
Internet Content Distribution

Chapter 4: Content Distribution Networks

Jussi Kangasharju

Chapter Outline

 Basics of content distribution networks (CDN)
 Why CDN?

 How do they work?

 Client redirection
 DNS redirection

 Full (or total) redirection

 Selective redirection

 Performance issues of CDNs
 CoralCDN example

Kangasharju: Internet Content Distribution 2

What Are CDNs?

 CDN is an architecture for efficient delivery of (web)
content to a large number of clients

 CDNs are operated by companies which charge content
providers for the delivery services

 CDNs are mostly transparent to the end-user
 Meaning: You can see CDNs being used only if you look at

actual DNS requests or read HTML-source of a page

 Commercial CDNs for actual content delivery:
 Akamai, Panther Express, SAVVIS, VitalStream

 Academic CDNs for research on content delivery:
 CoDeeN, CoralCDN, Globule

Kangasharju: Internet Content Distribution 3

Why CDN?

 Why is a caching hierarchy not enough?
 What is missing in a caching hierarchy?
 Answer: Nothing, in principle :-)
  In practice, client-side caching has some problems
 Main problem is that content provider has no control over

how her content is cached
 HTTP does define Cache-Control headers, expiry, aging

models

 But: Nothing can force the cache operator to follow them

 Experience has shown cache operators do not always
follow “the rules”

 Result was cache busting (see earlier)

Kangasharju: Internet Content Distribution 4

So, Why CDN?

 One of the main goals of CDNs is to put content provider
in control over how her content is cached

 Content provider signs a contract with CDN
 Contract specifies how content can be cached

 Contract also means CDN will follow what content
provider wants

 CDNs typically charge per-byte of traffic served
 CDNs can be used for any kind of content

 Typically main use is for web content

 Streaming media has also been delivered over CDNs

Kangasharju: Internet Content Distribution 5

What Is a CDN?

  CDN operates content servers
  Content servers are placed close to users

  In terms of network distance
  Some or all of the content from the content provider is

replicated on the content servers
  Different content servers might have different content

  Users access content from the “nearest” content server
  Challenges:
1.  How to replicate content?

  Usually happens over a private network
  Can optimize according to many criteria

2.  How to redirect clients?
  Our main focus here

Kangasharju: Internet Content Distribution 6

How Does a CDN Work?

  User sends request to origin server

  Request somehow intercepted by redirection service

  Redirection service forwards user’s request to the “best” content server

  Content served from the content server
Kangasharju: Internet Content Distribution 7

Redirection
service

Content
server Origin

server

Redirection Service

 Key feature of a CDN is redirection service
 Practical constraints: (recall)

 Not allowed to touch client software

 Redirection should be efficient

 Practical answer: DNS redirection
 DNS is mandatory to resolve URLs, hence it’s always

available

 Works reasonably well

 Two kinds of redirection:
 Total redirection

 Selective redirection

 First, let’s see how DNS redirection works

Kangasharju: Internet Content Distribution 8

Recall: DNS Load Balancing

  DNS load balancing uses DNS to send clients to different content servers

  Reply to DNS query for server name results in several IP addresses

  Client picks one of them and sends request to that server

Kangasharju: Internet Content Distribution 9

User wants URL:
www.foo.com

DNS: www.foo.com is
192.168.0.10
192.168.0.1
192.168.0.5

All servers have
all the content.

192.168.0.10

192.168.0.5

192.168.0.1

DNS Redirection vs. DNS Load Balancing

 No real difference between DNS redirection and DNS
load balancing in practice

 Both take advantage of the DNS lookups to send traffic to
different servers

 Main difference:
 DNS load balancing typically works with clusters

 DNS redirection is meant for CDNs

 DNS redirection must take into account:
 Where is the client located in the network?

 Where is the closest content server for that client?

 DNS redirection requires a larger supporting infrastructure
than load balancing

Kangasharju: Internet Content Distribution 10

DNS Redirection Infrastructure

 Client’s DNS request comes to CDN’s nameserver
 Somehow, see below for two possibilities

 Typically the request has to go through some steps
through the CDN’s DNS hierarchy

 Each step redirects the client to a nearby nameserver
 Finally, last nameserver returns the address of a nearby

content server
 For the infrastructure, CDN needs to measure the state of

the network
 Needed to determine which servers are the closest

 Network measurements to determine current state

Kangasharju: Internet Content Distribution 11

Two Types of Redirection
1.  Total redirection

  Any request for origin server is redirected to CDN

  Basically, CDN takes control of content provider’s DNS zone

  Benefit: All requests are automatically redirected

  Disadvantage: May send lots of traffic to CDN, hence expensive for the

content provider

2.  Selective redirection
  Content provider marks which objects are to be served from CDN

  Typically, larger objects like images are selected

  Refer to images as:

  When client wants to retrieve image, DNS request for cdn.com gets

resolved by CDN and image is fetched from the selected content server

  Pro: Fine-grained control over what gets delivered

  Con: Have to (manually) mark content for CDN
Kangasharju: Internet Content Distribution 12

Performance of Redirection Schemes

1.  Total redirection
  All requests redirected to

content servers

2.  Selective redirection
  Get HTML page from origin

server, images from content

server

  Need to open new TCP

connection for images

  Question: Which gives better
performance to the user?

Kangasharju: Internet Content Distribution 13

Origin
server

Content
server

RTTO

RTT

Redirection Comparison

 Compare total and selective redirection
 Place origin server at a given distance RTTO
 Place content server at distance RTT
  Insert some HTML and images on both servers
 Vary RTT and RTTO
 Calculate how long it takes to download full page

 Results from: J. Kangasharju, K. W. Ross, J. W. Roberts,

“Performance Evaluation of Redirection Schemes in Content

Distribution Networks”, Computer Communications, Feb.

2001

Kangasharju: Internet Content Distribution 14

Redirection Performance

Total redirection Selective redirection

Kangasharju: Internet Content Distribution 15

•  Total redirection has superior performance
•  Cost of new TCP connections high (slow-start, lost SYN)
•  Caveat: Does not include server load or DNS lookups

No CDN

Conclusion of Redirection Performance

 Total redirection has clearly superior performance
 Selective redirection is typically slower than downloading

everything from the origin server
 But origin server might be loaded…

 Results do not include DNS lookup delays
 DNS lookups typically fast, but can take very long in worst

case

 Which redirection is more used?
  Initially, selective redirection was used
 These days, mainly total redirection

Kangasharju: Internet Content Distribution 16

DNS Redirection: Other Issues

 DNS redirection has one (big) problem
 Because redirection is based on DNS queries, the content

server is chosen based on who sent that query
 DNS queries do not come from clients, but from the DNS

servers used by the clients
 Why is this a problem?
  In many cases it’s not a problem

 For example, clients in a university use university’s
nameserver

  In many cases, it’s a big problem
 Larger ISPs might run only a few nameservers
 Especially in US for dial-up users, DNS lookups are

concentrated
 This means the content server is optimized for the

nameserver, not the actual client
 The difference can sometimes be very large

Kangasharju: Internet Content Distribution 17

CoralCDN

  Let’s take a closer look at a real CDN
  CoralCDN is a peer-to-peer content distribution network
  Mainly aimed at people running smaller websites
  CoralCDN offers such sites high performance and allows

them to meet high demand
  So called Slashdot-effect

  Goals of CoralCDN:
1.  Make publishing easy

  Anybody can participate

2.  Avoid hot-spots
  Volunteer participation might be affected if load gets too high

Kangasharju: Internet Content Distribution 18

Why CoralCDN?

  Why we need yet another CDN?
  Commercial CDNs already do their job well

  In many ways better than CoralCDN
  But:
1.  Commercial CDNs are aimed at content providers with

lots of money and resources
  Not cheap to serve content through a CDN

2.  Smaller web sites cannot afford a CDN
  Should need to install bigger servers themselves
  Again, not affordable

  Hence, smaller content providers are limited in what
they can afford to offer
  Again, Slashdot-effect among other things

Kangasharju: Internet Content Distribution 19

CoralCDN: Details

 CoralCDN is based on mirroring
 Volunteers offer their computers as proxies which mirror

data from origin servers
 Large number of volunteers provides a large amount of

bandwidth for distributing content
 Every content provider gets good service

 Level of popularity affects content replication

 CoralCDN is based on DNS redirection
 Cooperation between content servers (caches, proxies)

done over Coral
 Coral is a DHT-like indexing infrastructure

 Not a normal DHT, but similar

Kangasharju: Internet Content Distribution 20

CoralCDN: DNS Redirection

 CoralCDN has a simple approach to DNS redirection
 Suppose you want to publish URL for www.foo.com
 You “coralize” the URL, by adding nyud.net

 Older versions used specific ports as well (8080 and 8090)

 For example: http://www.foo.com/image.jpeg becomes
http://www.foo.com.nyud.net/image.jpeg

 The URL has to be changed manually by someone
 Someone can be:

 Content provider

  Individual user (if a site is too slow)

 Any third party (e.g., before posting a URL on Slashdot, you

coralize it)

Kangasharju: Internet Content Distribution 21

CoralCDN: How Does It Work?

 Because the URL ends in nyud.net, DNS queries are
handled by the nameserver of nyud.net (Coral’s DNS)

 CoralCDN’s DNS servers figure out the nearest content
server to the client

 Client request is then automatically sent to that server
 Content servers are actually proxies

 Note: Client does not know it’s talking to a proxy!

 Proxies cache content locally or fetch it from other
CoralCDN proxies

 Worst case: Fetch from origin server, but this ideally

happens only on the first request

 How to find content stored on other proxies?

Kangasharju: Internet Content Distribution 22

CoralCDN: Indexing Infrastructure

 CoralCDN uses a so-called distributed sloppy hash table
 DSHT groups nodes into clusters
 Cluster is defined by diameter

 Diameter is the maximum RTT between nodes in cluster

 Hierarchy of diameters builds levels
 CoralCDN implemented with 3 levels

 Level 0 has RTT ∞

 Level 1 has RTT 60 msec

 Level 2 has RTT 20 msec

 Preference to nodes in higher levels (= nearby nodes)

Kangasharju: Internet Content Distribution 23

Coral DNS Server

 DNS server is responsible for redirecting clients
 Does it by giving answers to DNS queries

 Uses a DNS feature to map URLs to levels
 DNS redirection, RFC 2672

 Allows to map a subtree in DNS to another domain

  In practice:
 www.foo.com.nyud.net =

www.foo.com.http.l2.l1.l0.nyucd.net

 Answer contains also nameservers for:
  l0.nyucd.net, l1.l0.nyucd.net, and l2.l1.l0.nyucd.net

 Depends on the RTT to the client’s DNS resolver

 DNS resolver on client side will pick the one that matches
the most levels

Kangasharju: Internet Content Distribution 24

CoralCDN: Getting Content

 Goal is to minimize load on origin server
 Should avoid many proxies contacting origin server
 Hence, should fetch content from other proxies whenever

it is possible
 DSHT determines which proxies have the file
 When a proxy starts downloading a file, it inserts itself into

the DSHT with a short TTL
 When download completed, TTL is increased

  Immediate insertion protects against flash-crowds
 Proxies form a kind of a multicast tree in that case

 Details of indexing, see paper:
 M. J. Freedman, E. Freudenthal, D. Mazieres, Democratizing

content publication with Coral, NSDI 2004

Kangasharju: Internet Content Distribution 25

CoralCDN: Performance

  Performance evaluation has shown:
1.  CoralCDN helps solve flash crowd problem
2.  Clustering provides large performance gains
3.  Clusters are suitably formed
4.  No hot spots in indexing system
  Evaluation done on PlanetLab

  166 machines as clients

  1 webserver on a 384 Kbit/s link with 12 41 KB files

  Clients request files, pick 3 files from 12 (simulate web

page)

  Request rate ~ 100 reqs/sec, total data rate 32800 Kbit/s

Kangasharju: Internet Content Distribution 26

CoralCDN: Performance

Load on origin server
 Origin server typically gets about 15 requests
 Should get only 12 requests, since there were 12 files
 Reason: Some requests overlap in the beginning

Clustering
 RTT thresholds divide clusters naturally
 Level 1 clusters with 60 msec RTT

 Separates Europe from US

 Level 2 clusters with 20 msec RTT
 East coast vs. West coast

Kangasharju: Internet Content Distribution 27

Chapter Summary

 Basics of content distribution networks (CDN)
 Why CDN?

 How do they work?

 Client redirection
 DNS redirection

 Full (or total) redirection

 Selective redirection

 Performance issues of CDNs
 CoralCDN example

Kangasharju: Internet Content Distribution 28

