
Internet Content Distribution

Chapter 3: Client-Side and Proxy Caching

Jussi Kangasharju

Chapter Outline

 Client-side techniques
 Caching basics

 Replacement policies

 Browser caching
 Freshness
 Proxies

 Proxy discovery

 Proxy operation

 Proxy caches
 Replacement policies

Kangasharju: Internet Content Distribution 2

Client-Side Techniques

 Client-side techniques are implemented on the client’s
side as opposed to the server

 Two possibilities:
 Directly in the user’s computer (e.g., browser)

  Implemented by the user’s ISP

 All currently implemented techniques are based on
caching of content

 Difference is where caching takes place
 One of the above two possibilities

 Remember: Caching is only a performance-enhancing
technique. It’s never required for correctness

 But sometimes caching can cause correctness problems :-(

Kangasharju: Internet Content Distribution 3

Basic Idea of Caching

 Cache is: (Wikipedia)
 A collection of data duplicating original values stored
elsewhere or computed earlier, where the original data is
expensive (usually in terms of access time) to fetch or
compute relative to reading the cache

 Once data is cached, it can be fetched from the cache
 Benefit: Faster average access time to data
 Caching is widely used in computing

 CPU caches

 Virtual memory

 Hard disks

 Web browsers

Kangasharju: Internet Content Distribution 4

Building Blocks

 Two parts to a caching system:
 Permanent storage
 Cache

 All data is always available in permanent storage
 For us: origin server of content provider

 Some data is available in cache
 Data in cache can be accessed very fast (relatively

speaking)
 Client wishing to access data in permanent storage first

sends its request to the cache
  If requested data is in cache, it is delivered from cache

 Called cache hit
  If data is not in cache, it is fetched from permanent

storage
 Called cache miss

Kangasharju: Internet Content Distribution 5

Hits and Misses

 Ratio of cache hits to total number of requests is called
the hit rate (hit ratio) of the cache

 Corresponding definition of miss rate (also 1 - hit rate)
 When a miss happens, data is fetched from permanent

storage and usually put into the cache
 Note: Some caching schemes do not admit all data into

cache
  If new data is inserted into a full cache, some cached data

must be thrown out (replaced)
 Decided by cache replacement policy

  If data in permanent storage changes, cached copy
becomes stale

  If data in cache is modified, it must be written back to
permanent storage

 Not a concern in web caching, big issue in CPU or hard disk

Kangasharju: Internet Content Distribution 6

Replacement Policies

 Also called replacement algorithms
 Tons of research in this area, both theoretical and

practical and in many topics
 Problem statement: Cache is full and we want to bring in

a new item. Which item gets evicted?
 What is the metric we use for comparing algorithms?
 Traditionally, hit rate is used as a metric

 Traditionally = virtual memory page replacement, CPU

cache, hard disk caches, …

 Web caching also uses:
 Byte hit rate

 Access time

Kangasharju: Internet Content Distribution 7

Caching Metrics

1.  Hit rate
  Ratio of cache hits to total

number of requests

2.  Byte hit rate
  Ratio of data delivered from

cache to total data requested

  In other words, hits are

weighted with the data sizes

3.  Access time
  Average access time to data

  Why “traditional” caching only
considers hit rate?

  In “traditional” caching, all
objects are same size

 For example, memory pages

 Hence, byte hit rate = hit rate
 Cost of a miss is the same

 Get page from main memory

 Neither is true in web caching
 Objects have different sizes

 Cost of a miss (= get page

from origin server) is different

 Most work on replacement
policies in web caching
focuses on hit rates

Kangasharju: Internet Content Distribution 8

Optimal Replacement Policy

 What is the optimal replacement policy?
 Simple: It evicts the item that will be needed last

 Each item has a value that tells when it will be needed next
 Throw out item with largest such value

  “Minor” problem: This is impossible to implement
 How can we know when items will be needed next?

 For memory caching, we can run program once and see the
sequence of page references

 For second run of same program, we know the sequence
 Still, not very practical
 Main use of optimal policy is to determine how good a

practical algorithm is
  If within 1% of optimal, then at most 1% improvement

possible

Kangasharju: Internet Content Distribution 9

Practical Replacement Policies

 Let’s look at some practical replacement policies
 First in the context of virtual memory systems

 All of them can be used for web caching (and 1 is used)

 Web caching -specific policies come later

 Policies:
 Not-Recently-Used (NRU)

 First-In-First-Out (FIFO)

 Second Chance

 Clock

 Least Recently Used (LRU)

 Not Frequently Used (NFU)

 All are well-known and well-researched

Kangasharju: Internet Content Distribution 10

Not Recently Used

 Assume that each item has two information bits:
 R = was referenced since time X (e.g., last clock interrupt)
 M = was modified in cache (virtual memory system)

 At start, both bits are 0
 R is set to zero on e.g., every clock interrupt
 Pages classified in 4 classes:

 Class 0: Not referenced, not modified
 Class 1: Not referenced, modified
 Class 2: Referenced, not modified
 Class 3: Referenced, modified

 When we need to replace item, pick random item from the
lowest category

 Logic: If item is recently referenced, it will be useful in
near future too

Kangasharju: Internet Content Distribution 11

FIFO

 First-In-First-Out policy is very simple
 We maintain a list of all items in cache
  Item at head of list is the oldest item
 New items are inserted at the tail and item at head is

removed from cache
  If we get a cache hit, the list is not modified, i.e., the item

keeps its place
 FIFO generally has poor performance because it may

throw out an item which is heavily used
 Example: Item gets put in cache, used heavily, but slowly

other, less popular items get into cache. Eventually the

heavily used item will be kicked out

Kangasharju: Internet Content Distribution 12

Second Chance

  Second Chance remedies FIFO’s problem
  Policy is FIFO, with the modifications:
1.  If item at head has R = 0, it gets evicted (as per FIFO)
2.  If item at the head of the list has R bit set, then clear R

bit and move item to the tail of the list. Continue with
next item in list

  Idea: Look for an item that has not been referenced
  If all items have been referenced (R = 1), then Second

Chance becomes FIFO
  Has to go through the whole list

Kangasharju: Internet Content Distribution 13

Clock

 Second Chance is inefficient to implement because it keeps items on
a linked list

 Note: Inefficient for virtual memory systems, acceptable for web
caching

 Clock algorithm is a different implementation of Second Chance; no
difference in replacement

Kangasharju: Internet Content Distribution 14

Least Recently Used

 Approximation of optimal algorithm:
 Items that have recently been heavily used will also be
heavily used in the near future, and vice versa

  Idea: Throw out item that has been unused the longest
 Least Recently Used replacement policy (LRU)

 For virtual memory, LRU is not cheap
  In contrast: Easy to do in web caching

 Reason is that it requires a linked list of all items in cache,
sorted by reference time

 On every access, list has to be modified
 Expensive for virtual memory, acceptable for web cache
 We need either special hardware or simulate in software

Kangasharju: Internet Content Distribution 15

LRU with Hardware

 Solution 1: Hardware has counter that gets incremented
on every access. Each item has field for counter.

 Counter value is stored on access, smallest counter value
is the least recently used item

 Solution 2: Maintain matrix of items and references
 Assume system with n memory pages
 We need a matrix of n x n bits
 When page k is referenced, then

 Set all bits in row k to 1

 Set all bits in column k to 0

 Page to replace is the one with lowest value on its row
 See example below

Kangasharju: Internet Content Distribution 16

LRU with Matrices

 4 pages, references: 0 1 2 3 2 1 0 3 2 3

Kangasharju: Internet Content Distribution 17

0 1 2 3

0 0 1 1 1

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 0 0 1 1

1 1 0 1 1

2 0 0 0 0

3 0 0 0 0

0 1 2 3

0 0 0 0 1

1 1 0 0 1

2 1 1 0 1

3 0 0 0 0

0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 1

3 1 1 0 0

0 1 2 3

0 0 0 0 0

1 1 0 1 1

2 1 0 0 1

3 1 0 0 0

0 1 2 3

0 0 1 1 1

1 0 0 1 1

2 0 0 0 1

3 0 0 0 0

0 1 2 3

0 0 1 1 0

1 0 0 1 0

2 0 0 0 0

3 1 1 1 0

0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 1 1 0 1

3 1 1 0 0

0 1 2 3

0 0 1 0 0

1 0 0 0 0

2 1 1 0 0

3 1 1 1 0

Page 0 Page 1 Page 2 Page 3 Page 2

Page 1 Page 0 Page 3 Page 2 Page 3

Not Frequently Used

 Previous LRU algorithms require special hardware
 LRU can be simulated in software

 Not Frequently Used policy

 Each item (page) has a counter initialized to zero
 On every clock interrupt, R bit (0 or 1) is added to counter

 Counter keeps track of how often page is referenced

 Replace item/page with lowest count
 Problem: NFU never forgets anything
  If an item was heavily accessed in the past, but not

anymore, NFU will still want to keep it

Kangasharju: Internet Content Distribution 18

Solution: Aging
 Simple modification:

 Shift counters to right before adding R bits
 Bring R bit in as the new left-most bit

 Example: 6 pages, 5 clock interrupts time

 Remove page with lowest counter
  If a page has not been referenced recently, counter starts with 0’s

Kangasharju: Internet Content Distribution 19

1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0R bits

10000000
00000000
10000000
00000000
10000000
10000000

Page 0

Page 1
Page 2
Page 3
Page 4
Page 5

11000000
10000000
01000000
00000000
11000000
01000000

11100000
11000000
00100000
10000000
01100000
10100000

11110000
01100000
00010000
01000000
10110000
01010000

01111000
10110000
10001000
00100000
01011000
00101000

Difference of NFU and LRU

  Two differences between NFU and LRU
1.  NFU is not really LRU

  In example, pages 3 and 5 are least recently used (time 3)

  But which was really first used in that time interval?

  Not possible to know, so pick page 3, because 5 was

referenced already earlier (time 1)

2.  Counters are finite
  Suppose 8 bit counters and two pages with all 0’s

  We pick either at random

  But: Maybe one of the pages was referenced 9 ticks ago,

and the other 1000 ticks ago

  Not a problem in practice, interval between clock interrupts

long enough to make this problem irrelevant
Kangasharju: Internet Content Distribution 20

LRU in Web Caching

 LRU is expensive for virtual memory systems because it
needs to maintain linked list

 Not feasible for high performance systems

 Hence approximated with NFU

  In web caching, speed is not as crucial
 Page downloads take a couple of seconds

 Maintaining a linked list of items in cache is fast (relatively)

 LRU is widely used in web caching
 Main reason: Good performance
 Tradeoff: Get bigger cache or develop better algorithm?
 Answer is not always clear
 More on web caching replacement algorithms later

Kangasharju: Internet Content Distribution 21

Belady’s Anomaly

 A bigger cache will always have a better hit rate, right?
 WRONG! :-)
 References to objects: 0 1 2 3 0 1 4 0 1 2 3 4
 Space for 3 items or 4 items, FIFO replacement

Kangasharju: Internet Content Distribution 22

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

M M M M M M M M M = 9 misses

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

0 0 0 1 2 3 4 0 1

M M M M M M M M M M = 10 misses!

Stack Algorithms

 How is Belady’s Anomaly possible!?!
 A cache can be characterized with:

 Reference string to items (r)
 Replacement algorithm (policy)
 Number of items we can store in cache (m)

 Express state of cache as M(m, r)
 State tells which objects are cached, given m and r

 Replacement algorithm is called a stack algorithm if
 M(m, r) ⊆ M(m+1, r)

  In other words, any item cached in a cache with space for
m items is also cached with m+1 items of space

 Stack algorithms are preferred
 LRU is stack algorithm, FIFO is not

Kangasharju: Internet Content Distribution 23

Browser Caching

 Every browser since mid-90’s has a built-in cache for web
content

 When a user views a page, it gets stored in the cache
 Since cache is stored on local disk, if user visits the same

page again, it can be shown very fast
 Most of the browsers allow the user to decide how much

space to use for caching
 Two problems:

 What happens if the page has been modified?

 What happens when we run out of space in cache?

 Look at first problem now, second a bit later

Kangasharju: Internet Content Distribution 24

Freshness of Cached Data

  Freshness of data in web caching is a huge problem
  Also known as cache consistency problem

  Note: Applies to browser and proxy caching

  Problem definition:
 User accesses a URL, which gets stored in a client-side
cache. Then the contents of the URL are modified. User
accesses the same URL again and gets the stale content
from the client-side cache.

  Three basic solutions:
1.  Check freshness of cached copy before sending it to the user

2.  Origin server explicitly tells how long a URL can be cached

3.  Heuristic for “guessing” when to check/refresh a URL

Kangasharju: Internet Content Distribution 25

Check for Freshness

  Idea: Before sending cached copy to user, check with
origin server if file has been modified

 How to check?
 Download new copy and compare?!?

 No benefit from caching

 HTTP defines mechanisms for checking freshness
 So-called IMS GET request

  IMS = If-Modified-Since header of HTTP

Kangasharju: Internet Content Distribution 26

IMS GET

 When object was first retrieved, origin server includes
(always) Last-Modified-header

 Tells when object was last modified on server

 Cache sends GET request with If-Modified-Since-header
 Value is the one given by server in Last-Modified

 Server replies either:
 304 Not modified = means cached copy is valid

 200 Ok = object modified and new version is in the reply

  In both cases, we have fresh object
 Cost: 1 extra HTTP request (+ TCP) in the case where

cached copy was fresh
 Note: If object has been modified, we need to get it anyway,

so no extra cost in this case
Kangasharju: Internet Content Distribution 27

Explicit Content Expiry

  If origin server knows when an object will be modified, it
can explicitly let all clients know about this

 HTTP defines Expires-header which says when the object
will become invalid

 Client can simply check the time and Expires-header to
know if it should refresh the object from origin server

 Not much used in its original purpose
 Hard to guess expiry times

 Widely used to disallow caching of objects
  If Expires-header has current time (or time in past!), object

cannot be cached at all

 Also known as cache busting

Kangasharju: Internet Content Distribution 28

Cache Busting

 Why would a content provider disallow caching of its own
objects?

 Caching is beneficial to content provider, since it reduces
load on origin server

  If content provider is concerned with freshness, it can use
Expires-header (in the correct way :-)

 Problem in practice: Some client side caches ignore
Expires-header and deliver stale content from cache

 Especially done by ISPs to reduce their bandwidth costs
 Users and content providers unhappy
 Core issue: Client-side caching under the control of the

client, not content provider
 Compare later to content distribution networks

Kangasharju: Internet Content Distribution 29

Expiry Heuristics

  If there is no explicit Expires-header, client should check for
every request with IMS GET

 Not a problem for browser cache, but a big issue in a busy proxy
cache serving many users

 Need to send HTTP requests often, only to get 304 Not Modified

 Heuristic for determining when object should be refreshed and
when to use cached copy

 Note: Calculated locally by client

  It’s only a heuristic, so it might give wrong answers…
 Note: RFC 2616 (HTTP/1.1) explicitly allows use of heuristics in

absence of explicit expiry/age information
 Must send a Warning-header to client

Kangasharju: Internet Content Distribution 30

Freshness Heuristic

 Popular Squid proxy cache uses the following heuristic
 Let:

 OBJ_DATE = Time object was retrieved (Date-header in reply)

 OBJ_LASTMOD = Value of Last-Modified-header

 OBJ_AGE = NOW - OBJ_DATE (How long in cache)

 LM_AGE = OBJ_DATE - OBJ_LASTMOD (How old it was)

 Heuristic: LM_FACTOR = OBJ_AGE / LM_AGE
  If value of LM_FACTOR is below a configured limit, then object

is considered fresh, otherwise stale
 Let’s look at it a bit closer

Kangasharju: Internet Content Distribution 31

Freshness Heuristic: Logic

 We calculated

 Logic behind this equation:
  If object was already old when we retrieved it, it is likely that

it won’t be modified anytime soon

  If object was recently modified, it might be modified again

soon

 Only tunable parameter is when do we consider objects to
be fresh or stale

Kangasharju: Internet Content Distribution 32

€

LM_FACTOR =
now −date

date − last_modified

Freshness: Summary

 No good solution for freshness problem
  Important to solve this problem

  In client-side caching, no solution exists

 Lack of good solution main motivation for CDNs

 Explicit expiry hard to know in advance
 Heuristics for guessing

 Heuristics typically work well

 But they are only guesses

Kangasharju: Internet Content Distribution 33

Proxies

 Definition of proxy: (Wikipedia)
 A proxy server is a computer that offers a computer
network service to allow clients to make indirect network
connections to other network services.

 Note that proxy (in its purest form) only takes requests
from clients and forwards them onwards

 Onwards can mean server or another proxy

 Hence, client can be client or another proxy

 Proxies not just for web caching and content delivery
 Proxies also commonly used to bridge traffic between

private networks and Internet
 Although caching is also commonly used

Kangasharju: Internet Content Distribution 34

Types of Proxies

 Pure proxy
 Just acts as an intermediary

 Typically used for going through a firewall

 Caching proxy
 Proxy server with a built-in cache, especially for web content

 Main focus for us

 Anonymizing proxy
 Either a pure or a caching proxy

 Masks client identity to server

 Onion routing: Using several anonymizing proxies in chain

-  Also known as mix network

Kangasharju: Internet Content Distribution 35

Proxy Caching Terminology

 Terminology defined in RFC 3040
 But often misused in practice

 Proxy = (pure) proxy server
 Sometimes used to mean any kind of proxy

 Caching proxy = proxy with a cache
 Also known as “cache”, “proxy cache”, “web cache”

  Intercepting proxy = proxy which does not need any configuration
on the client side

  Intercepts client requests somehow (see below)

 Often called “transparent proxy”, because client does not see it

Kangasharju: Internet Content Distribution 36

Proxy Discovery

  How does client know to use a proxy?
  Three configuration possibilities:
1.  Manual

  User manually configures proxy address

2.  “Automatic”
  User manually configures proxy configuration

3.  Request interception
  Requests intercepted by an L4-switch and forwarded to proxy

  All three have been used

Kangasharju: Internet Content Distribution 37

Manual Proxy Configuration

 Every browser (or operating system) offers a manual
configuration of proxies

 Note: Proxies can be configured for other things besides web
(e.g., FTP proxy)

 User must typically enter:
 Address (name or IP) or proxy server

 Port on which proxy is listening

 Can configure different proxies for different protocols
 But any request for given protocol always goes to same proxy

 Typically can exclude certain domains from going through the proxy

Kangasharju: Internet Content Distribution 38

“Automatic” Proxy Configuration

 User manually configures URL of a proxy auto-
configuration (PAC) file

 Also supported by all browsers
 PAC file is JavaScript which determines how requests are

to be handled
 Script gets URL as input and returns proxy address and port

as output (or lets request go directly)

 Typically configured per-protocol
 More fine-grained configuration is possible

 JavaScript can look at parts of URL and make intelligent

redirections based on URL

Kangasharju: Internet Content Distribution 39

Intercepting Proxy

  Intercepting proxies rely on an
L4-switch to redirect traffic to
them

 No need to configure anything in
the client

 L4-switch sits between the user
and Internet and sends (web)
traffic to the proxy

 Other traffic is unaffected

Kangasharju: Internet Content Distribution 40

Internet

Caching Proxies

  Regardless of how the traffic gets to the proxy, caching
proxies all work the same way

  Basic functionality of a caching proxy:
1.  Receive request URL from client
2.  Check if URL is cached
3.  If URL is cached and fresh, send reply to client
4.  If cached copy is not fresh or no copy is in cache, fetch

a copy from the origin server
5.  Put new object into cache, evicting another object if

cache is already full

Kangasharju: Internet Content Distribution 41

Key Functionality

  How to determine if a cached object is fresh?
  See above under browser caching

  How to decide which object to evict?
  Determined by the replacement policy of the cache

  Any of the previous replacement policies can be used
  LRU is commonly used

  Recall three criteria:
1.  Maximize hit-rate

2.  Maximize byte hit-rate

3.  Minimize download time for user

  Reason for these: Heterogeneous objects
  A given policy usually only optimizes one of the three!

Kangasharju: Internet Content Distribution 42

Web Caching Replacement Policies

  Let’s now look at some replacement policies developed
for web caching

1.  Least Recently Used (LRU)
2.  Size-based policy
3.  Download time optimizing policy
4.  Least Frequently Used (LFU)
5.  Greedy-Dual*
6.  Multimedia caching with transcoding

  But first some general points about web caching

Kangasharju: Internet Content Distribution 43

General Web Caching

 All policies based on same idea:
 Each cached object has a value (utility) associated with it.
Objects sorted according to this value and “least valuable”
gets evicted.

 Web caches have “more time” to compute values and sort
objects than virtual memory

 But: Web caches typically able to store millions of objects,
hence computation is expensive

 Practical caching works as follows

Kangasharju: Internet Content Distribution 44

Practical Web Caching

 Squid (popular web cache) does LRU as follows:
 Objects stored in several hash tables

 For eviction, sort objects in one hash table and pick LRU object

 Not true LRU, but close enough

 Replacement also optimized
  In normal operation cache is full, so every access means

replacement

  In practice, Squid defines high- and low-water marks

  If cache size over high-water mark, remove objects until size is

below low-water mark

 Replacement run only “every now and then”, more efficient

Kangasharju: Internet Content Distribution 45

General Properties

  How to classify replacement policies?
  Mainly done according to how they exploit temporal

locality of request stream
  Studies on web request streams show
1.  Web request streams show temporal locality on short

time scales
  Good for LRU

2.  Popularity of objects over long time intervals also exists
  Need longer-term measurements of access frequency

Kangasharju: Internet Content Distribution 46

Least Recently Used (LRU)

 Same LRU algorithm as we have seen before
 LRU was used because temporal locality in request

streams had been observed
 Recently used objects were used again

 Objects sorted according to last time they were accessed
 List is kept sorted every time an object is accessed
 LRU is widely implemented and used

 Mainly because it was well-known from other caching

 Performance of other replacement policies often
compared against LRU

Kangasharju: Internet Content Distribution 47

Weaknesses of LRU

  LRU is widely used and implemented
  Performance for many situations considered “good

enough” to merit use
  LRU has three main weaknesses
1.  Does not take into account different object sizes
2.  Does not take into account different retrieval costs
3.  Does not take into account access frequency
  For last point, there exists LRU-K variant

  Maintains last K access times of object

  Uses them to calculate access frequency

Kangasharju: Internet Content Distribution 48

Size-Based Policy

  Size-based policies use object size to sort objects
  No official name for these policies

  Can use size in two ways
1.  Sort from smallest to largest

  Improves hit-rate

2.  Sort from largest to smallest
  Improves byte hit-rate

  Purely size-based policies not widely used
  Object size used as one of many parameters for more

sophisticated policies
  Typically divide “metric” by size, gives preference to

smaller objects over larger objects

Kangasharju: Internet Content Distribution 49

Size vs. LRU

 Size-based policy which prefers small objects has better
hit-rate, but lower byte hit-rate than LRU

 Size-based policy which prefers large objects has lower
hit-rate, but higher byte hit-rate than LRU

 Generally no way to get better performance on both

 LRU throws unused objects out of the cache
 Pure size-based policy allows objects to stick around far

after they are no longer useful
  In other words, it does not forget (recall aging)

 For this reason, pure size-based policy is not used

Kangasharju: Internet Content Distribution 50

Download Time Optimization

 Some policies sort objects according to the time it takes to
download them from origin server

 Preference given to objects from “slow” servers
 Goal: Minimize average download time for user
 Results show it is very efficient
 Comparison on hit-rate and byte hit-rate not meaningful

 Typically lower than with LRU

 Not widely implemented
 Used in combination with other policies

 Just like size-based policies

Kangasharju: Internet Content Distribution 51

Frequency-Based Policies

 Which is more important?
 Recency or frequency?
 Recency was found to be good predictor of utility
 As browser caches get better, web caches see less

locality in request stream
 Frequency-based policies capture the other kind of

temporal locality: Access frequency
  Idea: More frequently accessed objects should remain in

cache over less frequently accessed
 Compare with NFU

 NFU simulates LRU with counters, not true reference count

 Frequency-based policies work with real reference counts

Kangasharju: Internet Content Distribution 52

Least Frequently Used (LFU)

 LFU keeps a reference count for each object
 Objects sorted from lowest count to highest
 Evict object with lowest reference count
  If two objects have same count, use a tiebreaker

 For example, access time, size, or random

 Pure LFU not a very useful policy, too many gotchas
 Things to consider for implementation:

 How are reference counts maintained?

 How to do aging?

Kangasharju: Internet Content Distribution 53

LFU Details

 Reference counts for cached objects or for all objects?
 Perfect-LFU keeps reference counts for all objects
  In-Cache-LFU keeps them only for cached objects
 Perfect-LFU beats LRU on hit-rate and byte hit-rate
  In-Cache-LFU loses to LRU on both counts
 Differences small in both cases
 Note: To store reference count, we must store URL and

counter for that URL
 URL is small compared to objects, can store many

 Enough to approximate Perfect-LFU?

Kangasharju: Internet Content Distribution 54

LFU and Aging

 Variant of LFU with dynamic aging of reference counts
 On a hit, set count to current reference count plus

minimum reference count in cache
 Shown to have higher byte hit-rate than LRU
 This algorithm is also called LFU-DA

 One more variant: LRFU
 Combines LRU and LFU with weights
 By adjusting weights, we can get LRU or LFU or

something else
 Goal of this policy is to allow dynamic tweaking

Kangasharju: Internet Content Distribution 55

Greedy-Dual*

 Let’s look at a more sophisticated replacement policy
 But first some basics
 Effectiveness of caching is based on temporal locality in

the request stream
 Typically modeled with the interarrival time distribution

 Consider two request streams:
 XAXBXCXDXEXFX…

 GGHHIIJJKK…

 Both exhibit temporal locality
  If we re-order streams randomly, then:

 Temporal locality in first stream is preserved

 Temporal locality in second one is not preserved

Kangasharju: Internet Content Distribution 56

Temporal Locality

  From last slide, temporal locality can have two causes
1.  Temporal locality due to popularity

  Preserved under reordering

2.  Temporal locality due to correlation in time
  Not preserved under reordering

  Most of existing research based on assumption of temporal
locality due to popularity
  This is true and the effect is strong, but there is more

  Temporal correlation can also be modeled
  Take equally popular objects and look at interarrival times

  Distribution can be quantified with one parameter β, because it’s a

power-law distribution (typically 0.3 ≤ β ≤ 0.7)

  Values of β relatively stable for large ranges

Kangasharju: Internet Content Distribution 57

GreedyDual* Replacement

 GD* is an improvement over GDS (GreedyDualSize)
 Let p be an object

 s(p) is the size of the object

 c(p) is the cost to fetch it

  f(p) is access frequency (~ reference count)

 u(p) is utility of object

 β is as above

 GDS algorithm works as follows:
 Object utility u(p) = c(p)/s(p)

  Inflation value L

 When an object is hit, we set H(p) = L + u(p)

 When an object is evicted, we set L = H(p) of evicted object

 GD* re-defines utility u(p) and aging mechanism
Kangasharju: Internet Content Distribution 58

GreedyDual* Details

 Utility
 GD* defines utility as the normalized expected cost saving if

the object stays in the cache
 u(p) should be proportional to (f(p) * c(p)) / s(p)
  f(p) is approximated with the reference count

 Aging
 Dynamic aging similar to GDS (values H(p) and L)
 When L = H(p), then object is candidate for eviction
 On a hit, H(p) set to base value + L

 Base value
 Base value should reflect document utility and reference

correlation
 Time to stay in cache proportional to u(p)1/β
 Set base value to u(p)1/β

Kangasharju: Internet Content Distribution 59

GreedyDual* Algorithm

 Algorithm works as follows

when object p is requested, do
 if p is in cache
 then

 else
 fetch p
 while not enough space in cache for p, do

 evict minimum q

Kangasharju: Internet Content Distribution 60

€

L = 0

€

H(p) = L +
f(p)c(p)

s(p)

1/β

€

H(p) = L +
f(p)c(p)

s(p)

1/β

€

L =min(H(q) | q is in the cache)

GreedyDual* Remarks

 GD* is actually a family of replacement policies
 β controls reference correlation
 Small β means weak correlation and slower aging
 When β=1, we get LFU algorithm with dynamic aging (see

earlier)
 Note: β not limited in any way, but experience shows β is

small

 When β is close to 0, GD* tends towards an LFU-variant

Kangasharju: Internet Content Distribution 61

GreedyDual* Performance

  Compare performance of GD* to LRU, LFU-DA, and GDS

  See earlier for LRU and LFU-DA, GDS not covered in this course

  Note: Only one of many parameter combinations shown

  Others give similar results, i.e., ranking is the same, but differences usually smaller

Kangasharju: Internet Content Distribution 62

Policy Hit-rate Byte hit-rate

LRU 33.3% 31.1%

GDS 36.5% 31.4%

LFU-DA 39% 33.7%

GD* 50.1% 37.6%

How to Tune β?

  Performance better when β is smaller

  Optimal performance usually when β is about 0.5

  Same value observed for β in real-world request traces

  Confirms that u(p)1/β is appropriate base value

  Two more observations:

1.  When cache is small, β has larger effect

  Capturing short-term correlation important for small cache

2.  Small β hurts hit-rate less than large β

Kangasharju: Internet Content Distribution 63

Multimedia Caching

 Above replacement policies tailored for web content
 As opposed to virtual memory

 Still, every object is treated the same way
 Some web objects are different from others
 Multimedia objects can suffer data loss without visible

effect to the end-user
 Can we somehow take advantage of that?
 Basic idea: Instead of replacing complete objects, replace

only parts of them
 Assumes that we can remove data from an object without

affecting user-observed quality

Kangasharju: Internet Content Distribution 64

Multimedia Objects

  Following techniques apply only to multimedia objects
  Pictures, photos, audio, video

  Other objects, e.g., HTML-pages, must be kept whole
  Not possible to throw out half of an HTML-page…

1.  Pictures and photos
  In particular, suitable for JPEG and other photographic

images
  Not well-suited for graphics and line art, but possible

2.  Audio
  Possible, but rarely used. See also transcoding

3.  Video
  Possible with layered encoded video, but also not common
  Layered encoding not supported by all video formats
  Transcoding is also possible for video

Kangasharju: Internet Content Distribution 65

Progressive JPEG Example

  JPEG standard defines a progressive mode
  Normal JPEG consists of 4 phases:

1.  Image preparation

2.  DCT-transformation

3.  Quantization (information loss)

4.  Entropy coding

  Progressive mode performs steps 1-3 as normal JPEG
  Normal JPEG does entropy coding by 8x8-blocks

  Zig-zag traversal of AC-coefficients

  DC-coefficients DPCM-coded

  Progressive JPEG traverses step 4 in a different way

Kangasharju: Internet Content Distribution 66

Progressive JPEG Layers

 Number of layers is implementation-defined
 Popular IJG JPEG-library defines 10 layers

 6 for black-and-white photos

 Layer 1 has 7 highest bits of DC-coefficients
 Blocky image

 Least significant bit of DC-coefficients in layer 7

 Other layers contain different bits of AC-coefficients
 Lower layers have 6-7 most significant bits

 Layers 3, 4, 7, and 8 have color information

 Layer 10 has least significant bit of AC-coefficients
 This layer has about 30-40% of the bits of the file

 Can be removed without any visible loss of quality

Kangasharju: Internet Content Distribution 67

Progressive JPEG Example

  Lena image at different levels

  Typically applies:

  With 6 levels left, visual quality

largely the same

  Difference visible if you know

what to look for :-)

  Means for us:

  Can throw 50% of the bits in an

image away without the user

noticing

  Assumes images are created or

stored in progressive mode

Kangasharju: Internet Content Distribution 68

Recoding

 Recoding means re-encoding an object in cache
 Sometimes (incorrectly) called transcoding (see below)

 Recoding assumes a progressive-encoded file format
 Possible with JPEG and MPEG-4

 When an object is to be evicted, we recode it instead of evicting it
from the cache

 Benefit: Object is now smaller, so we have free space in cache
 Freeing up space is exactly the goal of a replacement policy

 Recoded object remains in cache
 Gets kind of a second (and third, and fourth, …) chance

 Recoding-based replacement policies have been shown to
improve hit-rate and byte hit-rate

 But see below about byte hit-rate
 Note: Recoding is not a real replacement policy. It needs another

policy to decide which object to recode
Kangasharju: Internet Content Distribution 69

Recoding Gotchas

 What happens when a recoded object is delivered from cache
and user is not happy with quality?

 Maybe because of object having been recoded too many times

 How can user force a reload from the origin server?

 Should such an object count as a hit?

 How do we count byte hit-rate?
 Weighted by size of recoded object or original size?

 Second case can be justified, since we saved fetching that many

bytes from origin server (= definition of byte hit-rate)

 What happens right after recoding?
 Object was recoded because it was “least useful”

 Recoding might not change that, so object gets selected again…

-  For example, if LRU selects an object for recoding, the same object is

still the LRU object after recoding…

 Need to adjust object “utility” somehow (depends on main policy)
Kangasharju: Internet Content Distribution 70

Recoding Summary

 Recoding interesting possibility for multimedia objects
 Not a real replacement policy

  Instead, can be used with any policy

 Recoding replaces replacement ;-)

 Not widely used in practice
 Main reason: Recoding mainly aimed at saving space in cache, but

hard disks are cheap and recoding objects is “expensive”

 Hence, small savings in size not worth the CPU-effort

 Above we discussed JPEG images, but same techniques apply
for layered encoded video

Kangasharju: Internet Content Distribution 71

Transcoding

 Transcoding similar to recoding in the sense that objects are re-
encoded in proxy

 Recoding is a simple form of transcoding

 Goal often to send “lighter” versions to weak clients
 For example, a PDA cannot show full version video

 Then, re-encode video at lower resolution and bit-rate

 Transcoding not really related to replacement policies
 Main interest of transcoding is when:

 Proxy serves many different types of clients

-  For example, desktop, PDA, mobile phone

 Proxy has sufficient CPU-power to re-encode

-  Transcoding usually requires decoding and new encoding

 Not widely used, but well-researched
Kangasharju: Internet Content Distribution 72

Summary of Replacement Policies

 We have seen several replacement policies for web
caching

 Any existing policy can be used, but better performance
can be obtained when policy is tuned for web objects

 Actual policies:
 LRU

 Size

 Download time

 LFU

 GD*

 Multimedia caching:
 Recoding

 Transcoding
Kangasharju: Internet Content Distribution 73

Cooperative Caching

  Cooperative caching means several web caches
collaborating together

  Typically it means the following:
 If caches A and B are cooperating, then when A has a
miss, it will ask cache B for the object (and vice versa)

  Cache cooperation common in three cases:
1.  Cache clusters
2.  Cooperating caches
3.  Caching hierarchies
  Last two often used together

Kangasharju: Internet Content Distribution 74

Cache Clusters

 Cache clusters have several caches near each other in a
cluster

 Main reason to improve performance
 A single cache can handle only a certain amount of requests
  Installing several caches in a cluster improves performance
 Same logic as with server farms

 Problem: How to distribute requests to caches?
 One common solution to use L4-switch

 Switch knows which caches are heavily loaded
 Problem with L4-switch:

 Requests for same URL can go to different caches
--> We get misses instead of hits

 How to make requests for same URL go to same cache?

Kangasharju: Internet Content Distribution 75

Cache Array Routing Protocol (CARP)

  Consider a cluster (array) of caches
  All caches are known to client

  Reasonable assumption, since new caches installed rarely
  When client wants to fetch a URL, client computes:

1.  Hash of the URL, h(U)
2.  Hash of each of the caches (e.g., IP-address), h(C)
3.  Hash the above two hashes together, H = h(h(U)+h(C))
4.  Order caches for each URL according to H
5.  Send request to cache with highest H value

  Because hash functions are same for all clients, a request for
the same URL will be sent to the same cache
  If new caches join, some requests will go to wrong caches
  In an array of N caches, a new cache means 1/N wrong requests

Kangasharju: Internet Content Distribution 76

CARP in Practice

 CARP specified in an RFC
  Implemented in Squid and some other products
 Not very widely used

 L4-switch does the job in a different way

 Disk space not such a critical resource after all…

 Note: CARP can be considered a precursor to distributed
hash tables (DHT)

 Same basic idea: Distribute objects on nodes with hash
functions

 Difference: CARP requires that all nodes are known
 Not required in DHTs

Kangasharju: Internet Content Distribution 77

Cache Collaboration

 Two or more caches can be set up to collaborate
 Means simply: (recall from above)

 If caches A and B are cooperating, then when A has a
miss, it will ask cache B for the object (and vice versa)

 How are caches connected?
 Parent-child?

 See cache hierarchies

 Siblings?
 All caches equal

Kangasharju: Internet Content Distribution 78

Problem Statement

 Cache A collaborates with N other caches
  If A has a miss, A will send the request to one of the N
 To which cache should A send the request?
 One possibility is to use CARP
 Problem: CARP sort of assumes all caches are under the

same administrative entity
 Not strictly so, but…

 Typical cache collaboration has caches in many different
administrative entities

 Goal: Send request to a cache where it will be a hit
  Idea: Let’s ask the others if they have the object!

Kangasharju: Internet Content Distribution 79

Inter-Cache Protocol (ICP)

  ICP defined for cache collaboration
 Cache A sends an ICP request to other caches

 Request contains URL

 Other caches tell whether they have the object or not
 Cache A sends request to one of the caches with object
 Problems:

  ICP messages sent over UDP --> Lost messages

 Even without loss, (significant) additional delay

 How can we pick the cache without asking first?
  Idea: Let caches tell other caches what they have

Kangasharju: Internet Content Distribution 80

Cache Contents

 How can a cache let others know what URLs it has?
 Simple, it sends a list of URLs of all cached objects
 Except that this takes far too much space
 Example:

 URL’s average length is 60 bytes

 Cache has 1 million objects

 Cache collaborates with 10 other caches

 Then we need ~600 MB of storage for this!

 Need a better solution
 How about compressing the data somehow?
 Solution: Cache digests

 Summary cache based on same idea, but it’s another

solution
Kangasharju: Internet Content Distribution 81

Cache Digests

  Idea of cache digests is to compress the information
about the contents of the cache
  Results from Rousskov, Wessels, “Cache Digests”,

Computer Communications and ISDN Systems, Nov. 1998
  Works as follows:
1.  Cache generates compressed representation

  Must update this when new objects come in and old ones
get evicted from cache

2.  Cache sends compressed form to other caches
  Again, must be updated periodically

3.  When a cache has a miss, it:
  Checks if any other cache has the URL
  If yes, send the request there

  So, how do we form the “compressed representation”

Kangasharju: Internet Content Distribution 82

Cache Digests: Compression

 Cache digests use Bloom filters
 Bloom filters are “a space-efficient probabilistic data

structure that is used to test whether or not an element is
a member of a set”

 False positives are possible

 False negatives are NOT possible (but see below for us)

 Bloom filter is an array of k bits
 Also need m different hash functions, each maps key to a bit

 To insert, calculate all m hash functions and set bits to 1
 To check, calculate all m hash functions and if all bits are

1, key is “probably” in the set
  If any bit is 0, then it is definitely not in

Kangasharju: Internet Content Distribution 83

How to Use Bloom Filters?

  Cache creates a Bloom filter out of the cached objects
  Send Bloom filter to other caches who can check if the object

is cached at the sending cache
  Four possible results:

1.  True hit = Object was predicted to be cached and it was

2.  False hit = Object was predicted to be cached, but was not

3.  True miss = Object was predicted not to be cached and was not

4.  False miss = Object was predicted not to be cached, but it was

  Want to maximize “trues” and minimize “falses”
  Note: False misses not possible with normal Bloom filters, but

our filters are not synchronized
  New object might be cached after sending digest

Kangasharju: Internet Content Distribution 84

False Hits

 False hits are a big problem with cache digests
 False hit means cache A thinks cache B has the object

cached and sends request there, but B doesn’t have it
 What should B do in this case?
 Typically this kind of behavior is not accepted

 Caches configured as siblings (see later)

 Solution was to add a cache-control header in HTTP
requests to siblings

  If Cache-Control header is set to “only-if-cached”,
receiving cache will reply with “504 Gateway timeout” if
the object is not cached

Kangasharju: Internet Content Distribution 85

Cache Digests: Performance

 Performance evaluated with NLANR caches
 NLANR = National Laboratory of Applied Network Research

 NLANR operates several caches in the USA
 Typically used as top level in a caching hierarchy
 Goal of performance evaluation:

 Speed and efficiency compared to ICP

 Accuracy of digests

  In terms of performance, cache digests beat ICP
 Difference quite large, larger than one RTT between caches

 Typically 30% gain

 Reason for longer than RTT delay is that with ICP, sending

cache has to wait to receive several replies

 With cache digests, no need to wait to send request
Kangasharju: Internet Content Distribution 86

Accuracy of Digests

 4 out of 6 studied caches shown
 False hit rate is far too high in most cases

 SV-cache was one of the smallest caches in the study
 Also, overall “true”-ratio far from satisfactory

 Authors estimated 95% “true” needed for digests to be useful
 Digests have been improved since this study was made

Kangasharju: Internet Content Distribution 87

Cache True hit False hit True miss False miss Total true

PB 33.6% 18.1% 48% 0.3% 81.7%

UC 34.7% 15.5% 49.4% 0.3% 84.1%

BO 42.2% 17.3% 40.1% 0.4% 82.3%

SV 25.7% 6.6% 67.7% 0.0% 93.4%

Digests: Other Details

 Compared to ICP, digests cause less network traffic
 Somewhat less in terms of amount

 Traffic from ICP is constant, but not much

 Traffic from digests is rare, but each time transfers lots of

data

 Caches need additional memory to store digests
 Updates once per hour seem sufficient

 No need to do incremental updates, just send new digest

Kangasharju: Internet Content Distribution 88

Caching Hierarchies

 Caching hierarchies consist of cooperating caches
arranged in a hierarchy

 Why hierarchy?
 Because the Internet is also a hierarchy
 Caching hierarchies typically reflect the underlying

Internet topology and connectivity
 Basic idea: Instead of using “expensive” bandwidth right

away, try a longer path, but with “cheaper” bandwidth

Kangasharju: Internet Content Distribution 89

Cache Hierarchies

 Levels in hierarchy represent actual network topology

Kangasharju: Internet Content Distribution 90

Institutional
networks

Regional
networks

National
network

Internet

Request Processing

 Users send requests to their institutional (local) caches

Kangasharju: Internet Content Distribution 91

Institutional
networks

Regional
networks

National
network

Internet

Request Processing

  Institutional caches can cooperate as siblings
 Misses are sent to the parent cache

Kangasharju: Internet Content Distribution 92

Institutional
networks

Regional
networks

National
network

Internet

Request Processing

 Regional caches also cooperate as siblings
 Misses are sent to the national (root) cache

Kangasharju: Internet Content Distribution 93

Institutional
networks

Regional
networks

National
network

Internet

Request Processing

 National cache retrieves object from origin server, if miss

Kangasharju: Internet Content Distribution 94

Institutional
networks

Regional
networks

National
network

Internet

Request Processing

 Object retrieved from origin server
 Copy created in all caches on the request path

Kangasharju: Internet Content Distribution 95

Institutional
networks

Regional
networks

National
network

Internet

Cache Hierarchies

  Recall two types of relationships between caches
1.  Parent-child

  Parent typically has several children

  Creates larger user base, better cache performance

  Parent will fetch misses for its children

  Often this corresponds to a provider-customer relationship

in the underlying IP-network

2.  Siblings
  Caches on same level cooperating

  Can only fetch hits from siblings

  Aggregates some traffic and makes the population larger

  Not necessarily any actual relationship in IP-network

Kangasharju: Internet Content Distribution 96

Why Siblings?

 Why have siblings?
 Parent also aggregates population under it and can more

easily benefit from its position
 Siblings only useful for retrieving hits
 So, why siblings?
 Siblings typically close in network

 Getting objects from them is fast

 Knowing that it was a miss is fast

 Going through a sibling reduces load on parent
  Important for caches near root of hierarchy

Kangasharju: Internet Content Distribution 97

Cache Hierarchies: Practice

 Caching hierarchies with several levels have been widely
used in many countries

 Typical arrangement:
  Institutional level: Universities and similar

 Regional level: Group institutions in the same region

 National level: One root cache per country

 Above arrangement was very typical in Europe
  In USA, national level was NLANR caching network

 Regional level often non-existent

Kangasharju: Internet Content Distribution 98

Chapter Summary

 Client-side techniques
 Caching basics

 Replacement policies

 Browser caching
 Freshness
 Proxies

 Proxy discovery

 Proxy operation

 Proxy caches
 Replacement policies

 Cooperative caching

Kangasharju: Internet Content Distribution 99

