
Internet Content Distribution

Chapter 2: Server-Side Techniques

Jussi Kangasharju

Chapter Outline

 Server-side techniques for content distribution
 Goals
 Mirrors
 Server farms

 Surrogates

 DNS load balancing

 Parallel downloading

Kangasharju: Internet Content Distribution 2

Why Server-Side Techniques?

 Server-side techniques are aimed at helping the content
provider to lower her costs

 Costs can be:
 Costs of running a server

 Costs of a network connection

 Typically, it is easy to upgrade network connection
 Easy = it only takes money

 Upgrading servers is feasible only up to a point
 Processors do not have infinite speeds

 Not possible to put enough memory to handle thousands of

simultaneous clients

Kangasharju: Internet Content Distribution 3

Problems on the Server-Side

 What happens when we do not have enough capacity?
 With a small number of users all works well

Kangasharju: Internet Content Distribution 4

Problems on the Server-Side

 Problems start when we have lots of users

Kangasharju: Internet Content Distribution 5

Problem in Short

  Problem is that we cannot handle the traffic
  Two main aspects
1.  Not enough server capacity
2.  Not enough network capacity
  Both can be alleviated (or solved) with money
  Buying enough network bandwidth is possible, but

extremely expensive
  Possible to buy tens of Gbps (in theory at least)

  However, a single server has a maximum capacity
  One CPU is only “so fast”
  Can only add X GB of memory (limited by hardware/OS)
  Network cards go only up to certain speed

  First bottleneck is the server

Kangasharju: Internet Content Distribution 6

Solution

  If one server cannot handle all the traffic, we’ll install
several servers

  Total capacity is the sum of the individual capacities
  Such an arrangement is called server farm
  Questions:
1.  How many servers do I install?
2.  Where do I install them?
3.  How do I get the users to use those servers?
•  We focus more on questions 2 and 3
•  Answer to question 1 is more a business decision

Kangasharju: Internet Content Distribution 7

Server Farms

 Typically server farms are hosted in a single data center
 This means all the servers share the same network

connection to the Internet
 Means: Must still spend lots of money on that

 Advantages:
 Easier to manage, since all servers are in the same place

  Increased service capacity

 Disadvantages:
 Still need big pipe to Internet

  If the network path from the user to the data center is the

problem, then the user will not see many benefits

 How about distributing the server farm?

Kangasharju: Internet Content Distribution 8

Mirror Servers

 We can take servers from a server farm and install them
in different geographical locations

 Traditionally this has been called mirroring
 Mirror servers are an old technology

 Already used for FTP servers in 1980’s

 Still in popular use, especially for open software downloads

-  For example, SourceForge

  Idea behind a mirror server is to copy the content from the
origin server and offer it on a different server

 Users access the content from the “different server”
 For example because it’s closer to them (or cheaper)

  In the old days main goal of mirroring was to reduce

international bandwidth costs (e.g., ftp.funet.fi)
Kangasharju: Internet Content Distribution 9

Mirror Servers

 Advantages:
 Easy to collect lots of data, one mirror can

mirror several origin servers

 Can be installed close to users

 Teaches users about networking

(hopefully :-)

 Disadvantages:
 Users must use mirrors for us to get any

benefits

 Typically no automatic mirror selection

 Content on mirror might be out-of-date

 Biggest problem with
mirrors:
 How to get users to use
them?

 Existing solutions:
 Manual selection from a list

 Automatic selection

 Parallel download from

several mirrors (also used in

P2P networks)

Kangasharju: Internet Content Distribution 10

Manual Selection of a Mirror

  Manual selection means that the user has to select the mirror
somehow manually
  Type a different URL, pick mirror from list, click on an extra link…

  List of mirrors must somehow be available
  These days typically on a website

  User picks mirror and uses it
  Typically you have to choose it every time you download

  Automatic selection of mirror by server becoming common

  Sufficient procedure if:
1.  Users understand what they are doing

2.  Selection does not happen too often

  Otherwise too confusing or annoying

Kangasharju: Internet Content Distribution 11

Automatic Selection of a Mirror

  Two main techniques currently in use
  Note: They are currently used for co-located server

farms, not so much for real mirrors
  But both techniques would work for geographically

distributed mirror servers

1.  Surrogate servers
2.  DNS load balancing
  Main goal and current use of both is to balance load on

a server farm
  Only real difference is that DNS load balancing is visible

to clients, surrogates are not (necessarily)

Kangasharju: Internet Content Distribution 12

Surrogate Servers

 Surrogates sometimes also called server-side proxies
 Dictionary definition of surrogate explains where the name comes from

 Traditionally web sites work as follows:

Kangasharju: Internet Content Distribution 13

User wants URL:
www.foo.com This server has IP

192.168.0.1 and all
the content for
www.foo.com

DNS: www.foo.com
is 192.168.0.1

Surrogate Servers

  Surrogate is put in front of the server farm and receives all client requests

  Surrogate decides to which content server to forward the request

  Content server processes the requests and sends reply to surrogate

  Client receives reply from surrogate

Kangasharju: Internet Content Distribution 14

User wants URL:
www.foo.com This server has IP

192.168.0.1 but
no content.

DNS: www.foo.com
is 192.168.0.1

This server is the
surrogate.

These servers have
all the content.
They can have any
IP addresses

Surrogates: Pros and Cons

 Advantages of surrogates:
 Totally invisible to client, no need to modify clients

 Allows for fine grained load balancing because surrogate sees

actual HTTP requests

-  Note: Not used in practice, but theoretically possible

-  Also, see below about L4 switches

 Can build a cache into surrogate --> Less load on content servers

 Disadvantages of surrogates:
 Surrogate can become performance bottleneck since all requests

must go through the surrogate

-  Even if an L4 switch is used, processing is more complicated

than in a normal router

 Extra hardware to buy and maintain

Kangasharju: Internet Content Distribution 15

Surrogates: Practical Details

 Surrogate can be implemented with a web proxy or with
an L4 switch

 Web proxy:
 Real web proxy, has to parse HTTP request

 Can easily become a bottleneck, since HTTP processing is

not “cheap” (compared to layer 3 or 4 processing)

 L4 switch:
 L4 stands for Level 4 of the OSI model, i.e., transport

 Simply a redirector based on the port number in TCP header

 Much more common on client side

 Summary: Surrogates not widely used in practice

Kangasharju: Internet Content Distribution 16

DNS Load Balancing

  DNS load balancing uses DNS to send clients to different content servers

  Reply to DNS query for server name results in several IP addresses

  Client picks one of them and sends request to that server

Kangasharju: Internet Content Distribution 17

User wants URL:
www.foo.com

DNS: www.foo.com is
192.168.0.10
192.168.0.1
192.168.0.5

All servers have
all the content.

192.168.0.10

192.168.0.5

192.168.0.1

DNS Load Balancing Details

 Basic idea: Redirect each client to a different content server by
giving different DNS answers

 Same idea as DNS redirection (Chapter 4), but goals different
 DNS server of content provider decides which server handles

the clients request
 Typically some kind of round-robin algorithm

 But any kind of complicated load balancing is possible
 Clients typically receive a list of several IP addresses for the

given hostname
 Client can choose any of the received addresses, but most

current DNS client implementations pick the first
 Allow only short caching times for replies

 Clients must refresh DNS lookups --> Adapt load balancing

Kangasharju: Internet Content Distribution 18

DNS Load Balancing: Pros and Cons

 Advantages:
 Easy to implement, DNS lookups are mandatory anyway

 No additional hardware needed

 Can in principle use any load balancing algorithm

 Disadvantages:
 Client can keep on using the “wrong” server

-  Unlikely to happen, though, since this is controlled by OS, not user

 No fine-grained control over load balancing

-  Granularity: This client goes to that server for X amount of time

-  Note: Client = Any browser behind same DNS server!

-  Not so much a problem for server-side load balancing, but a bigger

issue for client DNS redirection (Chapter 4)

Kangasharju: Internet Content Distribution 19

Comparison

Surrogates
 Allows for fine-grained

load balancing
 Even per request!

 Typically must process up
to application level

 Large effort

 Not widely used

DNS load balancing
 Extremely widely used by all major

websites
 Currently trend is to use CDN

 CDNs use kind of DNS load

balancing

 Not much additional processing
needed on top of DNS request
processing

 Relatively coarse-grained
 But not much of a problem in

practice (statistics!)

Kangasharju: Internet Content Distribution 20

Parallel Downloads

 Let’s get back to mirrors
 DNS load balancing could be used to select mirrors
 Other alternative was manual selection
 Question: Why select at all?
 Or rather, why not select them all?
 Motivation behind parallel downloads is to eliminate the

need for mirror selection
 Main benefit is increased download speed
 Results in the following from Rodriguez & Biersack,

Dynamic Parallel-Access to Replicated Content in the
Internet, IEEE/ACM Transactions on Networking, Aug.
2002

Kangasharju: Internet Content Distribution 21

What Are Parallel Downloads?

  Client downloads different parts of the file from different
sources at the same time

  Not used for web content
  Widely used in P2P file sharing networks

  All modern file sharing networks use parallel downloads

  Two assumptions for efficiency:
1.  File to be downloaded is relatively large

  Several hundred KB and larger

2.  Paths from client to the sources are bottleneck-disjoint
  See below

  First assumption makes parallel downloads unsuitable
for web content

Kangasharju: Internet Content Distribution 22

How Does Parallel Download Work?

 Downloading from a single server, user is limited by that server’s
upload bandwidth

  In the case below, user cannot use her full bandwidth
 May make users unhappy (I pay for nothing!)

Kangasharju: Internet Content Distribution 23

2 Mbps

500 Kbps

Actual speed

Capacity

How Does Parallel Download Work?

 Downloading from several servers in parallel, user can fill her
download link to capacity

Kangasharju: Internet Content Distribution 24

2 Mbps

500 Kbps

Bottleneck-Disjoint Paths

  If user’s access link to the network is the bottleneck, parallel
downloads do not help at all

 Might not hurt either, but parallel download has some overhead

Kangasharju: Internet Content Distribution 25

500 Kbps

2 Mbps

Practical Details

 Two types of parallel download defined:

 History-based

 Dynamic

 History-based parallel access:

 All sources are known and past bandwidths to them are known

 When client downloads file, it checks past bandwidths

 Pick the best sources for download

 Dynamic parallel access:

 Dynamically select best source according to current download speeds

 This approach popular for P2P networks

Kangasharju: Internet Content Distribution 26

Experiment Setup

 Client in France, sources all over the world
 File size 763 KB (Squid proxy caching software)

Kangasharju: Internet Content Distribution 27

History-Based Parallel Access

 History-based parallel access to two servers simultaneously

Kangasharju: Internet Content Distribution 28

History-Based Parallel Access

 Optimum calculated after-the-fact
 Similar results obtained for larger sets of servers
 Observations:

 During night, history-based access achieves good

performance

 During day, often downloading from either single server is

faster than parallel!

 Solutions:
 Different bandwidth estimates for different times of day

-  Complicated

 Fully dynamic mirror selection

Kangasharju: Internet Content Distribution 29

Dynamic Parallel Access

  One client, set of known servers, one file
  File divided into equal-size blocks
  Client requests file as follows
1.  Client requests 1 block from each server
2.  When server finished uploading, client requests new

block from that server
3.  When all blocks are there, client reassembles file
  Problems:

  Servers idle for a while when waiting for new request

  Not all servers terminate at the same time

Kangasharju: Internet Content Distribution 30

Solutions to Problems

1.  Number of blocks should be much larger than number of
servers

2.  Blocks should be small in size
  Provides fine-grained balancing of server capabilities

  Aim is to finish all downloads at the same time

3.  Blocks should be large enough to avoid idle times
  Between two blocks is 1 RTT idle time

  If blocks are large, idle times are a small fraction of total

time

  Also, possible to pipeline requests to some degree

  However, for solutions 2 and 3, file should be large

Kangasharju: Internet Content Distribution 31

Performance

 File size 763 KB, 30 blocks, 4 servers

Kangasharju: Internet Content Distribution 32

Results

 Servers chosen to minimize common network links
 Parallel downloads are almost equal to optimal
 Time goes from 50 seconds to 20 seconds
 Performance independent of the time of day
 Similar results when some servers are fast and other

slow, but:
  In this case, parallel downloads have only small

performance advantage over the fastest single server

 But: No risk of picking a bad server

Kangasharju: Internet Content Distribution 33

Small Documents
 Document 10 KB, 4 blocks, 2 servers
 Advantage exists, but is quite small

Kangasharju: Internet Content Distribution 34

Shared Bottleneck Link

 Modem client, 763 KB, 30 blocks, 2 servers

Kangasharju: Internet Content Distribution 35

Results and Summary

 Not much gain from parallel access
  In fact, picking just the better server gives better

performance
Summary
 Parallel downloading efficient in heterogeneous cases
 Requires large files and bottleneck-disjoint paths
 Currently widely used in P2P file sharing networks

Kangasharju: Internet Content Distribution 36

Chapter Summary

 Server-side techniques for content distribution
 Goals
 Mirrors
 Server farms

 Surrogates

 DNS load balancing

 Parallel downloading

Kangasharju: Internet Content Distribution 37

