces the pattern can be split into. Our
preprocessing can be modified to construct a set S7 of maximal line segments
of length at least v in O(m2logm + Knlogm + yKn + |$7|log K) time. This
already is practical, since set $7=2 is expected to be much smaller than §7=!.
We leave for further work to improve upon the yKn term.

References

1. A.V. Aho and M.J. Corasick. Efficient string matching. Communications of the
ACM, 18(6):333-340, 1975.

2. C-BRAHMS. http://www.cs.helsinki.fi/group/cbrahms/demoengine/.

3. R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proc. Symposium on Theory of Computing (STOC’2002), pages 592—
601. ACM Press, 2002.

4. T. Crawford, C.S. Iliopoulos, and R. Raman. String matching techniques for musi-
cal similarity and melodic recognition. Computing in Musicology, 11:71-100, 1998.

5. M. Crochemore. String matching with constraints. In MF(CS, pages 44-58, 1988.

6. M. Crochemore, C.S. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsich-
las. Approximate string matching with gaps. Nordic Journal of Computing,
9(1):54-65, 2002.

7. H. Gajewska and R. Tarjan. Deques with heap order. Information Processing
Letters, 12(4):197-200, 1986.

8. Z. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM J. Comput., 19:989-999, 1990.

9. C.S. Iliopoulos and M. Kurokawa. String matching with gaps for musical melodic
recognition. In Proc. Prague Stringology Conference 2002 (PSC’2002), pages 55—
64, Prague, 2002.

10. G.M. Landau and U. Vishkin. Fast string matching with k differences. Journal of
Computers and Systems, 37:63-78, 1988.

11. K. Lemstrém and J. Tarhio. Transposition invariant pattern matching for multi-
track strings. 2003. (submitted).

12. V. Mé&kinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant
string matching. In Proceedings of the 20th International Symposium on Theoret-
ical Aspects of Computer Science (STACS’2003), volume 2607 of Springer-Verlag
LNCS, pages 191-202, 2003.

13. D. Meredith, G.A. Wiggins, and K. Lemstrém. Pattern induction and matching in
polyphonic music and other multi-dimensional datasets. In the 5th World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI’2001), volume X,
pages 61-66, Orlando, FLO, July 2001.

14. E. Ukkonen, K. Lemstrom, and V. Makinen. Sweepline the music! In Computer
Science in Perspective, volume 2598 of Springer- Verlag LNCS, pages 330-342, 2003.

15. E. Ukkonen and D. Wood. Fast approximate string matching with suffix automata.
Algorithmica, 10:353—-364, 1993.

17

