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Abstract

Given strings A and B over an alphabet Y C U, where U is some numerical universe
closed under addition and subtraction, and a distance function d(A, B) that gives
the score of the best (partial) matching of A and B, the transposition invariant dis-
tance is mingey{d(A+t, B)}, where A+t = (a1 +t)(az+t) ... (an+1t). We study the
problem of computing the transposition invariant distance for various distance (and
similarity) functions d, including Hamming distance, longest common subsequence
(LCS), edit distance, and their versions where the exact matching condition is re-
placed by an approximate one. For all these problems we give algorithms whose time
complexities are close to the known upper bounds without transposition invariance,
and for some we achieve these upper bounds. In particular, we show how sparse

dynamic programming can be used to solve transposition invariant problems.
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1 Introduction

Transposition invariant string matching is the problem of matching two strings
when all the characters of either of them can be “shifted” by some amount ¢.
By “shifting” we mean that the strings are sequences of numbers and we add

or subtract ¢ from each character of one of them.

Interest in transposition invariant string matching problems has recently arisen
in the field of music information retrieval (MIR) [11,23,24]. In music analysis
and retrieval, one often wants to compare two music pieces to test how similar
they are. One way to do this is to define a distance measure between the cor-
responding note sequences. Transposition invariance is one of the properties
that such a distance measure should fulfill to reflect a human sense of similar-
ity. There are other application areas where transposition invariance is useful,

like time series comparison [7], image comparison [18], etc. (see Section 3).

In this paper, we study how transposition invariance can be embedded in
evaluating some of the classical distance measures for strings. We focus on
measures that have been used in practice. We are interested in the intrinsic
difficulty of the problem, focusing on the essential aspects and in worst case
complexities. Our aim is to build a foundation on which one can develop
practical improvements such as good average cases, bit-parallel computation,
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and so on.

Our principal result is that most of the distance measures studied allow in-
cluding transposition without a significant increase in the asymptotic running

times. The summary of our results is given in Section 4.

2 Definitions

Let X be a finite numerical alphabet, which is a subset of some universe U that
is closed under addition and subtraction (U is either Z or R in the sequel, and
Y is called either integer or real alphabet, respectively). Let A = ajay...ay,
and B = b1by ... b, be two strings over X*, i.e. a;,b; € X forall1 <i<m,1<
7 < n. We will assume w.l.o.g that m < n, since the distance measures we
study are symmetric. String A’ is a substring of A if A’ = A; ; =a;...a; for
some 1 <1 < j < m. String A” is a subsequence of A, denoted by A” C A, if

A" = a; a4, . . i, for some indexes 1 < i; <y < -+ <ijqr < M.

When m = n, the following distances can be defined. The Hamming distance
dy between strings A and B is dg(A,B) = [{i | a; # b;,1 < i < m}|. The
mazimum absolute difference distance dyap between A and B is dyan(A, B) =
maxi<;<m{|a;i—bi| | 1 < i < m}. The sum of absolute differences distance dsap
between A and B is dsap(A, B) = >, |a; — b;|. Note that dyap is in fact the
maximum metric (/o norm) and dsap the Manhattan metric (I; norm) when

we interpret A and B as points in m dimensional Euclidean space.

The following measures can also be defined when m # n. The length of the
longest common subsequence (LCS) of A and B is lcs(4, B) = max{|S| | S C

A, S C B}. The edit distance [25,34,29| between A and B is the minimum



number of edit operations that are needed to convert A into B. Particularly,
in the unit cost Levenshtein distance dy, the set of edit operations consists of
character insertions, deletions, and substitutions. If the substitution operation
is forbidden, we get a distance dip, which is actually a dual problem of eval-
uating the LCS; it is easy to see that din(A, B) = m +n —2-1cs(A, B). For
convenience, we will mainly use the minimization problem dip (not lcs) in the

sequel. If only deletion for characters of B are allowed, we get a distance dp.

String A is a transposed copy of B (denoted by A =' B) if B = (a; + t)(az +
t)---(am+t) = A+t for some t € U. Definitions for a transposed substring and
a transposed subsequence can be stated similarly. The transposition invariant
versions of the above distance measures d, where * € {H, MAD, SAD, L, ID, D}

can now be stated as d'(A, B) = mingey d, (A + ¢, B).

So far our definitions allow either only exact (transposition invariant) matches

between some characters (di, di, d¥, dY), or approximate match between all

characters (dyap, d4ap)- To relax these conditions, we introduce a constant

§ > 0. We write a =° b when |a — b| < §, a,b € . By replacing the equalities

a = b with a =° b, we get more error-tolerant versions of the distance measures:

df{"s,dtﬁé, dijg, and d%"s. Similarly, by introducing another constant x > 0, we
6,k 6,k

can define distances dyjap, dgap such that the x largest differences |a; — b;| are

discarded.

We can also define a—limited versions of the edit distance measures, where
the distance (gap) between two matches is limited by a constant a > 0, i.e. if
(ay,bj) and (a;, b;) are matches, then |i —i¢' —1| < aand |[j —j' — 1] < a. We

get distances dtL"S’O‘7 dﬁg’a, and dgé,a.

The approximate string matching problem, based on the above distance func-



tions, is to find the minimum distance between A and any substring of B. In
this case we call A the pattern and denote it P _,, = pip2-- - Pm, and call B
the tert and denote it 17, = t1to - - -t,, and usually assume that m <<n. A
closely related problem is the thresholded search problem where, given P, T,
and a threshold value £ > 0, one wants to find all the text positions j, such
that d(P, T}, ;) < k for some j,. We will refer collectively to these two closely

related problems as the search problem.

In particular, if distance dp is used in approximate string matching, we ob-
tain a problem known as episode matching [27,15]. It can also be stated as
follows: Find the shortest substring of the text that contains the pattern as a

subsequence.

Our complexity results are different depending on the form of the alphabet X.
We will distinguish two cases. An integer alphabet is any alphabet ¥ C Z. For
integer alphabets, |X| will denote max(¥) — min(X) 4+ 1. A real alphabet will
be any other ¥ C R and we will omit any reference to |3|. On the other hand,
for any string A = ay ... an, we will call X4 = {a; | 1 <i < m} the alphabet
of A. In these cases we will use |X4] = max(X4) — min(X4) + 1 < |X| when
Y4 is taken as an integer alphabet. On real alphabets, | 4| < m will denote

the cardinality of the set X 4.

3 Related Work and Motivation

The first thing to notice is that the problem of exact transposition invariant
string matching is extremely easy to solve. For the comparison problem, the

only possible transposition is ¢ = b; — a;. For the search problem, one can use



the relative encoding of both the pattern (p} = ps — p1,ph = p3s — pa2,...) and
the text (t} = to—1t1,th = t3—ts,...), and use the whole arsenal of methods de-
veloped for exact string matching. Unfortunately, this relative encoding seems

to be of no use when the exact comparison is replaced by an approximate one.

Transposition invariance (as far as we know) was introduced in the string
matching context in the work of Lemstrom and Ukkonen [24]. They proposed
(among other measures) transposition invariant longest common subsequence
(LCTS) as a measure of similarity between two music (pitch) sequences. They
gave a descriptive nick name for the measure: “Longest Common Hidden
Melody”. As the alphabet of pitches is some limited integer alphabet ¥ C Z,
the transpositions that have to be considered are T = {b —a | a,b € X}.
This gives a brute force algorithm for computing the length of the LCTS [24]:
Compute les(A + t, B) using O(mn) dynamic programming for each ¢ € T.
The runtime of this algorithm is O(|X|mn), where typically |X| = 256. In the
general case, where X could be unlimited, one could instead use the set of
transpositions T" = {b —a | a € A,b € B}. This is because some characters
must match in any meaningful transposition. The size of T' could be mn,
which gives O(m?n?) worst case time for real alphabets. Thus it is both of

practical and theoretical interest to improve this algorithm.

The Levenshtein distance allows substituting a note by some other note. A
natural extension would be to make the cost of a substitution operation depend
on the distance between the notes. This is however problematic since there is
no natural way of defining costs of insertions and deletions in this setting. We
have chosen an alternative approach when considering distance functions with
the parameter ¢; a tolerance 6 > 0 is allowed for matching pitch levels. This

can be used to allow matches between pitch levels that are relatively close. In



practice, one could use different values § for each pitch level to better reflect

musical closeness.

While the LCS and the edit distance in general are useful tools for comparing
two sequences that represent whole musical pieces, simpler measures could be
used in the search problem. An especially suitable relaxation of the LCS is
episode matching [27,15]. Assume that the pattern is (a discretized version of
a signal) given by humming. The goal is to search for the matching musical
pieces in a large music database. The pattern obtained by humming would
usually contain the melody in its simplest form, but the searched occurrences
in the music database might additionally contain some “decorative” notes,
which were forgotten by the person humming the piece. Episode matching
would find the occurrences that contain least decorative notes. This is a good
objective, since an occurrence with large number of additional notes would
not, be recognized as the same piece of music. A version of episode matching
has been proposed in the context of MIR, [16,13], where the number of these
additional notes between two matches is limited by a constant. This variant,
as well as the original problem, can be solved using dynamic programming
in O(mn) time. Including transposition invariance has not been considered.
We will study this problem and “matching with a-limited gaps” in general,
where an additional restriction to the dip, di, and dp distances is that the gap

between two consecutive matches is limited by an integer o > 0.

Even simpler measures have been proposed for the search problem; these in-
clude variants of d%, dyap and dsap [8,12]. In the “(6, v)-matching problem”,
one wants to find all occurrences j, such that dyap(P, T}, —m+1.5,) < 0 and
dsap(P, Tj,—m+1...,) < . Algorithms for exact string matching can be gener-

alized to this special case, and bit-parallel algorithms can be applied |[8,26].



These algorithms are fast in the average case (and in practice), but their worst
case is still O(mn). In fact, for § = oo the problem is known as the weighted
k-mismatches problem [28], and it has long been an open question to im-
prove the quadratic bound. We will not improve this bound here, but we will
show that within the same bounds one can solve the harder problem where

transposition invariance is included.

So far we have discussed problems for monophonic musical sequences. Poly-
phonic music is much more challenging. Usually one would be interested in
finding occurrences of a monophonic pattern in a polyphonic music. The ba-
sic approach would be to separate polyphonic music into parallel monophonic
pitch sequences (each instrument separately). This case can be handled eas-
ily by applying algorithms for monophonic music. This would however lose
the melodies that “jump” between instruments. To find these melodies one
should represent the polyphonic music as a sequence of subsets of pitch lev-
els. The exact matching is in this case called subset matching [10,9]. Novel
(but impractical) algorithms have been developed for this problem [10,9]. To
allow transposition invariance, one could simulate these algorithms with each
possible transposition. The time complexity would then be O(|%|slog®m),
where s is the sum of the subset sizes. A practical approach has been taken
by Lemstrém and Tarhio [23], who develop a fast filter for the problem with
transposition invariance; they also give a simple verification algorithm that
has running time O(|X|n + sm). To finish the MIR part, we note that the
problems that lead to dynamic programming (like LCS, edit distance, episode
matching) can easily be adapted to the case in which the text consists of

subsets.

Other applications for transposition invariance can be found, e.g., in image



processing and time series comparison. In image comparison, one could for ex-
ample use the sum of absolute differences to find approximate occurrences of a
template pattern inside a larger image. This measure is used, e.g., by Fredriks-
son in his study of rotation invariant template matching [18]. Transposition
invariance would mean “lighting invariance” in this context. As images usually
contain a lot of noise, the measure where x largest differences can be discarded

could be useful.

In time series comparison, many of the measures can be used. In fact, the
episode matching was first introduced in this context [27]. Recently, a closely
related problem to the transposition invariant LCS was studied by Bollobas et.
al [7]. They studied a slightly more difficult problem where not only transposi-
tion (translation), but also scaling was allowed. They also allowed a tolerance

between matched values, byt did not consider transpositions alone.

4 Summary of Results

Our results are two-fold. For evaluating the easier distance measures
(d5, dhe o, 55 ) we achieve almost the same bounds that are known without
the transposition invariance. These results are achieved by noticing that the
optimum transposition can be found without evaluating the distances for each

possible transposition.

For the more difficult measures (>, d%*, and d%”*) we still need to com-

pute the distances for each possible transposition. This would be costly if
the standard dynamic programming algorithms for these problems were used.

However, we show that sparse dynamic programming algorithms can be used



to give much better worst case bounds. Then we show the connection between
the resulting sparse dynamic programming problems and dynamic range mini-
mum queries. We obtain simple yet efficient algorithms for the distances di"s’a,

t,0,0 t,0,a
diy”, and dj”.

For LCS (and thus for dip) there already exists Hunt-Szymanski [22]| type
(sparse dynamic programming) algorithms whose time complexities depend on
the number r of matching pairs between the compared strings. The complexity
of the Hunt-Szymanski algorithm is O((r + n)logn). As the sum of values r
over all different transpositions is mn, we get the bound O(mnlogn) for the
transposition invariant case. Later improvements [2,17| yield O(mnloglogn)
time. We improve this to O(mnloglogm) by giving a new sparse dynamic
algorithm for LCS. This algorithm can also be generalized to the case where

gaps are limited by a constant a, giving O(mnlogn) for evaluating dyj (A, B).

Eppstein et. al. [17] have proposed sparse dynamic programming algorithms
for more complex distance computations such as Wilbur-Lipman fragment
alighment problem [35,36]. Also the unit cost Levenshtein distance can be
solved using these techniques [20]. Using this algorithm, the transposition
invariant case can be solved in O(mnloglogn) time. However, the algorithm
does not generalize to the case of a-limited gaps, and thus we develop an
alternative solution that is based on semi-static range minimum queries. This

gives us O(mnlog?®nloglogm) for evaluating dy®(A, B).

Finally, we give a new O(m + n + r) time sparse dynamic programming al-
gorithm for episode matching. This gives us O(mn) time for transposition

invariant episode matching.

Table 1 gives (a simplified) list of upper bounds that are known for these

10



problems without transposition invariance. Table 2 gives the achieved upper

bounds for the transposition invariant variants of these problems.
Table 1

Upper bounds for string matching without transposition invariance. We omit bounds
that depend on the treshold k£ in the search problems. For df]’)a and di’a we
could not find existing algorithms; naive dynamic programming gives O(a?mn)
for both, and our sparse dynamic programming algorithms give O(mnlogn) and

O(mnlog? nloglog m), respectively (bounds are simplified by assigning r = mn).

distance distance evaluation searching
exact O(m) O(m +n)

dn O(m) O(nv/mlogm) [1]
&, O(m) O(mn)
dap O(m) O(mn)
&1ap O(m) O(mn)
(6,7v)—matching O(m) O(mn)

dp, d1, O(mn/logm) O(mn/logm) [14]
dp O(mn/logm) O(mn/logm) [15]
dp’ O(mn) O(mn) [13]

5 Computation of dgf,dts’g]), and dyfp

For this section, let T = {t; = b; —a; | 1 < i < m} = {t;} be the set of

transpositions that make some characters in A and B match. Note that the

11



Table 2

Upper bounds for transposition invariant string matching. In integer alphabet,
klog k can be replaced by |X| + k, and mlogm by || + m for d'ﬁ‘s. Also, use § + 1
instead of ¢ and log(2 + ) instead of logx to get correct bounds for small § and x
values. We have not added, for clarity, the size of the output in the (thresholded)
search complexity, nor the preprocessing time in Lemma 10 for the edit distance
measures. The bounds on these distances are valid in real alphabets provided we

replace 0 by 6/u, where p is the minimum distance between two characters in A or

in B.
distance distance evaluation searching
exact O(m) O(m +n)
d%’(s O(mlogm) O(mnlogm)
dts’ZD O(m + klogk) O((m + klog k)n)
Ayt O(m + klog k) O((m + klog k)n)
(6, y)-matching O(m) O(mn)
d}]’g O(émnloglogm) O(dmnloglogm)
d*;],g,a O(dmnlogn) O(dmnlogm)
di"s O(dmnloglogn) O(dmnloglogm)
di"s’a O(6mnlog?® nloglogm) | O(émnlog? mloglogm)
e O(6mn) O(5mn)

optimal transposition does not need, in principle, to be included in T, but we

will show that this is the case for d%, and dg,. Note also that |T| = O(|Z])

in integer alphabet and |T| = O(m) in any case.
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5.1 Hamming Distance

We consider first the computation of transposition invariant Hamming dis-

tance dtlf. Let A=ay...a, and B =1b;...b,, where a;,b; € ¥, 1 <i < m.

Theorem 1 One can compute d% (A, B) in O(|S| + m) time with integer

alphabet, or in O(mlogm) time in real alphabet.

PROOF. It is clear that the Hamming distance is minimized for the trans-
position in T that makes the maximal number of the characters match. What
follows is a simple voting scheme, where the most voted ¢; wins. Addition-
ally, it is extended to match d positions back and forth from each ¢;. Let -
denote a don’t care element, and p.z (p.y) denote the first (second) element
of a pair p = (-,-). Construct sets S = {(t; — d,“open”) | 1 < i < m} and

E ={(t; +6,“close”) | 1 < i < m}. Sort SUE into a list I using order

(2 ) <" (z,y): 2’ <z or (¢ =z and y <y),

where “open”<“close”. Initialize variable count = 0. Do for i = 1 to |I] if I(i) =
(-, “open”) then count = count+1 else count = count—1. Let maxcount be the
largest value of count in the above algorithm. Then clearly d%*(A, B) = m —
maxcount, and the optimal transposition is any value in the range [I(i).x, I (i+
1).x], for any i where mazcount is reached. The complexity of the algorithm
is O(mlogm). Sorting can be replaced by array indexing when ¥ is an integer

alphabet, which gives the bound O(|X| + m) for that case. O

13



5.2 Sum of Absolute Differences Distance

We shall first look at the basic case where xk = 0.

Theorem 2 One can compute diyn(A, B) in O(m) time with both integer

and real alphabet.

PROOF. Sorting T in ascending order gives a sequence t;,,t;,,...,t;, . Let
topt be the optimal transposition, where #;, _, <, <#; for some 1 < j < m.
The cases top: < 1;, Or to > t;,, can be discarded as we will see. We can

rewrite dsap(A + topt, B) as follows:

j—1
dSAD(A +toptaB) = Z opt — z/ + Z (7 opt (1)
J'=1 J'=J

We have two cases (i) j —1 < m —j,and (ii) j —1 > m — j. In case (i) we

can rearrange terms in (1) and get

j—1 m—j+1
dSAD<A + topta B) = Z (tim_j/+1 - Z y + Z o opt (2)
J'=1

From equation (2) one can see that as long as there are terms in the second

summation, one can increase t,, so that the overall cost will decrease. This

remains true even when we move from t;,_, < fop < & 10 &5, < topy < 1y,

If m is odd the value of ¢,,; can be increased until ¢;

Z(m+1)/271 S topt S t

Ym+1)/2°

Obviously topr = 1

iminy,» 1 that case. If m is even the value of ¢y can be

increased until there are two terms left in the summation. Then the optimal

transposition t,, is any value between and including ?; , and ?; they all

tm /2 ? /2+17

produce the same cost. Case (ii) gives the same result, so we can conclude that

it is enough to compute the distance with ¢ =t Sorting is not needed

ilm/2) 41"

since ¢ can be found with a linear time median finding algorithm. O

im/2)+1

14



To get a fast algorithm for dgip, when & > 0 mismatches are allowed, we need
a lemma that shows that the distance computation can be incrementalized
from one transposition to another. Let t;,,%;,,...,%;, be the sorted sequence

of T.

Lemma 3 Given values j, S;, and L; such that dsap(A +t;,, B) = S; + Lj,
S; = Zg,;lltu —ti,, and Ly = 32011 tiy — tij, the values of Sjy1 and Ljiq,

2

can be computed in O(1) time.

PROOF. Value S;; can be written as

J J
Sj+1= Z bijpy — tijf = Z bijp — bi; i — tij'
i'=1 j'=1
j
=J(tin — i) + Dty — tiy, = Gty — tiy) + ;.
=1

Similarly L1, can be written as

m m
Ljn= Z tij/ —tij, = Z tijf —bi; Tl — i,
J'=j+2 '=j+2

m
=(m—j =Dty —ti,)+ D ti, —tiy = (m—j)(ty; —ti;,,) + L.
§'=3+2

Thus both values can be computed in constant time given the values of 5

and L;, and ¢ O

URSE

Theorem 4 One can compute dgyy(A, B) in O(m + klogk) time with both

integer and real alphabet.

PROOF. Consider the sorted sequence t;,%;,,...,%;, as in the proof of
Theorem 2. Clearly the candidates for the x outliers are M(K' k") =

{tiys - tiy ti s ti, } for some &' +%" = k. The naive algorithm is then to

15



compute the distance in all these k+1 cases: Compute medians of T\ M (k', k")
and choose the minimum distance induced by these medians. These x + 1 me-
dians can be found by first taking the median of T\ M (0, x) and of T\ M (k, 0),
and then passing over the set collecting and sorting all the values in between,
as these are the medians of T\ M (k’, k). The k+ 1 medians can thus be taken
in O(m + klog k) time, and the additional time to compute the distances for
all of these x + 1 medians is O(km). However, the computation of distances
given by consecutive transpositions can be incrementalized using Lemma 3.
First one has to compute the distance for the median of T \ M(0, ), and
then continue incrementally until we reach the median of T\ M(k,0) (this is
where we need the medians sorted). Since the set of mismatches changes when
moving from one median to another, one has to add value t; , —t;, to S, and
value t;, — t;, to Ly, where S, and L, are the values given by Lemma 3.

The time complexity of this algorithm is O(m + klogk). O

5.3 Maximum Absolute Difference Distance

: t
We consider now how dyfxp can be computed.

Theorem 5 One can compute dytsp (A, B) in O(m + klog k) time with both

integer and real alphabet.

PROOF. When k£ = 0 the optimal distance is clearly di; p(A, B) =
(max;{t;} — min;{t;})/2, and the transposition giving this distance is
(max;{t;} + min;{t;})/2. When & > 0, consider again the sorted sequence

tiy,t ,1;.. as in the proof of Theorem 2. Again the « outliers are M (k', k")

219 Vigy - - -

for some &'+ k" = k in the optimal transposition. For each choice, the distance

16



can be computed in O(1) time (it is (¢; —ti,,,,)/2)- The O(k) medians

m—k/l—1
can be found in linear time, but they must be sorted in order to construct sets
induced by mismatch sets incrementally from M (0, k) to M(k,0). Thus the

complexity becomes O(m + klogk). O

Remark 6 In integer alphabet, terms klogk in dghp and dyfyp could be re-

placed by k + |X|, since the sorting could then be replaced by array indexing.

5.4 Searching

Up to now we have considered distance computation. Any algorithm to com-
pute the distance between A and B can be trivially converted into a search
algorithm for P in 7" by comparing P against every text window of the form

Tj_rm+1..j- Actually, we do not have a search algorithm better than this.

Lemma 7 For distances di, di%,, and dify,, if the distance can be evalu-
ated in O(f(m)) time, then the corresponding search problem can be solved in

O(f(m)n) time.

On the other hand, it is not immediate how to perform transposition invariant

(6, v)-matching. We show how the above results can be applied to this case.

5.4.1 Transposition invariant (0,7)-matching.

Note that one can find in O(mn) time all the occurrences {j} such
that dyap(P, Tj-m+1.5) < 0, and all the occurrences {j'} where
dian (P, Ty—m+1..57) < 7. The (4,7)—matches are a subset of {j} N {j'}, but

identity does not necessarily hold; this is because the optimal transposition

17



can be different for di;,p and d§,p.

What we need to do is to verify this set of possible matches {j}N{;’}. This can
be done as follows. For each possible match j” € {j} N {j'} one can compute
limits s and / such that dyap(P +t, Tjr_mi1..jv) < 60 for all s < ¢ < [: If the
distance d = dyap(P~+topt, Tjr—m+1..j7) is given, then s =ty —(d—d) and | =
topt+(0—d). On the other hand, note that the function dsap(P+t, Tjr._ jrym—-1),
as a function of £, is decreasing until ¢ reaches the median of the transpositions,
and then increasing. Thus, depending on the relative order of the median of
the transpositions with respect to s and [, we only need to compute the SAD
distance in one of them (t = s, =, or t = t|;5,/2)41). This gives the minimum

value for SAD in the range [s, t]. If this value is < v, we have found a match.

One can see that using the results of Theorems 2 and 5 with x = 0, the
above procedures can be implemented so that only O(m) time at each possible

occurrence is needed. There are at most n occurrences to test.

Corollary 8 One can find all the transposition invariant (0,~)—occurrences

in O(mn) time with both integer and real alphabet.

6 Computation of d}ﬁ , d%é, and d%é

Let us first review how the edit distances can be computed using dynamic
programming [25,34,29|. Let A = ayas---a,, and B = byby---b,. For dp,
evaluate an (m + 1) x (n + 1) matrix (d;;), 0 < i <m, 0 < j < n, using the

recurrence
di,j :mln((lf a; = bj then di—l,j—l else OO), di—l,j + 1, di,j—l + 1), (3)
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with initialization d;p =7 for 0 <4 <m and dyp; = j for 0 < j < n.

The matrix (d;;) can be evaluated (in some suitable order, like row-by-row or

column-by-column) in O(mn) time, and the value d,, equals dip(A4, B).

A similar method can be used to calculate the distance dr,(A, B). Now, the

recurrence is
d;j=min((d;—1 j—1 +if a; = b; thenOelse +1),d;_1; +1,d; ;1 +1),(4)
with initialization d; o =7 for 0 <7 <m and dp; = j for 0 < j < n.
The recurrence for the distance dp(A, B), that is used in episode matching, is
d;;=if a;, = b; thend;_, ;_; else d; ;1 + 1, (5)
with initialization d; o = oo for 0 <7 <m and dy; = j for 1 < j < n.

The corresponding search problems can be solved by assigning zero to the
values in the first row (recall that we identify pattern P = A and text T' = B).
To find the best approximate match, we take ming<;<y, dy, ;. For thresholded
searching, we report the endpositions of the occurrences, i.e., those j where

For episode matching there is an alternative (and more useful) recurrence [15]
d;;=if a; = b; then d;_, ;_; else d; ;_1, (6)

with initialization d;o = oo for 0 < i < m and dp; = j for 1 < j < n. The

length of the best episode match is then mini<;<,{|j — dm |}

To solve our transposition invariant problems, we could try to prove that only

some transpositions need to be checked, as is the case with the problems in
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the previous section. This does not seem to be possible with the more flexible
measures of similarity studied here. Therefore we choose a different approach:
We compute the distances in all required transpositions, but we use algorithms
that are more efficient than the above basic dynamic programming solutions,
such that the overall complexity does not exceed by much the worst case

complexities of computing the distances in one transposition.

Let M be the set of matching characters between strings A and B, i.e.
M = M(A,B) = {(4,j) | s = b;,1 < i < m,1 < j < n}. Let
r = r(A,B) = |M(A, B)|. Let us redefine T in this section to be the set
of those transpositions that make some characters match between A and B,
that is T = {b; —a; | 1 <7 <m,1 < j < n}. One could compute the above
edit distances and solve the search problems by running the above recurrences
over all pairs (A +¢,B), where ¢t € T. In integer alphabet this takes O(]|X|mn)
time, and O(|X4||X5|mn) time in real alphabet. This kind of procedure can
be significantly speeded up if the basic dynamic programming algorithms are

replaced by suitable “sparse dynamic programming” algorithms.

Lemma 9 If an algorithm  computes a  distance d(A,B) in
O(g(r(A, B))f(m,n)) time, where g is a concave function, then the transpo-
sition invariant distance d*(A, B) = minger d(A + t, B) can be computed in

O(g(mn)f(m,n)) time.

PROOF. Let r, = r(A + t, B) be the number of matching character pairs

between A +t¢ and B. Then
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The rest of the section devotes to developing algorithms that depend on 7.

6.1 Preprocessing

As a first step, we need a way of constructing the match set M sorted in some
order that enables sparse evaluation of matrix (d;;). We use column-by-column
order (i',7") <° (i,7) in the sequel, that is defined as follows: j' < j or (j' = j
and i’ < 7). The match set corresponding to a transposition ¢ will be called

My ={(i,j) [ ai +t = b;}.

We must be careful in constructing these match sets for all transpositions
so that the overall preprocessing time will not exceed the time needed for
the actual distance computations. For example, one could easily construct a
match set by considering all the mn pairs (7, ) in any desired order (such as
column-by-column) and adding each pair (4, j) to My, ,, first initializing it if
the transposition ¢ = b; — a; did not previously exist. This method gives us
O(|X|+mn) time in integer alphabet and O(mnlog(|X4||X5])) = O(mnlogn)

in real alphabet (by using a balanced tree of existing transpositions).

Also, one should pay attention to the space usage: The sum of all the sizes
| M;| is O(mn) space, which can be too much especially in the search problem.

This can be reduced to O(m?) in the search problems for d¥, and d ; values in
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column j cannot affect the values at column j+2m, and thus one can partition
B =T into substrings of length 3m so that the consecutive substrings overlap
by m characters. Then one can run the algorithms over all pairs (A, B'), where
B' is a substring described above. To achieve O(m?) space (with algorithms
that depend on ), we need to be able to produce match sets for each (A, B')
separately. For d%, this trick does not apply, but as we will see, only the matches

in the current column are needed.

Lemma 10 The match sets M; = {(4,7) | a;+t = b;}, each sorted in column-
by-column order, for all transpositions t € T, can be constructed with the
following complexities. On integer alphabet, O(|3| + mn). On real alphabet ,
O(mlog|Xa|+nlog|Ep|+ |X4||Xs|log(|X4]|X8]) +mn). Both bounds can be
achieved using O(mn) space. If B can be partitioned into O(n/p) overlapping
substrings of length O(p) or a window of length p can be slid over B, we get
O(mp) space on integer alphabet and O(mp + |X4||X5|) on real alphabet. The

latter can be reduced to O(mp) at a time cost of O(n|Xa|log(|X4||X8]) +mn).

For the wversions that relax the matching condition using parameter §, we
get O(|X| + dmn) on integer alphabet and O(mlog|Xa| + nlog|Eg| +
X4 X8 log(|Z4]|X8|) + mn(6/u)log(d/p)) on real alphabet, where p =
min{la; —a;| |1 <i<j<m, ai#a;}U{lbi—0bj] |1<i<j<mn, b #
b;}. For real alphabet and O(m?) space, the cost is O(n|E4]log(|Za||XB]) +

mn(0/p) log(6/1)).

PROOF. In the integer case we can proceed naively to obtain O(|X| + mn)
time using array indexing to get the transposition where each pair (i,7) has
to be added. For 6 > 0 each pair (4, j) is added to entries from b; — a; — d to

bj — a; + 0, in O(|X| + dmn) time. If B is processed by blocks, the previous
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block can be used to empty the lists created when processing it in O(dm)
instead of the O(|X|) time that would be necessary for a full reinitialization,

hence retaining the O(|X| 4+ dmn) complexity for this case too.

The case of real alphabets with O(mn) memory is solved as follows. Let us
first consider the case 6 = 0. Create a balanced tree T4 where every character
a = a; of A is inserted, maintaining for each such a € ¥4 a list £, of the
positions 7 of A, in increasing order, such that a = a;. Do the same for B
and Tg. This costs O(mlog|X4| + nlog|Xg|). In which follows we will speak
indistinctly of characters of ¥4 (X5) and nodes of T4 (75). For each node a in
Ta and b in Tg, initialize M,_, = () and insert it into a tree of transpositions,
Tr. At the same time, create a simple list P, for each node b in 7p containing,
for each node a of T4, a pointer to the node a of 74 and to the node b —
a in Tp. This takes O(|X4||Xg|log(|X4]|XB|)) time, since |T| < |X4||X5].
Finally, traverse all the lists of positions £, of 7p in synchronization, getting
consecutive positions j in B (this is done, e.g., by putting all the tree nodes b
in a heap sorted by the first position in the list £;, extracting the smallest, and
reinserting it with the next position in the list). For each extracted position j
of B corresponding to a node b in Tg, traverse its list of pairs P, = {(i,t) €
(T4 node, Tr node)}. For each such list element, add (7,j) to set M; in Tr.

This takes overall O(nlog|Xg| + mn) time.

Let us consider now how we can modify the above algorithm for the case where
we have to process B by blocks of length O(p), so that we use less space. The
point is to show that we can move from one block to the next fast, removing
the positions of B that we leave behind and adding the new positions we
reach. In order to remove the smallest position j from the structure described

above, we have to locate b = b; in 7, remove the first element of £, and then
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traverse P, removing the |3 4| positions (x, j) from the sets M,_,, in Tr. Since
we have direct pointers for the latter operation, all this can be carried out in
time O(log |Xg| + |X.4]). Since each character of B is removed only once, we
get overall remotion time O(nlog|¥Xp| 4+ n|¥4|) = O(nlog |Xp| + mn), which
does not affect our complexities. Insertion of a new character b = b; is similar:
we locate b in Tg, add j at the end of £, and add (x, j) to the sets M _,, in

Tr. The complexity is the same.

However, there is a detail that must be considered. In order to have O(mp)
space, we must ensure that, whenever a list £, becomes empty, we delete
Ly and P, (indeed, the whole node b from Tg). The same happens to an
empty set M; in Tr. However, this means that we may have to rebuild 7,
for each new character b that is inserted, resulting in an overall cost of
O(|X 4] log(|34]|2g])). This turns out to be larger than most of the other com-
plexities and results in an overall time of O(n|X4|log(|X4||25|) +mn). Alter-
natively, we can leave those currently unused computations in P so as to retain

our previous complexity, but the space in this case can reach O(mp+|4||Xp|).

Finally, let us consider the case where 6 > 0. Note that now we have ranges
of relevant transpositions rather than individual transpositions. Inside each
range, the set of d-matching pairs is the same. The first point is to note
that there are at most 4|X4||Xp| relevant ranges. Consider that each b; of
B induces a segment [b; — §,b; + 0] of alphabet values it matches. Imagine
a sequence of these segments in increasing order (they are all of the same
length). Now, for each a; of A we consider the induced segment [a; — d, a; + 9].
If we slide this segment in the alphabet range, the upper limit will touch all the
2|Xg| beginnings and endings of segments, and the same will happen to the

lower limit. Except for those points, the set of matching pairs between A and
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B cannot change. Hence there are at most 4|X4||Xp| relevant transposition

ranges.

We proceed as before, with the only difference that each pair (a;,b;) will
produce a segment [b; — a; — d,b; — a; + 0] where (7, 7) is active, so T will
store (equal length) segments, which can overlap. We will fill the values in Tt
as before; each pair (i,7) will be added to a single segment of 7t. The only
new problem that appears is that, before, we had at the end all the M; sets

already computed in 7t at the end, but now we are not yet ready.

We have to traverse 7t in increasing order of range endpoints. For each new
range endpoint (beginning or ending) we have a new transposition range to
process. For each such range, we know which ranges of 7t are currently open,
and we merge all the (i, 7) pairs of all the open ranges (the pairs are already
sorted inside each node of 7p). This merging can be done at O(log(d/u))
cost per element extracted, since there can be at most O(d/u) overlapping
transpositions. Since overall we produce O(mnd/u) pairs, the extra cost over

the above scheme is O(mn(6/u)log(6/w)). O

6.2 Computing the Longest Common Subsequence

For LCS (and thus for dip) there exist algorithms that depend on r. The
classical Hunt-Szymanski [22] algorithm has running time O(rlogn) if the
set, of matches M is already given in the proper order. Using Lemma 9 we
can conclude that there is an algorithm for transposition invariant LCS that
has time complexity O(mnlogn). There are even faster algorithms for LCS

[2,17|; Eppstein et. al. [17] improved an algorithm of Apostolico and Guerra [2]
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achieving running time O(D loglogmin(D, %¢)), where D < r is the number
of dominant matches (see, e.g., |2] for a definition). Using this algorithm, we
have the bound O(mn loglogn) for the transposition invariant case (note that
this is tight estimate, since it can be achieved when D = O(mn/D) at each

transposition).

The existing sparse dynamic programming algorithms for LCS, however, do
not extend to the case of a-limited gaps. We will give a simple but effi-
cient algorithm for LCS that generalizes to this case. We will also use the
same technique when developing an efficient algorithm for the Levenshtein
distance with a-limited gaps. Moreover, by replacing the data structure used
in the algorithm by a more efficient one described in Sect. 6.4, we can achieve
O(rloglogm) complexity, which gives O(mnloglogm) for the transposition

invariant LCS (which is better than the previous bound, since m < n).

We will need the following (sparsity) lemma to give a fast algorithm for dip.

Let (i, ') <? (i,7) denote the partial order defined as i’ < ¢ and j' < j.

Lemma 11 The recurrence (3) can be replaced by

dij=min{d(/',j")+i—1i+j—j + ifa; =b; then —2 else0
‘ Ay = bj'a (il,jl) <P (Za])}a (7)

where dyy =0 and ag = by.

PROOF. Consider the evaluation of the matrix (d;;) as a shortest path com-
putation in which one can either proceed one cell down (cost 1), one cell to the
right (cost 1) or one cell forward in the diagonal (cost oo if the corresponding

characters do not match, otherwise 0). The paths that take only horizontal
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and vertical steps from cell (7', ') to cell (i, ) have cost i — ' + j — j'. The
paths that consist of one diagonal movement (from (i —1,j —1) to (4,7)) and
otherwise of horizontal and vertical movements (from (#’,5') to (i — 1,5 — 1))
from cell (7', j') to cell (4, j) have cost i —¢' —1+4j — j'— 1, when a; = b;. The
paths that take more diagonal steps either have cost oo or pass through some
cell (¢", ") # (¢, ') such that (i", ;") <P (i,7), a = bj». Using induction, one
can see that the path cost from (i", ;") plus d j» is always smaller or equal

to the path cost from (7', j') plus dy 4. O

The obvious strategy to use the above lemma is to keep the already computed
values d(#', j') for each ', j' such that ay = by in some data structure so that
their minimum can be retrieved efficiently when computing the value of d(i, 7).
One difficulty here is that the values stored are not comparable as such since
we want the minimum just after i —i' + j — j' — 2 is added. This can be solved
by storing values d(7', j') —i' — j' instead. Then, after retrieving the minimum
value, one can add i + j — 2 to get the correct value for d(i, j). To get the
minimum value from range (i, ;') € [—00,7) X [—00,J), we need a dynamic
data structure that can support one-dimensional range queries (the column-
by-column traversal order guarantees that all points are in range [—o0, 7)). In
addition, the range query should not be output sensitive; it should only report

the minimum value, not all the points in the range.

A balanced binary tree can be used as such a data structure. We can use the
row number 7’ as a sort key, and store values d(i', 7') —#' — j' in the leaves. Then
we can store in each internal node the minimum of the values d(¢, j') — ' — j’

in its subtree.

Lemma 12 A balanced binary tree T supports the following operations in
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O(logn) amortized time, where n is the amount of elements inserted in the

tree.

T .Insert(k,v): Inserts value v into tree with key k.

T .Delete(v): Deletes all elements with value > v.

e v =T .Minimum(k,+): Returns the minimum of values that have key > k.

v =T .Minimum(k, —): Returns the minimum of values that have key < k.

v = T.Minimum(l,r): Returns the minimum of values that have key > 1

and < r.

PROOF. The balanced tree described above is easily updated when a new
key k is inserted, as the only additional operation is to change the value v’
of any traversed internal node by min(v,v’). Deletion needs a parallel tree
organized by value v, so that deleting all the values larger than v can be done
by disconnecting O(logn) subtrees. This parallel tree stores pointers to the
original tree 7, so we can remove also the nodes from 7. Since we remove
all values larger than v, minimum values computed at internal nodes in T
need not be updated. So the deletion of each node takes O(logn) time. Since
one cannot delete more elements than those inserted, the amortized time for
deletions is O(logn). Minimum over ranges of keys are obtained by taking the
minimum value over the O(logn) nodes that are traversed when searching for
the keys. For simplicity we will speak of the balanced tree 7, ignoring the
fact that the data structure is composed of two trees. (We note, however, that

deletions are strictly necessary only when matching with a—limited gaps.) O

We are ready to give the algorithm. To simplify the exposition, we assume first

that there is only one match in each column. Now, initialize a balanced binary
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tree 7 by adding the value of dog — i —j = 0 with key i = 0 (7.Insert(0,0)).
Proceed with the match set M that is sorted in column-by-column order and

make the following operations at each pair (4, j):

(1) Take the minimum value from 7 whose key is smaller than the current
row number i (d = T.Minimum(i,—)). Add i + j — 2 to this value (d +
d+i+j—2).

(2) Add the current value d minus the current row number 7 and current column

number j into 7 with the current row number as a key (7 .Insert(i,d —i—

7))-

Finally, if a, = b, then dip(A,B) = d, otherwise dip(A,B) =

T.Minimum(m + 1) + m + n.

One can easily see that the above algorithm works correctly; the column-by-
column evaluation and the range query restricted by the row number in 7T
guarantee that the (i’, j') <? (7, 7) condition holds, as long as there is only one
match in each column. To remove the “one match per column assumption”,
one can simply batch and delay the insert-operations until all the minimum-

operations in that column are executed?®.
Clearly, the time complexity is O(rlogr). Figure 1 gives an example.

The algorithm also generalizes easily to the search problem; the 0 values in the
first row can be added implicitly by using d < min(i,d+i+j —2) in step (1)

above. Also, every value d; ; = d computed in step (2) above induces a value

3 We note, however, that including those cells as soon as they are computed does
not alter the result, as Lemma 11 could have also been proved using the definition

of (i',5") <P (i,j) as i’ < i and j' < j.
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Fig. 1. Example of computation of dip on a sparse matrix. The black circles represent
the matching pairs (4, j). Each such matrix position has an influence area represented
by a gray rectangle (darker grays represent larger differences from the standard value
i+ 7). Near to each position we represent the matrix value we compute, in the form
i+j—x. The value of interest is the lowest rightmost position. In particular, we depict
the computation of the cell (24,39), for which we have to consider all the positions
included in the dashed rectangle. On the right we show our tree data structure. FEach
node corresponds to a cell (¢,7) and is represented as ¢ [z] {y}, where ¢ is the tree
key, x means that the cell value is ¢ + j — =, and y is the minimum « value in the
subtree. The search for cell (24,39) includes all the nodes to the left of the dashed
line, and has to take the minimum m over all the underlined values. Its new value
is244+39+m — 1.

dmj+s < d+ (m—1)+ s in the last row, which can be used either to keep the
minimum d,, ; value, or to report all values d,, ; < k in thresholded searching
(each d; ; induces a range at last row where values are < k; after computing

all values d; ;, the last row can be traversed by keeping book on the active

INE
ranges in order to report each occurrence only once). The time complexity
does not change except for the size of the output, but it can be improved
since n >> m; we can delete those nodes that cannot give the minima, i.e.,

values d such that min(i,d + ¢ + j — 2) = i. This means that, before we

process elements in column j, we can remove all the values v > —j + 2. The
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running time becomes O(rlogm) with O(m?) space, since this is the number

of possibly relevant matches at any time.

We will show in Sect. 6.4 that the balanced binary tree can be replaced by a
priority queue. Moreover an implementation of priority queue can be used that
supports operations in O(loglogu) time, where 1...u is the range of values
inserted in the structure. The structure does not store the values of d; ; but

the row numbers 7, and thus we can replace logn with loglogm.

Let us now consider the case with a—limited gaps. There are couple of changes
we need in our algorithms to make sure that, in order to compute d;;, we
only take into account the matches that are in the range (7, j') € [i — a —
1,i) X [ — a—1,7). What we need to do is to change the range [—oc, i) into
[{ —a—1,7) in T, as well as to delete elements in column < j — o — 1 after
processing elements in column j. The former is easily accomplished by using
query T.Minimum(i — o — 2,4) at phase (1) of the algorithm. The latter
needs an extra tree organized by j values, similar to the one used for the
Delete operation. In fact, for searching, this tree can replace the one used for
Delete and we would obtain the same running time, as the relevant o values
cannot exceed m in the search problem. However, the reduction to priority
queues does not work anymore, and the loglogm factor must be replaced by

logn in the bounds.

There is one more complication in the case of a-limited gaps. If
T.Minimum(i — a — 2,4) = oo and thus there is no match inside the query
rectangle, we must delete substrings A, _; 1 and B;_; ;. In this case we must
use update rule d < i + j — 2 in phase (1) of the algorithm. Symmetric case

happens in the end of the sequences (if (7, j) is the last match, then substrings
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Ait1..m and Bjyq., must be deleted); when computing the value of dip(4, B),
we must take the minimum over d; ; +m —i+n— j, where values d; ; are those
computed during the execution of the algorithm. This minimum can easily be

maintained during the execution of the algorithm.

An illustration of the algorithm for LCS with a-limited gaps is given in Fig-

ure 2.
0 9 202326 3639 48
0®
3]0
8 N
“C13[-21{-2y 7
13 A %}\
2 3[-1{-1} | 26[-2]{-2}
24 X
26
32

80-4

Fig. 2. Example of a—gapped computation of dip on a sparse matrix, for & = 15. The
same conventions of Figure 1 apply. The difference is that now the influence areas
are restricted to width and height «, so we delete values with too small columns and
perform a two-sided range search over the tree, so only its middle part qualifies. In

this example, the final result does not change.
By using Lemma 9 and the above algorithms, we get the following result.

Theorem 13 The transposition invariant distance dip (A, B) can be computed
in O(mnloglogm) time and O(mn) space. The corresponding search problem
can be solved in O(mnloglogm) time and in O(m?) space. For the case of
o-limited gaps, dyy (A, B), the space requirements remain the same, but the
time bounds are O(mnlogn) for distance computation and O(mnlogm) for
searching. The preprocessing bounds in Lemma 10 need to be added to these

bounds.
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Note that to achieve space complexity O(m?) we need to slide a window of
length 2m over the text, and run preprocessing and computation in parallel

so that all transpositions are evaluated in each window.

6.3 Computing the Levenshtein Distance

For the Levenshtein distance, there exists a O(rloglogmin(r, mn/r)) sparse
dynamic programming algorithm [17,20|. Using this algorithm, the transposi-
tion invariant case can be solved in O(mnloglogn) time. As with the LCS,
this algorithm does not generalize to the case of a-limited gaps. We develop
an alternative solution for the Levenshtein distance by generalizing our range
query approach to the LCS. This new algorithm can be further generalized to

solve the problem of a-limited gaps.

The Levenshtein distance dy, has a sparsity property similar to the one given for
dip in Lemma 11. The following lemma can be proven using similar arguments

as in the proof of Lemma 11.

Lemma 14 The recurrence (4) can be replaced by

di; =min{d(i,j")+j—Jj + ifa; =b; then —1 else0
lay =by,i' <ii—i <j—j'}
U {d@', j")+i—17 + ifa; =b; then —1 else0 (8)
| ap =bjp,j' <ji—i'">j—j'},

where doo = 0 and ag = by.

As with the LCS, our goal is to compute only values d; ; such that a; = b;. The
recurrence relation is however much more complex than the one for dip. In

the case of dip we could store values dy j (such that a; = bj) in a comparable
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format (by storing dy s —i’'—j' instead) so that the minimum of range (', j') <?
(i,7) could be retrieved efficiently. For di, there does not seem to be such a
comparable format, since the path length from (¢, ;') to (i,7) may be either

t—1i —1orj—j"—1, when a; = b,.

Let us call the two sets in the above lemma as the lower region and the upper
region, respectively. Our strategy is to maintain separate data structures for
both regions. Each value d; j (such that a; = b;) will be stored in both struc-

tures in such a way that the stored values in each structure are comparable.

Let £ denote the data structure for the lower region and U/ the data structure
for the upper region. If we store values d; ; —j' in £, we can take the minimum
over those values plus j — 1 to get the value of d; ;. However, we want this
minimum over a subset of values stored in £, i.e. over those dy jy — j' whose
coordinates satisty i’ < i,j" — 4 < j —i. Similarly, if we store values dy ;» — 4’
in U, we can take minimum over those values whose coordinates satisfy j' <
J.j'—4 > j—i, plus i — 1 to get the value of d; ; (the actual minimum is then

the minimum of upper region and the lower region).

What is left to be explained is how the minima of subsets of £ and U can be
obtained. For the upper region, we can use the same structure as for dip; if we
keep values dy j; — i’ in a balanced binary tree I with key j' —4', we can make
one-dimensional range search to locate the minimum of values d; j — i’ whose
coordinates satisfy j' —i' > j —i. The column-by-column traversal guarantees
that U only contains values dj ;; — i’ for whose coordinates hold 5’ < j. Thus,

the upper region can be handled efficiently.

The problem now is the lower region. We could use row-by-row traversal

to handle this case efficiently, but then we would have the symmetric prob-
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lem with the upper region. No traversal order will allow us to limit to one-
dimensional range searches in both regions simultaneously; we will need two-
dimensional range searches in one of them. Let us consider the two-dimensional
range search for the lower region. We would need a query that retrieves the
minimum of values dy ; — j' whose coordinates satisfy i’ < 7,5 —i' < j — .
We make a coordinate transformation to make this triangle region into a rect-
angle; we map each value djy j — j' into an zy-plane to coordinate 7', j' — 4'.
What we need in this plane, is a rectangle query [—o00,i) X [—00,j — 7). We
will in Lemma 15 specify an abstract data structure for £ that supports this

operation, and will later in this section show that such a structure exists.

Lemma 15 There is a data structure R that, after O(nlogn) time prepro-
cessing, supports the following operations in amortized O(lognloglogn) time

and O(nlogn) space, where n is the number of elements in the structure:

e R.Update(x,y,v): Update value at coordinate x,y to v (under condition that
the current value must be larger than v).
e v = R.Minimum(ly,ls, —, —): Retrieve the minimum of values whose x-

coordinate is smaller than [ and y-coordinate is smaller than ls.

We are now ready to give the sparse dynamic programming algorithm for the
Levenshtein distance. As with the algorithm for LCS, we first assume that
there is only one match in each column, to simplify the exposition. Initialize
a balanced binary tree U for the upper region by adding the value of dyo —
i = 0 with key ¢ = 0 (U.Insert(0,0)). Initialize a data structure £ for the
lower region (R of Lemma 15) with the triples (i, j, 00) such that (i,7) €
M U {(0,0)}. Update value of dog —j = 0 with keys i = 0 and j —¢ = 0

(L.Update(0,0,0)). Proceed with the match set M = {(4,j) | a; = b;} that is
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sorted in column-by-column order and make the following operations at each

pair (i, j):

(1) Take the minimum value from ¢/ whose key is larger or equal to the current
diagonal j — i (d' = U.Minimum(j —i — 1,4)). Add i — 1 to this value
(d—d +i-1).

(2) Take the minimum value from £ inside the rectangle [—o0o, i) X [—00, j — 1)
(d" = L.Minimum(i,j—i,—,—)). Add j—1 to this value (d" + d"+j—1).

(3) Choose the minimum of d’ and d” as the current value d = d, ;.

(4) Add the current value d minus ¢ into ¢ with key j—i (U.Insert(j—i,d—1)).

(5) Add the current value d minus j into £ with keys i and j—i (L.Update(i, j—

Finally, dp,(A, B) = min(U.Minimum(n — m — 1,+) + m, £.Minimum(m +

Ln—m,—,—)+n).

The correctness of the algorithm should be clear from the above discussion.
To remove the “one match per column assumption”, one can batch and de-
lay the insert-operations until all the minimum-operations in that column
are executed, just like in the algorithm for LCS (again, we note that this is
not really necessary). The time complexity is O(rlogrloglogr) (r elements
are inserted and updated into the lower region structure, and r times it is
queried). The space usage is O(rlogr). We can reduce the time complexity to
O(rlogrloglogm) since the loglogn factor in Lemma 15 is actually loglog u,
where 1...u is the the range of values added to the (secondary) structure (see

Sect. 6.4). We can implement the structure in Lemma 15 so that u = m.

Figure 3 gives an example.
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9 202326 3639 48

i

(0,0) [] (3,33) [35-36]

i (13,13) [24-26]
(22,-13) [21-9]

(26,-3) [25-23]

(8,12) [19-20]

query: min([-inf,24) x [-inf,15))+39-1 = -2+39-1 = 36
48-4

Fig. 3. Example of computation of di, on a sparse matrix. The same conventions of
Figure 1 apply. To represent the value of cell (i, j) we use the notation a — x, which
indicates that this value was obtained from cell (i, j'), with value a’ — 2/, such that
a=a+max(i—i,j—j) and z = 2’ — 1. We also distinguish in the matrix the lower
and upper regions considered to solve cell (24,39). Since the upper region is handled
just like for dip, we show on the right only the data structure of the lower region.
It supports minimum operations over two dimensional ranges. Each relevant matrix
position (i, 7) is represented in the range search structure at position (i,j —i). The
value in brackets is [y — j], where y = a — x is the value of cell (i, ). To solve cell
(24,39) we take the minimum in the range [—00,24) x [—00,39 — 24) (inside the
dashed rectangle on the right), which returns —2, and add j — 1 to it to obtain 36.
The algorithm can be modified for the search problem similarly as dip, by
implicitly adding values 0 in the first row of the current column and considering
the effect of each computed d; ; value in the last row of the matrix. However,
removing unnecessary elements from the structures (those that can not give
minima for the current column) is not anymore possible, since the structure
for the lower region is semi-static; points can not be removed so that the
structure would remain balanced. However, we can partition the text into
O(n/m) substrings of length 3m so that the consecutive substrings overlap
by m characters. Then we can run the algorithm on each piece at a time,

and no occurrences will be missed, since the values in column j can not affect
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the values in column j + 2m. This gives O(rlogmloglogm) search time and

O(m?logm) space usage.

Using this algorithm, the transposition invariant distance computation
can be solved in O(mnlognloglogm) time, and the search problem in
O(mnlogmloglogm) time. These are, by a logn factor, worse than what
can be achieved by using the algorithm of Eppstein et. al [17] (that algorithm

can be also generalized to the search problem similarly as above).

However, the advantage of our range query approach is that we can now easily
solve the case of a-limited gaps. Consider the lower region. We need the
minimum over the values whose coordinates (i, j') satisfy ¢ € [i — a — 1,1),
jelj—a—-1,j),and j'— 7 € [—o00,j —i). We map each dy ; — j' into
three dimensional space to coordinate (i',j', 7' — i'). As we will show in the
next subsection, the data structure of Lemma 15 can be generalized to answer
three-dimensional (orthant) queries of the form R.Minimum(ly, ls, I3, —, +, —)
(minimum value of points whose first coordinate is smaller than [, second
larger than Iy, and third smaller than [3). We can use query R.Minimum(i, j—
a—2,j —i,—,+,—) when computing the value of d; ; from the lower region,
since i’ > i—a—2 when j'—i' < j—i, and column-by-column order guarantees
that 7/ < j. The upper region case is now symmetric and can be handled
similarly. The data structure R can be implemented so that we get overall time
complexity O(rlog®rloglogm). For the search problem, this can be reduced

to O(rlog® mloglogm).

As in the case of LCS with a-limited gaps, we still need to consider sep-
arately the case where the query area contains no matches. Then we must

delete /substitute substrings A; ;1 and B;_j_;. In this case we must use up-
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date rule d < max(7, j) — 1 when computing the value of d; ; = d. Symmetric
case happens in the end of the sequences (if (7, j) is the last match, then sub-
strings A1, and Bji1._, must be deleted /substituted); when computing the
value of dff(4, B), we must take the minimum over d; ; + max(m — i,n — j),
where values d; ; are those computed during the execution of the algorithm.

This minimum can easily be maintained during the execution of the algorithm.

An illustration of the algorithm for Levenshtein distance with a—limited gaps

is given in Figure 4.

9 202326 3639 48 ji 000 [0] : (3,36,33) [-1]

22
26

32

(8,20,12) [-1]
| (13,26,13) [-21

—
N

29,-13)[12], -

/(26233 [2]

48-4 j
query: min([-inf,24) x (22,inf] x [-inf,15))+39-1 = -2+39-1 = 36

Fig. 4. Example of computation of a—gapped di, on a sparse matrix. The same
conventions of Figure 3 apply. On the right we show now the three-dimensional
range search structure, where cell (i, j) is represented at position (i, j,j — i) and its
value is [y — j], where y is the cell value. This time, a similar structure is needed
for the upper area, but we have not represented it. To solve cell (24,39) we take the
minimum in the range [—00,24) X (39 — 15 — 2, 0] X [—00, 39 — 24). The area is that
inside the dashed cube on the right, where we have underlined the only point that

falls inside. This query returns —2, and we add j — 1 to it to obtain 36.

Using Lemma 9 with the above algorithms, we obtain the following result for

the transposition invariant case.

Theorem 16 Transposition invariant Levenshtein distance di (A, B) can be
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computed in O(mnloglogn) time and in O(mn) space. The correspond-
ing search problem can be solved in O(mnloglogm) time and O(m?)
space. For the case of a—limited gaps, di’a(A,B), the time requirements are
O(mnlog®nloglogm) and O(mnlog® mloglogm), and space requirements
O(mnlog®n) and O(m?log? m), respectively, for distance computation and for
searching. The preprocessing bounds in Lemma 10 need to be added to these

bounds.

6.4 Range Searching for Minima.

We will now describe the data structure R of Lemma 15. Let S be a labeled
finite set of points in two-dimensional Euclidean space. The size of S is n =
|S|. By “labeled” we mean that there is a function £ : S — R that gives a
label £(s) for each point s € S. The minimum label range query problem is
to retrieve the minimum label £(s) over points s € S that belong to some
query rectangle [[,r] x [b,t]. Efficient solutions for this problem are given by
Gabow, Bentley, and Tarjan [19]. We review these solutions here and give
some alternative (easier to describe) solutions to keep our exposition as self-

contained as possible.

When the set S is static, the one-dimensional case of the problem can be solved
as follows [19]. Sort S in increasing order and construct an array A[l...n] of
the labels in that order. Then construct a Cartesian tree [33] on the array
A, and preprocess the tree for least common ancestor queries (LCA). Range
minimum queries can now be answered by two binary searches on A to find
the first 7 and the last j entry inside the query, and a least common ancestor

query to find the minimum value among A[i|, Al + 1],... A[j] in O(1) time
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[21]. See [4] for a more detailed description of the connection between range

minimum queries and LCA.

The two-dimensional version can then be solved by first constructing a bal-
anced binary tree with points in S as leaves and x-coordinate as the search
key (actually this can be seen as a range tree [6]). Each internal node v of
the tree contains a list of points in S (in order of y-coordinate); the lists are
defined recursively as follows. Node v contains a subset of the points in the list
of its parent such that the z-coordinate of each point is less than the parent’s
key if v is the left child, or such that the x-coordinate is greater or equal to
the parent’s key if v is the right child. An array A like above is constructed for
each such list, and each of them is preprocessed to answer (discrete) minimum
range queries in O(1) time. The two-dimensional range query [[,7] X [b, ] can
now be answered as follows. Find each node of the tree such that the associ-
ated point list is totally inside the z-range [I, 7], and whose parent’s list is not.
For each such node make two binary searches and a range minimum query to
find the minimum value from the y-range [b,¢]. The minimum over all these
nodes is the minimum value from range [l, 7] X [b, t]. The overall search time is
O(log” n), since there are at most O(logn) nodes whose lists must be queried,
and each binary search takes at most O(logn) time. This can be further re-
duced to O(logn) by using fractional cascading (see e.g. [5]); the arrays of
a parent and a child can be linked such a way that if the first and the last
entries that belong to the query range in the parent array are known, then the
corresponding entries in the child array can be found by following the links
from the parent array. This has the effect that the binary searches are only

needed in one node; in its subtree the entries are found by following the links.

So far we have discussed the static case. We would need a semi-static version,
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where the labels of the points can be updated. This case can be handled by
replacing the above arrays with balanced binary trees; each node of the pri-
mary z-coordinate search tree contains a secondary tree which is the balanced
binary tree of Lemma 12 with y-coordinate as the key, and the label as the
value. We can conclude that updates and two dimensional range queries for
minimum can be supported in O(log*n) time in this structure. It is also easy
to see that the structure can be constructed in O(nlogn) time (we can sort
the points in both z- and y-order, and then construct each binary tree in linear

time).

What is left is to reduce O(log’n) to O(lognloglogn). This improvement,
hardly can be achieved for the general case where the query rectangle is limited
in all directions. However, we are interested in a query of the form [—o0,1) X
[—00,t) (this is called orthant searching [19]). Consider the one-dimensional
case [—00,1). We will show (following [19]) that it is enough to use a priority
queue to solve this problem. First, it is enough to store those points s whose
label is the minimum in the range [—o0, s]. We keep these points (actually their
indices in the sequential order) in a queue @ and associate the labels with the
priorities. When inserting a new point p, we can test whether its label is smaller
than the label of the point s = Q.predecessor(p) that would precede it in the
queue. If it is not, we do not insert the point. Otherwise we insert the point,
and remove points Q.successor(p), Q.successor(Q.successor(p)), . .. until we
find a point ¢ whose label is smaller than the label of p. This guarantees that

a range query [—oo,l) can be answered by Q.predecessor(l).

These operations on a queue can be supported in O(loglogn) time (amor-
tized time for insert) using the priority queue of Van Emde Boas [31,32].

Note that this O(loglogn) bound requires that the inserted values are in the

42



range [1...n], which is the case here. Replacing the balanced binary tree of

Lemma 12 with this priority queue, we have proven Lemma 15.

The general case of d > 2-dimensional orthant searching for minimum can be
solved in O(log?~! nloglogn) time and in O(nlog?™' n) space, by constructing

these range trees for higher dimensions recursively.

6.5 Episode Matching

Finally we look at the episode matching problem and the d% distance, which
has a simple sparse dynamic programming solution. The following lemma for

dp is easy to prove.

Lemma 17 The recurrence (5) can be replaced by
dij=d(i-1,7)+j—j -1, (9)
where j' is the largest j' < j such that a;1 =bjr, doo =0, and ag = by.

Consider an algorithm that traverses the match set M = {(i,j) | a; = b;}
in the column-by-column order. We will maintain for each row a value c¢(i)
that gives the largest j' < j such that a; = b/, and a value d(i) = d; j. First,
initialize these values to 0o, except that ¢(0) = 0 and d(0) = 0. Let (i,j) € M
be the current pair whose value we need to evaluate. Thend =d; ; = d(i—1)+
j—c(i—1)—1. We can now update the values of the current row: ¢(i) = j and
d(i) = d. One can easily see that the above recurrencies can be implemented
using dynamic programming in O(r) time, » = |M| (preprocessing time for

constructing M needs to be added to this).
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The above algorithm generalizes to the search problem and to the episode
matching problem by implicitly initializing values ¢(0) = j — 1 and d(0) = 0

for the values in the first row.

A similar algorithm can be derived from the recurrence (6), which also gives the
start points of the occurrences without needing to backtrack the computation

as when (9) is used.

Also the problem of a-limited gaps can be handled easily; we simply avoid

updating d(7) as defined when j—c(i—1)—1 > «. In this case we set d(i) = oo.

Theorem 18 The episode matching problem can be solved in O(|X|+m-+n-+r)
time in integer alphabet and O((m+n)log |S4|+1) time in real alphabet (both
in O(m+n+r) space). The transposition invariant episode matching problem
can be solved in O(mn) time. The same bound applies in the case of a~limited
gaps. The preprocessing bounds in Lemma 10 need to be added to the bounds

for the transposition invariant cases.

6.6 Generalizations to d*° Distances

If we allow a tolerance § > 0 between matched characters then ¥, crr? =
(1 + 2|6])mn, where r? is the number of matched characters between A + t
and B (in integer alphabet), and T = {b;—a;—0}U{b;—a;+¢}. As in the proof
of Lemma 10, it is easy to see that T is the relevant set of transpositions. There-
fore we get complexities O(dmn loglog(dn)), O(émnloglog(én)), and O(dmn)
for d}ig,di"s, and d%‘s, respectively. These finally reduce to O(émnloglogn),

O(édmnloglogn), and O(dmn), because in the worst case every character may

match every other, and in this case we would process m?n? pairs of charac-
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ters, and still log(m?n?) = O(logn). In real alphabet the result still holds
provided we replace 6 by §/u, where pp=min{|a; —a;| | 1 <i<j<m, a; #

a;} U{[bi = b | 1 <i<j<m, b #b;}.

7 Conclusions and Future Work

We have studied two techniques for solving transposition invariant string
matching problems. The first one was to identify the optimal transposition
and compute the distance in that transposition. This identification was shown
to be efficiently computable for several distance measures where the i-th char-

acter of one string is compared only against the i-th character of the other.

The second technique, for more general “edit distance” measures, was a more
brute force approach since all transpositions were considered. However, since
most of the transpositions produce sparse instances for the edit distance ma-
trix, specialized algorithms could be used to solve these sparse instances effi-
ciently. These kind of sparse dynamic programming algorithms already existed
in the literature; we gave new sparse dynamic algorithms for episode match-
ing and for matching with a-limited gaps in the LCS and in the unit cost
Levenshtein distance. The problem of matching with a-limited gaps demon-
strated the connection between sparse dynamic programming and the problem

of semi-static range searching for minima.

An interesting remaining question is whether the log factors could be avoided
to achieve O(mn) for transposition invariant edit distance. For episode match-
ing we achieved the O(mn) bound, except that the preprocessing can (in very

uncommon situations on real alphabets) take O(mnlogn) time.
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Also, we are confident that the search times for the easier measures that we
studied can be improved at least in the average case. For the edit distance
measures, algorithms that depend on the minimum (transposition invariant)
distance can be derived. For example, an algorithm that processes only diago-
nal areas of the dynamic programming matrix [30] can be generalized to give
bounds like O(|T|dn), where T is the set of transpositions and d = d' (A, B).
This algorithm can be combined with the sparse evaluation to get an algorithm

that is fast both in practice and in the worst case.
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