
Internet Content Distribution

Chapter 1: Introduction

Jussi Kangasharju

Chapter Outline

  Introduction into content distribution
 Basic concepts

 TCP

 DNS

 HTTP

 Outline of the rest of the course

Kangasharju: Internet Content Distribution 2

What is the Problem?

Kangasharju: Internet Content Distribution 3

Problem Definition

  How to distribute (popular) content efficiently on Internet
to a large number of geographically distributed people?

  …while keeping your costs manageable! :-)
  Who is “you”?
  So, we need to answer the following questions…
1.  Who are the players?
2.  What is the content?
3.  How are costs determined?
4.  How is performance measured?

Kangasharju: Internet Content Distribution 4

The Players

  ISP represents the network path between the user and the content
provider

 Typically, such a path contains several ISPs

Kangasharju: Internet Content Distribution 5

Content Provider User

ISP

Roles of the Players

 User
 Wants to access content provided by content provider

 Buys access to network from ISP

 Possibly pays content provider for content

 Content provider
 Produces content

 Runs a server (or outsources this)

 Buys access from an ISP

  ISP
 Provides the network connection for the others

Kangasharju: Internet Content Distribution 6

What Is Content?

 Content is any digital content the users want
 Examples:

 Web pages

 Music files

 Videos

 Streaming media

 and so on…

  In this course we will focus mainly on web content
 This means:

 Mostly small files (a few hundred KB at most, often < 10 KB)

 Relatively fast delivery (user is waiting to see the page)

Kangasharju: Internet Content Distribution 7

Follow the Money

 Where does the money come from?

Kangasharju: Internet Content Distribution 8

User Content Provider

ISP

Business Relationships

 User
 Pays money to ISP for connectivity

 These days often flat-rate, can be per-byte

 Might rarely pay content provider

 Content provider
 Pays ISP for connectivity

 Pays for running a server

 Needs to get money from somewhere

 May or may not need to make a profit from content

  ISP
 Gets money from others

 Uses money to run network

 Wants to make a profit
Kangasharju: Internet Content Distribution 9

Performance Targets

  User

  Wants content fast

  Does not want to pay (too much)

  Content provider

  Wants to get as many users as possible

  While maintaining costs as low as

possible

  ISP

  Wants to make as much money as

possible

  Which goal is the most important?

  In real world, user needs

often not “relevant”

  Users do not contribute

enough money

  Users might not have a

choice, e.g., only 1 ISP

possible

  ISP is the most important in

many cases

  Content providers have

some say in some cases

  Compare proxy caching and

CDNs
Kangasharju: Internet Content Distribution 10

Our Focus

 So, what is our focus then?
 We look at the problem from all sides

 User (client)

 Content provider (server)

  ISP (network)

 Different solutions for different parts
 Can use any of the solutions individually or several

simultaneously in combination

Kangasharju: Internet Content Distribution 11

Constraints

  Where are we allowed to touch things?
  Two main constraints:

1.  No modifications to user software allowed

2.  No modifications to the network allowed

  Above constraints can be relaxed a bit:
  Can make easy software updates to clients

  Each ISP can configure his own network

  What remains: Any solution must be backwards
compatible

  Practical constraint: Users do not need to do anything
  Too complicated for most users to configure even simple

things

Kangasharju: Internet Content Distribution 12

What Does That Leave Us?

 So, what can we do?
  Install several servers

 But how to get users to use other servers?

  Install caches on client side
 But how to get users to use them?

 Replicate content in the network
 But how to get users to find the content?

 And so on…
 Core problem: How to get users to use our solution?

 Before we get to that, let’s recap the basics…

Kangasharju: Internet Content Distribution 13

Internet Basics

  Three main components that are relevant to us
1.  TCP

  All transfers happen over TCP

2.  DNS
  Mapping between server names and IP addresses

3.  HTTP
  Since our focus is on web content, we have HTTP running

on top of TCP

  Below a brief recap of the most relevant features of the
three
  And an in-depth look at HTTP performance

Kangasharju: Internet Content Distribution 14

TCP

 TCP is a reliable byte-stream transport protocol
 Responsibilities:

 Reliable end-to-end transport

 Flow control

 Congestion control

 Main problem for us is TCP congestion control
 Recall:

 Three-way handshake

 Slow-start

 Congestion avoidance

 Fast retransmit

 Fast recovery

Kangasharju: Internet Content Distribution 15

Three-Way Handshake

  In order to open a TCP connection, we need to send
three packets before any actual application data can be
sent

1.  Client sends SYN packet to server
2.  Server replies with SYN ACK
3.  Client acknowledges this with an ACK
  In other words, one RTT delay

  Actually, a bit more than one

  Nothing we can do about this
  Some extensions have proposed faster transactions (T/

TCP), but none have been widely implemented

Kangasharju: Internet Content Distribution 16

TCP Basics:
Slow Start and Congestion Avoidance

 Sender calculates a congestion window CW for a receiver

 Start: CW :== 1 segment
 ACKs arrive (no congestion and no other errors): CW increases

 Exponential (*2) up to congestion threshold, then linear (+1)

 Congestion threshold dynamically determined

 ACK misses:
 Congestion threshold :== ½ current CW

 CW :== 1 segment, ... i.e., slow start again

 TCP is part of a class of protocol called AIMD
 Additive Increase, Multiplicative Decrease

Kangasharju: Internet Content Distribution 17

TCP Congestion Control, SS/CA

Kangasharju: Internet Content Distribution 18

Number of transmissions

C
on

ge
st

io
n

w
in

do
w

 (i
n

se
gm

en
ts

)

Threshold

New threshold

Slow start

Cong. avoidance

TCP Basics: Fast Retransmit/Recovery

 TCP sends an acknowledgement only after receiving a
packet (modulo some enhancements)

  If a sender receives several acknowledgements for the
same packet, this is due to a gap in received packets at
the receiver

 Recall: TCP has cumulative ACKs
 However, the receiver got all packets up to the gap and is

actually receiving packets
 Means, (probably) only 1 packet was lost

 Just send that missing packet and hope it fixes the
problem

  If congestion short-lived, continue with current congestion
window (do not use slow-start)

Kangasharju: Internet Content Distribution 19

Fast Retransmit/Recovery
  If congestion short-lived and only 1 packet lost

 Cutting cwnd to 1 and new slow start too drastic

 Currently most widely implemented

Kangasharju: Internet Content Distribution 20

Time

C
on

ge
st

io
n

w
in

do
w

S A

S

S A

A Not actually sent (delayed ACK)

S
S

S
S

Lost

A A A 3 dupl. ACKs!

S

Fast retransmit

A

Life returns to normal

TCP and Us

  Recall two assumptions
1.  Content transferred over TCP
2.  Most content is small files

•  But usually not small enough to fit in one packet!

  Result: TCP often never makes it out of slow-start
  This means we cannot really use all the bandwidth in the

network that is available to us

  The above is the main effect of TCP on us!
  Keep this in mind!

Kangasharju: Internet Content Distribution 21

Solutions for TCP’s Problem

1. Live with the problem
 A.k.a, the Ostrich approach

2. Try to figure out a way to make connections longer-lived
 Tricky, but currently the most wide-spread solution

3. Develop a completely new transport protocol
 Not feasible for web, maybe for new types of content
 Also, what is the effect of the new protocol on TCP?

 Note that solutions 2 and 3 do require modifications on client
side

 The reason why 2 works is that it was implemented in web
browsers and people update the browsers

 Note: Updates are sometimes forced on people, no need to act
 Still, it took a long time to be widely supported!

Kangasharju: Internet Content Distribution 22

Domain Name System (DNS)

 DNS is a directory service for Internet

 Most commonly used to map hostnames to IP-addresses

 But DNS can do a lot more

 Although it is not really used for much else

 DNS is a critical service, without it the whole Internet “breaks”

 DNS is a hierarchical system

 Root consists of 13 well-known name servers (called root
servers)

 All queries start from the root and work their way down until they
find the information they seek

Kangasharju: Internet Content Distribution 23

DNS: Overview

 DNS organized in zones (≈ domain)
 Actual data in resource records (RR)

 Several types of RRs: A, PTR, NS, MX, CNAME, …

 Administrator of zone responsible for setting up a server
for that zone (+ redundant servers at other domains)

 Owner of a zone is responsible for serving zone’s data
 RRs can be cached on client side

 Up to a period determined by zone’s administrator

Kangasharju: Internet Content Distribution 24

DNS: Example

  Client wants to resolve www.foo.com
  Replies to queries have additional information (IP address + name)
  Queries can be iterative (here) or recursive

Kangasharju: Internet Content Distribution 25

Client

a.root-servers.net

ns.something.com

ns.foo.com

NS com.
ns.something.com

NS foo.com. ns.foo.com

A www.foo.com.

192.168.125.54

DNS Queries

 As shown above, DNS queries typically iterative
 Exception: Client (= user’s PC) sends recursive query to

its local name server which then proceeds iteratively
 Answers to queries may also be different for different

clients
 Why is that an important feature?
 Short answer: We can do all kinds of nice tricks
 Long answer: DNS redirection, see CDN chapter :-)

Kangasharju: Internet Content Distribution 26

DNS and Content Distribution

  All clients must use DNS to resolve IP-addresses
  Mandatory step, implemented everywhere

  Because of its ubiquity, DNS is a viable way to improve

content distribution

  DNS used in content distribution mainly in two ways:
1.  Load balancing on server side

  See Chapter 2

2.  DNS redirection on client side
  See Chapter 4

  Besides those, DNS is simply a black box for us

Kangasharju: Internet Content Distribution 27

HTTP

 HyperText Transfer Protocol (HTTP) is The Protocol™ for
delivering Web content

 For a while in late 90’s, HTTP was the cause for the
largest share of Internet traffic

 Before it, the “big fish” was email, afterwards P2P

 HTTP-share getting bigger again (YouTube and others)

 HTTP standardized by the World Wide Web Consortium
(W3C) and by IETF

 Two versions have been standardized:
 HTTP/1.0: Earlier version, simple protocol

 HTTP/1.1: Latest version, much more complicated

 Currently, HTTP/1.1 already widely implemented
 Spread through browser updates :-)

Kangasharju: Internet Content Distribution 28

HTTP Details

 HTTP is a (simple) client-server protocol
 Clients request files, one file at a time
 Files identified by Uniform Resource Locators (URL)
  In web context:

 One HTML page

 Several images

 Need to request several files to show one page to user

  Images are referred to on HTML page
 References can be relative or absolute

 Relative reference: URL path is the same as HTML
 Absolute reference: Absolute URL for image
 Keep this distinction in mind!

Kangasharju: Internet Content Distribution 29

HTTP Requests

 Example request:
 GET /index.html HTTP/1.1
 Host: www.google.com
 Connection: close
 User-Agent: Mozilla 1.6
 <CR><LF>

 Request line, header lines, possible body

Kangasharju: Internet Content Distribution 30

HTTP Request Format

Kangasharju: Internet Content Distribution 31

Method sp sp URL Version <cr> <lf>

Header field :<sp> Value <cr> <lf>

Header field :<sp> Value <cr> <lf>

...

<cr> <lf>

Entity body

Header lines

Request line

HTTP Requests

 Method: GET, POST, HEAD, ... (see RFC 2616)
 Normal requests GET

 Retrieving web pages, images, etc.

 Simple forms also processed with GET

 Entity body in POST
 POST used for complicated forms (lot of info to handle)

 Contents of form in entity body

 Headers give more information about request or modify it
in some way

 We will see more HTTP headers in client-side techniques
chapter

Kangasharju: Internet Content Distribution 32

HTTP Responses

 Example response:

 HTTP/1.1 200 OK

 Date: Thu, 06 Aug 1998 12:00:15 GMT

 Connection: close

 Server: Apache/1.3.0 (Unix)

 Last-Modified: Mon, 22 Jun 1998 09:23:24 GMT

 Content-Length: 6821

 Content-Type: text/html

 <CR><LF>

 (data data data data data)

 Status line, header lines, requested document
Kangasharju: Internet Content Distribution 33

HTTP Response Format

Kangasharju: Internet Content Distribution 34

Version sp sp Status Phrase <cr> <lf>

Header field :<sp> Value <cr> <lf>

Header field :<sp> Value <cr> <lf>

...

<cr> <lf>

Entity body

Header lines

Status line

HTTP Responses

 Status code gives result
 Phrase for humans, only code is important!
 Typical status codes with standard phrases:

 200 OK: Everything went fine, information follows

 301 Moved Permanently: Document moved, new location in

Location-header in response

 400 Bad Request: Error in request

 404 Not Found: Document does not exist on server

 505 HTTP Version Not Supported: Requested protocol

version not supported by server

 Headers give more information, like with requests

Kangasharju: Internet Content Distribution 35

HTTP Connections

 Basic HTTP interaction: Client sends a separate HTTP
request for each object

 Read: Client opens a new TCP connection for each object

 These are so-called non-persistent connections
  Implemented in early versions of HTTP

 And still implemented for backwards compatibility

 Consider web page with 10 images
 1 HTML page + 10 images = 11 files = 11 TCP

connections
 Each connection has to do 3-way handshake
 Each connection has to go through slow-start
 Very inefficient!

Kangasharju: Internet Content Distribution 36

HTTP Persistent Connections

 Solution to above problem: Persistent connections
 Client keeps connection to server open and sends several

requests over the same connection
 Two advantages:

 3-way handshake only in the beginning

 Slow-start only once

 When download of a file finishes, client can send new
request

 This means 1 RTT delay between objects
 Compare to 2 RTT for non-persistent connections

 Better, but still not stellar…

Kangasharju: Internet Content Distribution 37

HTTP Pipelining

 Pipelining remedies the 1 RTT delay in persistent
connections

  Idea: Client sends all requests it has at once and server
processes them one after the other

 Benefits:
 No need to wait between objects

 Continuous download (good for TCP congestion control)

 Disadvantage:
 Not widely implemented nor supported

Kangasharju: Internet Content Distribution 38

HTTP in Practice

 Browsers typically open several connections in parallel
  In particular for non-persistent connections

 Typically, 2-6 connections are used simultaneously
 HTTP/1.0 defined keep-alives
 HTTP/1.1 defined persistent connections

 Both are functionally equivalent

 What are the real advantages of persistent connections and
pipelining?

 Results from Nielsen et al. Network Performance Effects of
HTTP/1.1, CSS1, and PNG, published in SIGCOMM ‘97

Kangasharju: Internet Content Distribution 39

Test Setup

 Synthetic website, similar to popular websites
 Similarity was true in 1997, but still close to reality today

 1 HTML page, size 42 KB
 42 inlined images, total size 125 KB

  Inlined images 70B -- 40KB

 19 images < 1KB, 7 images between 1KB and 2KB, and 6

images between 2KB and 3KB

 Three kinds of network conditions:
 High bandwidth, low latency (LAN)

 High bandwidth, high latency (wide-area)

 Low bandwidth, high latency (modem)

 Computers running mostly variants of Unix

Kangasharju: Internet Content Distribution 40

Test Clients
 HTTP/1.0, 4 parallel non-persistent connections (HTTP/1.0)
 HTTP/1.1, persistent connections (HTTP/1.1)
 HTTP/1.1, persistent connections with pipelining (Pipeline)

Kangasharju: Internet Content Distribution 41

HTTP/1.0 HTTP/1.1 Pipeline

Max simultaneous sockets 6 1 1

Total sockets 40 1 1

Packets client->server 226 70 25

Packets server->client 271 153 58

Total packets 497 223 83

Elapsed time 1.85s 4.13s 3.02s

Analysis of Results

 Both persistent connections send less packets
 Persistent connections with pipelining are much slower

than non-persistent connections
 How is this possible?!?
 How can persistent connections be slower on a lightly

loaded LAN?!?
 Short answer: There is no reason for that
 Long answer: You need to tune things correctly

 Flushing buffers, Nagle’s algorithm, connection

management, …

  In other words, initial comparison was not fair

Kangasharju: Internet Content Distribution 42

Let’s Try Again… :-)
 Results for high bandwidth, high latency

 Average over 5 runs

Kangasharju: Internet Content Distribution 43

Packets Bytes Seconds TCP
overhead

HTTP/1.0 565.8 251913 4.17 8.2%

HTTP/1.1 304 193595 6.64 5.9%

Pipeline 214.2 193887 2.33 4.2%

Pipeline w/
compr.

183.2 161698 2.09 4.3%

What Do We Learn?

 Best performance is with persistent connections and
pipelining together

 50% gain in retrieval time
 Non-persistent but parallel connections always beat

persistent connections without pipelining in terms of
elapsed time

 Getting the implementation details right is hard
 Lots of dependencies between operating system, network

stack, and application
 Bottom line: Done correctly, persistent connections with

pipelining is the best solution
 Currently, pipelining not widely implemented, but

persistent connections are
 And parallel connections…

Kangasharju: Internet Content Distribution 44

Chapter Summary

  Introduction to content distribution problem
 Basic technologies:

 TCP

 DNS

 HTTP

 We will revisit each of them later, when they are needed

Kangasharju: Internet Content Distribution 45

Outline of Future Chapters

 Chapter 2: Server-side techniques
 Chapter 3: Client-side techniques
 Chapter 4: Content Distribution Networks (CDN)

Kangasharju: Internet Content Distribution 46

