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Abstract. We consider the problem of multi-track string matching. The task
is to find the occurrences of a pattern across parallel strings. Given a set S of h

strings s* = st ---s¢ i€ {l,...,h}, a pattern p = p; - - - p,, has such an occurrence
at position j of S if p1 = s¥',ps = sP,,...,Pm = 87},,_; holds where i; is in
{1,...,h} for j =1,...,m. An application of the problem is music retrieval where

occurrences of a monophonic query pattern are searched in a polyphonic music
database. In music retrieval it is even more pertinent to allow invariance for pitch
level transpositions, i.e., the task is to find whether there are occurrences of p in
S such that the formulation above becomes p1 = s} +¢,p2 = s + ¢, .y pm =
si-’;m_l + ¢ for some constant c. We present several algorithms solving the problem.
Our main contribution, the MONOPOLY algorithm, is a transposition-invariant bit-
parallel filtering algorithm for static databases. It finds candidates for transposition
invariant occurrences in time O([|X'|/w]n + m + [m/w]|¥’| - 2'!) where w and
|2'| denote sizes of the machine word in bits and the underlying (relative) alphabet,
respectively. A straightforward algorithm working in time O(nhm) is incrementally
used to check whether the candidates are proper occurrences.

Key words: String algorithms, combinatorial pattern matching, bit parallelism,
music retrieval
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1. Introduction

String matching is a fundamental problem in many application areas, such
as in information retrieval. The most conventional form of the problem is to
find exact occurrences of a given query string p = p; - - - pp, within another
string s = s1 - - - sp, where each of p; (1 <7 <m) and s; (1 < j < n) belongs
to an alphabet ¥. The famous and practical solution for this problem was
presented by Boyer and Moore [1977] with a worst-case time complexity of
O(nm), which was subsequently refined to O(n + rm) where r denotes the
number of occurrences [Guibas and Odlyzko 1980]. Later, Baeza-Yates and
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Gonnet [1992] introduced the SHIFTOR algorithm, an inspiring and efficient
solution which uses the word-level bitwise operations of computer hardware.
Their bit-parallel algorithm achieves a time complexity of O(n[7}]), where
w is the size of the machine word (e.g. 32 or 64 bits, in practice).

In this paper, we consider some extensions of the exact string matching
problem and present several algorithms solving them. Let us suppose that
the underlying alphabet is a subset of natural numbers with standard arith-
metic. In multi-track string matching (also called distributed string match-
ing) the text S is composed of h parallel strings, s* = si st ie{l,... A},
called tracks, and the pattern p is said to have an occurrence across the tracks
hat j, if p1 = s',p2 = 21, ,Pm = 8%, 1 holds where i; € {1,...,h}
for j = 1,...,m. Note our distinction between s and S corresponding to a
plain string and a multi-track string, respectively.

As it turns out, transposition invariance is a natural and useful property
of our application. To this end, we update the formulation of the problem as
follows: given the pattern p and the text S comprising h tracks, each track
s* of length |s'| = n and i € {1,...,h}, the task is to find all js such that
p1 = s;} +c,ps = S;'z+1+c’ ee s Pm = s;’j_m_l—l—c holds, for some constant ¢ and
for i1,...,im € {1,...,h}. We call this transposition invariant multi-track
string matching.

In the next section we present some background for our study: First
we briefly describe our application domain and show how music is repre-
sented by using strings. Then we give a brief summary of related work.
Section 3 reviews the SHIFTOR algorithm and shows how it can be mod-
ified to be applicable for multi-track string matching. This modification,
called SHIFTORAND, works in time O(nh[7}]). In Section 4, we will in-
troduce the three novel algorithms for transposition invariant multi-track
string matching. First we describe a straightforward O(nhm) solution called
DIRECTCHECK. It is based on a naive string matching algorithm (see, e.g.,
[Crochemore and Rytter 1994, p. 34]). Then we show how the problem can be
solved more efficiently in practice, by executing a filtering algorithm before
DIRECTCHECK (or some other algorithm capable of checking). Having in-
troduced the INTERVALMATCHING on-line filter working in time O(nh?[2]),
we will devote more time in a detailed description and careful analyses on
our main contribution, i.e., the MONOPOLY filtering algorithm. MoNoPoOLY
is used with static databases, i.e. the database is not updated between con-
secutive queries. The algorithm consists of an O(nhc) preprocessing and an
O(n[ %]+ m+d) filtering phase, where ¢ and d denote factors dependent on
the size of the alphabet. Before concluding the paper in Section 6, we will
show the results of our extensive experiments on MONOPOLY in Section 5.

A preliminary version of this paper appeared in Lemstrédm and Tarhio
[2000].
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2. Background

Multi-track string matching has an application area in content-based mu-
sic retrieval (see, e.g., Lemstrém [2000]). Combinatorial string matching
methods become applicable to music retrieval, when music is presented sym-
bolically. For instance, the elements of a string may represent the pitch of
a note (i.e. the perceived height of the played note). In terms of our spec-
ification above, music is said to be monophonic if h = 1, and it is called
polyphonic if h > 1. In homophonic music there is a pitch for every s; Typ-
ically polyphonic music is not homophonic. We use an additional special
character A to denote a missing pitch.

The motivation for the problem under consideration is a typical music
retrieval query case, where a monophonic pattern (that may be given, e.g.
by humming, by playing an instrument, or just by typing) is searched for
in a multi-track text representing a polyphonic music database'. Moreover,
transposition invariance plays a central role in western music perception, for
musical melodies are recognized rather based on the intervals between the
consecutive pitches than on the absolute pitch sequences constituting the
melodies.

2.1 Representing Music

In a rudimentary representation of polyphonic music, symbols of a string rep-
resent pitch (or interval) values of notes in one track, and the order of symbols
within the string are in accordance with the note order of the represented
track. A common underlying alphabet is based on MIDI pitch values [MIDI
Manufacturers Association 1996]: 3128 = {0,...,127} [J{A} where 60 cor-
responds to the middle-C. For example, the excerpt given in Fig. 2.1 can
be represented as follows: s' = 65,64, 62,60; s> = 69,67,65,64; and s*> =
72, A, A, 72.

Fig. 2.1: A musical excerpt.

Note that when moving from absolute values to intervals, the size of the
underlying alphabet is doubled. Henceforth we make a distinction between

! Indeed, a musical melody may occur distributed across several tracks (voices), as it is the
case in Elgar’s Cockaigne, for instance. However, in general a more pertinent case would be
to try minimize the number of track shifts within an occurrence. Although this matter falls
out of the scope of the current paper, the reader should note that the checking algorithm
could be modified to consider the case, for it has the tracking information available.
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interval and absolute alphabets: an interval alphabet, denoted by X', cor-
responds to an absolute alphabet ¥. Furthermore, we use a subscript to
denote the size of the alphabet.

Due to a pragmatic problem — an alphabet as large as X4, (MIDI inter-
val alphabet) would make our principal algorithm impractical — we need
a smaller but musically relevant alphabet. Another, musically relevant al-
phabet distinguishes only 12 pitches (or intervals). By musical terms, two
pitches separated by 12 semitones is called octave. Among all the intervals
octave is very special: it is the only interval whose arbitrary combinations are
consonant Parncutt [1989]. Octave equivalence, “one of the most fundamen-
tal axioms of tonal music” [Forte 1962|, means that intervals are reduced to
(semitonic) scale 0,1,...,11. Technically this is achieved by using alphabet

'2 ={0,1,...,11} and replacing the original interval h by value h mod 12
(remember that our alphabets are subsets of natural numbers). Thus, an in-
terval of 7 semitones upwards equals the interval of 5 semitones downwards,
for instance. Using the alphabet 312, the example in Fig. 2.1 would become
as follows: s' =5,4,2,0; s2 =9,7,5,4; and s = 0,\, ), 0.

Let ¥, be the alphabet. By S; we denote an ordered vertical section of
the text at j, i.e.,, S; = s},s?,...,s;‘ where st < sl for 1 < i < h—1,
i.e. the pitches of S; are in the nondecreasing order. We call such a vertical
section a chord. The chords can be represented by bitvectors S[j], where
each S[j] is a chord bitvector (cbv) of £ bits. To be precise, each cbv is
formally a symbol of a cbv alphabet ¥ of size [X| = 2¢. Nevertheless, as
the connection between ¥ and X is straightforward, we will mostly avoid the
explicit exposition of cbv alphabets to improve the readability. A zero in a
cbv corresponds to a present pitch in the chord, while an on-bit indicates
absence of the corresponding pitch. For instance, if the underlying alphabet
is Y12 (absolute pitches reduced according to octave equivalence), the cbv
string S = (S[1]) - - - (S[n]) corresponding to Fig. 2.1 would be:

(0’ ]" 1’ ]" 1’ O’ 1’ ]" 1’ O’ 15 1>’
(1,1,1,1,0,1,1,0,1,1,1,1),
(1’ 1’ 0’ 1’ 1’ O’ 1’ 1’ 1’ 1, 1’ 1>’
(0,1,1,1,0,1,1,1,1,1,1,1).

By S[j]-¢ we denote the ith bit of the cbv S[j]; e.g. above §[3].2 = 0.
In Section 5, we will show that the musically relevant alphabet 3, is
practical and effective for our application.

2.2 Related Work

Independently of us, Holub et al. [2001] presented bit-parallel algorithms
for multi-track string matching. They did not, however, consider trans-
position invariance. They presented algorithms to find occurrences of (i)
multi-track patterns within plain texts (effectively, the original SHIFTOR al-
gorithm); (ii) plain patterns within multi-track texts (effectively same as our
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SHIFTORAND); and (iii) multi-track patterns within multi-track texts. The
algorithm (iii) requires O((rm + |2 [™1) time for the preprocessing, where
T, f], and w are the number of the patterns, the set of symbols used in the
pattern and the size of the machine word, respectively. Then it works in
O(nh[7}]) time and requires O3] [% 1) space.

Dovey [2001] has considered a modification of the multi-track string match-
ing problem, where the consecutive matching elements of an occurrence may
contain gaps. Given a gapping parameter t, a t-gap-occurrence is as follows:
pL=87,p2 =87, ,pm = s;", where ji41 —jy <t+1lfor 1<l<m-1
and ¢1,...,im € {1,...,h}. By setting ¢ = n, the gaps become unrestricted.
Dovey represents music by chord vectors over alphabet Ygg (88 is the com-
mon amount of keys in a piano). His algorithm works in time O(nm[88])
based on the following dynamic programming recurrence:

doo, dig, doj = 0;
t+1, if ((p1 € S]) and (Z =1lor di—l,j—l =+ 0));

dij = di’j,1 — 1, if ((pz € Sj) and (d,”j,1 7é 0));
0, otherwise,

where 1 < j < mnand 1 < ¢ < m. As usually, the query result is read
from the element d,,;; an occurrence of value ¢+ 1 in a bottom row element
indicates an t-gap-occurrence, and the actual occurrence can be uncovered
by a backtracking procedure. The algorithm requires 87 reiterations for
transposition invariant matching.

The recent S1A(M)EX algorithm by Wiggins et al. [2002] is capable of trans-
position invariant multi-track string matching with unrestricted gaps. It is
not, however, a string matching algorithm. It works with any n-dimensional
datasets; in our case the pattern and the text are formed as pairs (g, t), where
q and t represent the pitch and its onset time, respectively. Let 7 = (a,b) be
a transfer vector that transfers a pair (g,t) to 7[(q,t)] = (¢ +a,t +b). The
intuition behind their algorithm is to collect in a matching set M vectors ©
which transfer pattern points to text points:

M = {1,X)|zeX < ((z €p) A (v[z] €5))

The pattern p has a transposition invariant multi-track occurrence in the
text S if and only if | X| = m (X = p) holds for some pair (v, X) of M.

Denoting by n’ and m' the number of events in the text and in the pattern,
respectively, SIA(M)EX runs in time O(n'm’) and space O(m') (note that in
homophonic music m’ = hm and n' = hn).

3. SHIFTOR Algorithm

Let us consider the SHIFTOR algorithm by Baeza-Yates and Gonnet [1992].
In describing their algorithm (and henceforth) we will use the symbols V and
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SHIFTOR(s, p,n,m, X)

1 for each a € ¥ do T[a] + 2™ —1

2 for i<+ 1tom do T[p;] « T[p;] — 271
3 E«2m-1

4 forj+ 1tondo

5 E < shiftleft(E) V T[s;]

6 if Eom = 0 then WRITE(j)

Fig. 3.1: The SHIFTOR algorithm.

A representing the bitwise or and and operators, respectively. The SHIFTOR
algorithm searching occurrences of p in s is given in Fig. 3.1.

Lines 1-2 and 3-6 of SHIFTOR form two phases, which we call pattern
processing and core phases, respectively. First, for each symbol appearing
in the pattern, the pattern processing phase creates a bit-mask appearing
as a column of table T. At the core phase, a zero bit is released (by the
binary shiftleft operator) to level 1 at every point of time. Then, the
released zero bits either survive to the next level, or die, depending on the
bit-mask used with the V operator. Whenever a zero bit reaches the level
m, an occurrence of the pattern has been found; this is reported on line 6.
Fig. 3.2 simulates SHIFTOR in an example case.

SHIFTOR’s pattern processing takes O([7]|%| + m), while the core runs
in time O([2]n). The overall space requirement is O([Z](|3| + 1)).

G g = g g G G G g =
abec EﬁrEﬁrEﬁC‘E-ﬁrEﬁrEﬁrEﬁrE
aj0 11 alloo|001j1 0120000000 O0|0O|0 11
aj0 11 ajll10/2/01f1/11j2j20j100(0|00|0|0 11
bj101 btg1j220/2j2 112 112]121/201|100

Fig. 3.2: An example of SHIFTOR for p = aab and s = abcaaab. The table T (on the
left) is created first. The execution of the core phase of the algorithm is illustrated on the
right. In the illustration, shifting is done downwards and the found occurrence is shown
with a white circle.

3.1 SHIFTORAND — Algorithm for Multi- Track String Matching

The SHIFTOR algorithm can be adapted with a minor modification to multi-
track string matching. Actually, this is a dual of the string matching problem
presented by Baeza-Yates and Gonnet [1992]. They considered cases where
elements of a pattern may contain a set of symbols instead of one symbol.
In their case they modified the pattern processing phase, while in our case
each text position is allowed to contain a set of characters and the modified
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SHIFTORAND(S, p, n, m, X)
for each a € ¥ do T[a] + 2™ — 1
for i + 1 to m do T[p;] « T[p;] — 21!
E«2m -1
for j «+— 1ton do
E < shiftleft(E)V (A({Tla] | a € S;}))
if Em = 0 then WRITE())

O T W N~

Fig. 3.3: The SHIFTORAND algorithm for multi-track string matching.

phase is the core phase. This is done by adding a bitwise and operation,
which operates over all the pitches within a chord; see the SHIFTORAND
algorithm in Fig. 3.3, below.

The main loop in lines 4-6 takes O(n[% k) time, and an extra space of [ 7]
words is required. The extra space is used for a temporary storage, where
the bitwise and operation can bring all the required zero bits. Actually, the
algorithm can be modified so that the core runs in time O(n[7]). In that
case, table T contains a column for each chord S; (instead of each character
in ¥). Naturally, both the time complexity of pattern processing and the
overall space complexity increase noticeably from that of the version given
in Fig. 3.3.

4. Transposition Invariant Multi-Track String Matching

The problem of multi-track string matching becomes trickier when taking
into account transposition invariance. In this section we present two fast
filtering methods to solve the problem, one works on-line the other off-line.
In the on-line method all computation is done during a query execution,
while the off-line method is tailored to deal with static databases. In the
latter case, as much as possible is done in a separate preprocessing phase to
enable faster responses to queries.

We start by introducing a straightforward algorithm that serves for two
different needs. On one hand, it may be used as a total algorithm, i.e., it
works on its own to search for occurrences. On the other hand, with a slight
modification, it may be used as a checking algorithm. In the latter case it
only checks whether there is an occurrence at a given position. The algorithm
is based on the naive string matching algorithm, see e.g. [Crochemore and
Rytter 1994, p. 34].

4.1 DIRECTCHECK — Straightforward Algorithm

For the sake of simplicity, let us consider the case where DIRECTCHECK is
used as a total method (see Fig. 4.1), where EXIT is a routine that halts the
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execution of the innermost loop. At first, the algorithm computes S, the cbv
representation of the input S. Then the algorithm checks for each position
J, 1< j <n-—m+1, and for each pitch a € S;, whether there is a match
starting from a at position j.

DIRECTCHECK(S, p,n, m, X)
1 CoMPUTE §(S)

2 forj+<—1lton—m+1do

3 for each a € S; do

4 found < true;b + a

5 for i <+ 2 to m do

6 T b+pi—pi1

7 if (0 <z < |X|) and (S[j + ¢ — 1].z =0))

8 then b+

9 else found + false; EXIT()

10 if found

11 then PRINT(occurrence at S; - -+ Sj1m—1); EXIT()

Fig. 4.1: DIRECTCHECK for transposition invariant multi-track string matching.

Because each chord S; holds at most h pitches, the time complexity of
forming S is T} = O(nh) + O(n[|X|/w]), where the latter time is needed for
initializing chord bitvectors with ones. If a circular buffer of m chords is used
and the computation is merged with the matching phase, the initialization
takes only O(m[|X|/w]). A column of the buffer can then be updated in
O(h) time by replacing h zeros by ones according to the previous chord and
then replacing h ones by zeros according to the new chord.

The time complexity of the rest of the algorithm is 75 = O(nhm), because
there are (n —m + 1) - h - (m — 1) comparisons in the worst case. Because
nh > [|X|/w] holds in practice, T5 dominates over T;. Therefore we consider
O(nhm) as the total time of DIRECTCHECK in the following?. The space
requirement of the algorithm is O(m[|¥|/w]) with the circular buffer and
O(n[|Z|/w]) without it.

Note that in Fig. 4.1, a substring S; - - - Sj1m 1 is reported as an occurrence
only once in a case where it actually contains several occurrences. If all
the parallel occurrences have to be reported, the time complexity does not
change, but the algorithm will be slightly slower in pathological cases.

In the checking version of DIRECTCHECK, j is given as a parameter to the
algorithm and the outermost loop (line 2) is absent.

2 The expected running time, however, is O(nh). This is a characteristic property of the
naive matching algorithm.
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INTERVALMATCHING(S, p, n, m, X')
foreachd € ¥ do T[d] «+ 2™ 1 -1
for i + 2 to m do T[pi _pi—l] — T[p,' _pi—l] — 2i-2
E«2m1 1
for j < 2tondo
D« 2m 1 1
for each a € Sj_; and b€ S; doD <~ DAT[b — qa]
E + shiftleft(E) VD
if E:m = 0 then CHECK(j)

0O ~JO Tt W+

Fig. 4.2: The INTERVALMATCHING on-line filter for transposition invariant multi-track
string matching.

4.2 INTERVALMATCHING — On-Line Filtering Algorithm

Let us now introduce a basic on-line filter for transposition invariant multi-
track string matching. The INTERVALMATCHING algorithm (Fig. 4.2) uses an
interval alphabet. By comparing it with SHIFTORAND (Fig. 3.3), one can no-
tice two differences. Firstly, in INTERVALMATCHING we introduce a bitvec-
tor D which collects all the intervals between two consecutive chords (line 6).
These intervals are then used in the shifting similarly as in SHIFTORAND.
The other difference can be noticed on line 8: INTERVALMATCHING is a
filtering method, because it only makes sure that a candidate contains the
intervals of the pattern in the correct order but does not necessarily ‘bind’
the corresponding elements of the chords (see Fig. 4.3 for an illustration).
Hence, INTERVALMATCHING has to call the checking algorithm for every
found candidate.

Clearly, the core of the algorithm runs in time O(n[21h?). However, the
worst case time complexity is that of the checking algorithm, because there
might be a candidate at each position, in the worst case. Furthermore, the
required extra space is A% + [2]; h? is needed for the set D, and [2] words
for the bitwise and operation (as in SHIFTORAND). Thus, the total space
requirement of INTERVALMATCHING is O([2](|Z| + 2) + A?).

e HiN
° L
°
Fig. 4.3: The query pattern, given on the left, has a proper occurrence in the first chord

string (the corresponding elements are bound), but only a spurious occurrence in the
second (the corresponding elements are not bound). Both are considered as candidates.
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4.8 MoNoPoLy — Off-Line Filtering Algorithm

When the text (corresponding to a music database) is static, it can be prepro-
cessed in order to speed up the retrieving. The benefit of the preprocessing is
considerable when the text is subject to several consecutive queries. Besides,
if the result of preprocessing can also be stored, it is possible to preprocess
the pieces of music, when they are added to the database.

The operation of MONOPOLY is divided into preprocessing and filtering
phases. The preprocessing is necessary only before the first query. The
key idea of the algorithm is to store intervals of two consecutive chords
as a bit-vector in the preprocessing phase. An array S of these interval
combinations represented as bit-vectors is used as a text for the SHIFTOR
algorithm while searching for the interval sequence of the original pattern.
An array T’ corresponds to the array T of the original SHIFTOR. The bit
T[1].7 is zero, when the kth bit of [ is zero (i.e., the interval k¥ belongs to the
interval combination [) such that k is the interval in the pattern between p;
and p;_1). MONOPOLY has been designed for moderate interval alphabets,
smaller than X.

4.8.1 Preprocessing Phase

This phase given in Fig. 4.4 forms a string §'[1] - §'[n — 1], where each §'[;]
is a bit-vector of |X'| bits storing the intervals between chords S; and Sj;.
Formally,

0, if i = (z — y) mod |¥'|
§'[j].z' = for some z € Sjand y € Sj11 (1 <j<n-—1)
1, otherwise.

We avoid the apparent O(h? [%]) time requirement for processing a pair
of chords by using bitwise operations and a fact that only a certain subset of
the possible h? intervals can appear between two consecutive chords: When
the intervals from an element z of some chord S; to the elements of the
following chord S; 1 have been calculated, the intervals for another element
y in the chord S; can be uncovered just by shifting those calculated intervals
by the difference between y and =x.

In the algorithm B(S;) = s} denotes the lowest pitch value, the bass, of a

chord S;. Zeros in §'[§] before line 6 give the intervals between the elements
of Sj+1 and the bass of the chord S; (see the bitvector in the topleft corner
of the example given in Fig. 4.6). Then the zeros are shifted according to
the remaining elements of S;, one-by-one, to give the rest of the intervals
occurring between chords S; and S;;1 (see the next two bitvectors in the
topleft corner in Fig. 4.6). Finally, S'[j] collects all the zeros that appeared
in any of the (shifted) bitvectors (the fourth bitvector in the topleft corner
in Fig. 4.6). This can be implemented efficiently by using a right circularshift
bitwise operator, denoted rcs(a, b), which shifts a bit-vector a by b bits to the
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right in a circular manner. For instance, if a = 01010 then rcs(a, 1) = 00101
and rcs(a,2) = 10010. Since at most (n—1)-(h—1) such copying are needed,

§'11]---§'[n — 1] can be formed in O(nh[=17) time.

MonNoPorLy:PP(S,p,n,m, %)

1 forj+1ton—1do

2 S'[j] « 2/¥1 -1

3 for each a € S;;1 do

4 b < (a —B(S;)) mod ||

5 if §'[j].b = 1 then §'[j] « §'[j] — 2°

6 S S A Naes, as,) esE 1, (a — B(S;)) mod [S])))

Fig. 4.4: The preprocessing phase of MoNOPoLy.

4.3.2 Filtering Phase

The filtering phase is divided into pattern processing, and core subphases.
The two subphases correspond to the phases of the SHIFTOR algorithm.

The pattern processing subphase constructs a bit-array T’ of (m—1) x p I
bits corresponding to the bit-array T of SHIFTOR. Instead of having a column
for every symbol appearing in the text, T’ has a column for every possible
value of §'[].

For efficient computation, two extra arrays are used while composing T’. A
bit-array I of |X'| x || bits has a column for every possible interval in X',
while a bit-array L of |X'| x (m — 1) bits stores the positions of each interval
in the query pattern. Their bits are set as follows (here 1 <i<m —1; 1<
ik < X))

. o 0, ifj = k, e 0, if (pi+1 —pi) mod |2" = j,
Ijjl-k = { 1, otherwise, Llli= { 1, otherwise.

Remember that formally §'[j] € ¥’ and [¥'| = 2. Thus, §'[j] can be
interpreted as an integer [, [ € [0, 2% _ 1]. These values are used as indices
to the table T. Moreover, we use bit-vectors I[j] to locate intervals within
§', by ‘sliding’ them one-by-one over all the values [. This forms the table
T:

[l = 0, if I[k].j =0 and . = 0 and L[k].i = 0,
’ 1, otherwise,

where [.j denotes the jth bit of [. In this way, constructing the array T’ takes
time O([2]|%'| 2%,

The core phase is analogous to that of SHIFTOR algorithm, but in this
case the pattern will be matched against the string S'[1]- - - §'[n — 1] instead
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of s. The algorithm in Fig. 4.5 implements the whole filtering phase, and
Fig. 4.6 illustrates the functioning of MONOPOLY on an example case.

MoNoPory(§', p,n,m, ')
for k < 1 to |¥'| do
I[k] « 21 -1
I[k] < I[k] — 2k-1
Llk] < 2™ 1 -1
for i < 2 to m do
b« (pz —pi_1) mod |2'|
L[b] + L[p] — 2¢72
for [ + 0 to 2% —1 do
9 T[]« 2m -1
10 for k< 1to |¥'| do
11 ivect « I[k]
12 if ivect VI = ivect then T'[]] + (T'[{] A L[k])
13 E<2m1—1
14 forj< 1lton—1do
15 E« shiftleft(E)V T'[S'[f]]
16  if E:m = 0 then CHECK(})

0 O Ol WK =

Fig. 4.5: The MonNoPoLy filter for transposition invariant multi-track string matching.

4.4 Correctness and Analysis of MONOPOLY

We prove first that g is correctly formed. In the following, the interval
between the bass of the chord S; and a pitch y within the chord S is
denoted by r(y), where 7(y) = y — B(S;). The distance from the bass pitch
within the same chord is denoted by ro(y), i.e. ro(y) =y — B(S;).

LEMMA 1. Let x € S; and y € Sj41 for some j, 1 < j <n-—1. Ifi=
(y — ) mod |¥'| holds, then §'[j].i is a zero bit.

PROOF. The array S is computed during the preprocessing phase. There
are two cases to be considered: (i) x = B(S;) and (ii) = # B(Sj).

(i) The index i for the zero bit is r(y) mod |¥'| (line 4). Then the zero
bit is assigned to S'[j].¢ (line 5). Since after that, the only remaining
operation that updates §'[j] (line 6) preserves that zero bit (A preserves
zeros), §'[j].i = 0 holds.

(ii) According to case (i), §'[j].i = 0 holds for all the intervals i between
B(S;) and S;41 before line 6 is executed. Let y be an arbitrary pitch
within Sj41, d = y — B(S;), and e = y — z. Now the difference of e
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Preprocessing: Pattern processing:
Fig4.4 Fig 4.5, lines 1-12

| sl T —

] (1] 1] |1 0[1]1]1 @ o01../1l..1...1...1

1 1 1 1 1/1/0/1 S 00..J1,..1...0...1

0 1 1 0 2/0/1|0 o® 00..]04..0...1...1

1 (1] |1 |1 3lol1]1 =& 00../0/..1...1...1

1 1 0 0 4/0/1|1 =3 00..400..1...1...1

1 1 1 1 5/1(1|1 wE 00..]1}..1...1...1
1A 1A 1= ]2 6/1/1|1 80 0w0../1]..1...1...1

1 0 0 0 7/0/0|0 == 00..,00..0...0...1

1 1 1 1 8l1/1|1 T2 00.01,..1...1...1

1 1 1 1 9/1/1|1 g 00..J1l..1...1..1

1 0 1 0 10|0/0|0 b= 0..]/0/..0...0...1

o 1] 1] |o 11|0/1|0 =" 00../0)..0...1...1

! 1

I: L : T _
0111111[1]1111 ! 5/ 11..]0...0...0...1
1011111/1/1111 !

1101111/1/1111 3 1i...14..1...0..1
1110111/1j111 3 7/ 11..404..0...0...1
111101111111 !

111110111211 !

11111101111
111111101111
111111110111 ! E
111111111011 !

111111111101 3 -5/1 0 00
1111111/1/]1110 3 11 1 0 1

L: e ‘ 71111 0
111111101111 E < shiftleft(E) v T’[S"[21] f
101111111111 E < shiftleft(E) v T'[S"[3]] [
111111 131 111 E < shiftleft(E) v T°[S"[41]

Fig. 4.6: MoNOPOLY on an example case: |X'| = 12, p = 69,64,65,72 (p' = —5,1,7) and
S'is as Fig. 2.1 (S1 = {65, 69, 72}, 2 = {64, 67}, Ss = {62, 65}, and S = {60, 64, 72}).

and d is B(S;) — x, which by definition equals to —ro(z). Therefore,
since d has already been stored in §' [7], e = d —ro(x) can be stored by
assigning a zero bit at the location i = e mod |¥’|. This is done on line
6 by the and operation with rcs(S'[5], 7o(z)). Again §'[j].i = 0 holds.

LEMMA 2. Ifi # (y — ) mod |X'| holds for every pair x € S; and y € Sj;1,
then S'[j].i is one.

PROOF.  After the execution of line 2, §'[j].i = 1 holds. The execution of
the for loop in lines 3—4 assigns a zero to §'[j], corresponding to an interval
y—B(S;) for each y € Sj;1. Let A be the value of S'[4] after the loop. In line
5, first |S;| — 1 shifted copies out of A are formed, then they are combined
with A by using the A operation (line 6). Each copy holds all the intervals
between S;j;1 and some x that differs from B(.S;). Clearly the algorithm does
not assign superfluous zeros to S'[j]. O
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NS

Fig. 4.7: This excerpt has a spurious occurrence in Fig. 2.1.

As a consequence of the lemmas, the following theorem holds.
THEOREM 1. S is correctly formed.

Let us continue by proving that the pattern processing phase works cor-
rectly, and thus that table T’ is correctly formed. In the following, if [ is an
integer, then [l denotes that the integer is interpreted as a bitvector.

LEMMA 3. Let i be an integer, 2 < i < m. T'[l].i = 0 holds, if and only if
lp-k is zero and k = (p; — pi—1) mod |X’| holds for some k.

PrOOF. It is sufficient to consider only the processing of the pattern (lines
1-12, Fig. 4.5). Let us assume that .k is zero and k = (p; — p;—1) mod |X'|
holds. In lines 5-7 the intervals of the pattern are stored in the table L at
the location corresponding to (p; — p;—1) mod |¥'|, for 2 < i < m. Clearly
there is exactly one zero bit on each row of L, and the zero bits are assigned
to the correct positions according to the construction. The only zero bit in
I[k] is the kth bit. Thus, I[k] V I, = I[k] holds, and the condition in line
12 is met. Then the zero-preserving operation A is used to assign a zero to
T'[1].4.

Let us then assume that T'[{].i = 0 holds. By inspecting line 12 we conclude
that there is a k such that L[k].; = 0 holds. According to the construction,
l.k must be zero and k = (p; — p;—1) mod |X'| must hold. O

Considering MoNOPoOLY without the checking phase, the original problem
of finding every transposed occurrence of a music pattern has been trans-
formed to a filtration problem of finding candidate occurrences H of p. Such
an H is an interval string of length m —1 in §', which contains the intervals
of p in the correct order (recall Fig. 4.3). However, the condition that there
is a ¢ such that (p; + ¢) € Sj4i—1 for each i does not necessarily hold any
longer. An example of a candidate that is not a spurious occurrence is when
the excerpt in Fig. 4.7 represents the pattern and Fig. 2.1 the text. The fol-
lowing theorem shows that filtration works correctly, i.e. MONOPOLY does
not skip any proper occurrence.

THEOREM 2. Let p be the pattern to be searched within the text S. If there
is a transposition invariant occurrence starting at S;, then MONOPOLY finds

a potential occurrence of p starting at S'[4].
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PROOF. The table §' is correctly constructed according to Theorem 1. The
core phase works analogously to that of SHIFTOR. An interval in our setting
corresponds to a character. As a conjunction of the vectors L[k], T'[j] has
got the corresponding intervals belonging to §'[j]. The table T’ is correctly
constructed according to Lemma 3. The fact that each potential occurrence
is identified follows from the characteristics of the SHIFTOR algorithm. O

MoNoOPOLY’s space complexity is O(n[ﬁl + ¢), where ¢ = |E'|[|%I‘] +

w

(2= + |Z'[)[2]. For the preprocessing, O(nh[‘i—’l]) time is needed. At the
beginning of the filtering phase the locations of intervals are gathered in time
O(m). After that, each interval mask I is slid over the values [, which takes
o([311%] - 2=, Therefore, by denoting d = [2]|%| - 2% the filtering
takes time O(n[7% | + m + d), which is linear in n when m < w. Again, the
worst case time complexity is that of the checking algorithm; there might be
a candidate at each position, in the worst case.

MoNOPOLY becomes impractical if unlimited interval alphabet, or even
Yiss, is used. The octave equivalence assumption, for instance, keeps the
table T’ reasonably sized, and thus, MONOPOLY practical.

4.5 Improving MONOPOLY ’s Performance

Navarro and Raffinot [1998] introduced a crossing of SHIFTOR and the Boyer
and Moore [1977] algorithm. Their bit-parallel BNDM (Backward Nondeter-
ministic Dawg Matching) algorithm emulates the BDM algorithm [Czumaj
et al. 1994] based on a nondeterministic suffix automaton.

BNDM follows the Boyer-Moore principle: the pattern matching starts
at the position m of p and s. Then the pattern and text characters are
compared in the right-to-left order until the whole pattern is recognized or
a mismatch occurs. In each step, bit parallelism is used in a clever way to
emulate a nondeterministic suffix automaton, in order to know whether the
current suffix of s is a prefix of p. If such a prefix is found, the value of the
next shift is updated.

In order to make MONOPOLY filter faster, the core phase (lines 13-16
in Fig. 4.5) could be replaced by BNDM. Although the BNDM algorithm
has a worst-case complexity of O(nm), it is faster than SHIFTOR, in practice.
As with all Boyer-Moore type algorithms, BNDM becomes faster as pattern
gets longer. According Navarro and Raffinot’s experiment, BNDM is up to 7
times faster than SHIFTOR, when m = 32. Nevertheless, since our problem
is different and the patterns are typically rather short, we expect a smaller
speed-up in our case.

5. Experiments

In experimenting the practical performance of MONOPOLY, we compared
its efficiency against that of DIRECTCHECK. We used the modification,
discussed in Subsection 4.1, of DIRECTCHECK as the subroutine for checking.
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Fig. 5.1: A distribution of intervals within chords in Sibelius’ Finlandia.

We did not test INTERVALMATCHING. However, it may be expected that its
performance lies somewhere between the two tested approaches.

We made an extensive study on altering the values of the interesting pa-
rameters, and observed their effects to the performance. In every piece of
experiment, we measured the running times, and both the numbers of the
candidates and proper occurrences. The parameters under consideration
were m,n,h, and |¥'|. The impact of the four parameters was measured
by letting only one parameter vary at a time, meanwhile the values of the
other parameters were fixed. The experiments were run in a PC with Intel
Pentium III of 700 MHz and 768 MB of RAM under the Linux operating
system. The length w of a machine word was 32 bits.

The database for the experiments was collected from the Internet. It com-
prised 7,667 MIDI files, out of which 6,190 were originally monophonic. In
the database, the maximum degree of polyphony was 8, but typically there
were several monophonic chords between any two polyphonic chords. Al-
though we believe that this is a rather common phenomena (which makes
MonNoPoLy more efficient due to the fewer false positive hits found), we
wanted to bound the degree of polyphony (as it is described in the problem
specification). In other words, we forced each piece of music in our database
to be homophonic. In order to do that, we first computed the distribution of
intervals within chords (as semitones from the bass) in a MIDI file of Jean
Sibelius’ Finlandia (see Fig. 5.1 for the distribution). Then, for each chord
S;, we inserted random pitches following the measured interval distribution
until each S; became equal to h.

The series of experiments was started by building up the text residing in
the main memory. All the homophonic pieces of music in our MIDI database
were concatenated into a single string, resulting in n = 1,484, 940. Observing
one parameter at a time, each setting (e.g. h = 8, other fixed to default
values) was repeated 100 times. At the beginning of each repetition, a new
pattern was randomly picked up from the text. Thus, it was guaranteed that



time in msecs

MULTI-TRACK STRING MATCHING 17

3000

core —<—
2500 -

2000

1500 |

.
timein msecs

preprocessing —=— 60 L pattern processing —+— |

filtering =—
50 - 4
40 1

20k
1000 - 2
500 - 10|

0 0 e

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. 5.2: The performance of MONOPOLY when varying h (m = 12;n = 1,484, 940; |%'| =
12). The preprocessing time is given in the graph on the left, pattern processing, core,
and total filtering (=pattern processing+core) times in the graph on the right.

at least one occurrence was to be found in each repetition. As results of the
experiments, we report the averages of repetitions for each setting.

The default values for the experimented parameters were: h = 3; m = 12;
n = 1,484,940; and |X'| = 12.

Fig. 5.2 illustrates the typical behaviour of MONOPOLY. In the two graphs,
we have given the average times spent by the different phases of the algo-
rithm, varying the value of h. Firstly, the preprocessing time grows notice-
ably as h increases (see the graph on the left). In the graph on the right, we
give the times spent by the pattern processing (the lowest curve), the core,
and by the whole filtering phase. Note the interesting peak in the latter two:
As the value of h is increased the number of distinct §'[i]s becomes larger.
This cause the execution to get slower because of fewer corresponding T val-
ues present in the cache. Moreover, when the increasing of h is continued,
after some threshold point, here h = 6, the number of distinct §'[i]s starts
to decrease. This speeds-up the execution due to increased number of cache
hits for T’ values.

Henceforth, we will consider two running times for MONOPoOLY. The first
one represents the running time of a single (or first) query (denoted by total
time); hence it includes the times spent by all the phases of MONOPOLY (in-
cluding checking). The other one (denoted by filtering+checking) represents
the running time of a re-query on the same database (including checking but
excluding text preprocessing).

5.1 Varying the Number of Tracks

We started our comparison by measuring the effect of the parameter h, that
is, the number of tracks in the text. Fig. 5.3 shows that the number of
candidates grows much more rapidly than the number of proper occurrences,
as h increases (note the logarithmic scale). From around 350 at h = 3,
the number of candidates grows to around 11,000 at h = 4. However, for
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Fig. 5.3: The average effect of h (m=12;n=1,484,940; |X'| =12). Numbers of candidates
and proper occurrences (on the left, log scale). Times for a first query (total time) and
for re-queries (filtering+checking) of MoNoPoLY and for DIRECTCHECK (on the right).

MonNoPoLy the first query is faster than for DIRECTCHECK, until A becomes
larger than 7. Re-queries with MONOPOLY are clearly faster than with
DIRECTCHECK for h < 9.

5.2 Varying the Length of the Pattern

Next we experimented on the influence of the length of the pattern (see
Fig. 5.4). As the pattern becomes longer, the number of occurrences de-
creases notably faster than the number of candidates. However, MoNOPOLY
is considerably faster than DIRECTCHECK with these parameter settings.
The left graph illustrates two interesting phenomena. Firstly, the weak dis-
criminating power of short patterns has a clear consequence to the perfor-
mance of MONOPOLY; the shorter the pattern is the more often the slow
checking routine has to be called. Secondly, as mentioned in Subsection 4.1,

1e+06

candidates -o— 25000 DirectCheck — |
occurrences —=— total time ——
100000 | 4 filtering+checking —+—
20000 -
10000 ¢
g 15000 -
1000 E E
@
£ 10000 -
100 |
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10 b
1 L L L L O L L L L L L L
0 5 10 15 20 25 2 4 6 8 10 12 14 16 18
m m

Fig. 5.4: The average effect of m (h=3;n=1,484,940; |X'| =12). Numbers of candidates
and proper occurrences (on the left, log scale). Times for a first query (total time) and
re-queries (filtering+checking) of MoNOPoLY and for DIRECTCHECK (on the right).
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Fig. 5.5: The average effect of n(h = 3;m = 12;|X| = 12). Numbers of candidates
and proper occurrences (on the left, log scale). Times for a first query (total time) and
re-queries (filtering+checking) of MoNoPoLy and for DIRECTCHECK (on the right, log
scale).

the running time of DIRECTCHECK does not depend on the pattern length.

5.8 Varying the Length of the Text

Of all our experiments, the most significant difference between the perfor-
mances of MONOPOLY and DIRECTCHECK was found when varying the size
of the database (see Fig. 5.5). Again, the number of candidates grows faster
than the number of occurrences, but there is a significant difference in run-
ning times. Although the first query of MoONOPOLY takes more time than
the re-queries, it is faster than the same query with DIRECTCHECK. Because
DIRECTCHECK’s running time seems to grow linearly as the database grows
(note the log scale), the longer the text is the larger the difference between
the performances of the two approaches will be.

5.4 Varying the Size of the Alphabet

Finally, we made experiments on the parameter |X'|. Note that, so far in
the experiments, we have used X}, with MONOPOLY, while DIRECTCHECK
always uses the alphabet Xh.-. It can be seen in Fig. 5.6, that X}, works well
with MoNOPoOLY. When observing the number of candidates, the setting
|X’| = 12 meets a salient local minimum. Moreover, increasing the size of the
alphabet from 12, the number of candidates does not become lower than that
before |¥'| > 18. Naturally this curve of candidates depends on the interval
distribution within the chords, but we believe that the distribution we used is
typical enough. However, when |¥'| becomes greater than 20, MONOPOLY’s
performance starts to get slower due to the O(|%| - 2™ complexity of the
pattern processing phase (in a 600 MHz Pentium III the decreasing of the
speed started at |X'| = 18, already).
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6. Concluding Remarks

We have adapted the SHIFTOR algorithm to music retrieval by introduc-
ing three modifications for two distinct variations of the multi-track string
matching problem. A summary of the algorithms is given in Table I.

First, we suggested the SHIFTORAND algorithm for the original multi-
track string matching problem. Then, we presented two SHIFTOR modifica-
tions for transposition invariant multi-track string matching. The INTERVAL-
MATCHING filter works on-line, while our main contribution, the MoONOPoOLY
filter, has been optimized to work with static music databases. The results of
these filters should be checked in order to find the proper occurrences among
the candidates. This can be done, for instance, by using DIRECTCHECK.

We made extensive experiments with MONOPOLY on studying the effect
of parameters m,n,|¥|, and h to its performance. In the experiments, a
particular alphabet 3, (of size 12) corresponding to a musical octave equiv-
alence was found to work very well with MoNOPoOLY. It was also interesting
to observe the consequence of varying the value of h. Although it does not
have a direct consequence to the performance of the filtering phase, it has
an effect to the efficiency of the filtration, and therefore, to the performance
of the checking phase; the larger the h the more false positive hits. Due to
our experiments, MONOPOLY, our main contribution, clearly outperforms
the straightforward DIRECTCHECK whenever h is reasonably low.

There are several possibilities to refine our algorithms. For INTERVAL-
MATCHING we could have used the octave equivalence assumption, as well.
Moreover, to compute the set D, one could use a similar method to that that
we used in MONOPOLY to compute the chord bitvectors in time O(nh[7])
(actually, this is assumed in the time requirement given for INTERVAL-
MATCHING in Table I). For MoNOPOLY the core can be replaced by the
BNDM algorithm of Navarro and Raffinot [1998].

In the both filtering algorithms, a further, practical improvement for the
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TABLE I: A summary of the requirements of the presented algorithms.

TIME SPACE
preproc. running

Multi-track string matching
SHIFTORAND - O(nhu) o((|Z]|+1)p)

Transposition invariant

multi-track string matching

INTERVALM ATCHING (filter) - O(nhy) o((IZ]+2)u+h?)
MonoPouy (filter) O(nh[|Z'|/w]) O(nu+m-+d) O(n[|Z'|/w]+ec)
Di1rRECTCHECK - O(nhm) O(m[|Z|/w])
m = |p|,n =S|, B = [m/w]
h: number of parallel tracks, w: size of machine word in bits,
3: underlying (absolute) alphabet, ¥': underlying (relative) alphabet,
e=2|[|%|/w] + @ + |2, d = p[s| -2,

performance may be obtained by observing the distribution of the symbols
(intervals) and by searching first for the least frequent substring of the pat-
tern. In the case of static database, the distribution may be calculated in
advance, while in the on-line case an approximation of the distribution may
be used. A similar trick may naturally be used also with long patterns (for
which m > w); the filter is used for locating such substrings (of length m’)
of p for which m’ < w and whose sum of the interval probabilities is the
lowest. Naturally, this trick may be used for searching polyphonic patterns
with our algorithms, as well.
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