
Introduction to Java Network Programming

Jussi Kangasharju

Java Network Programming

 Network programming in Java in general much easier than in C...

  ...except some advanced things which are harder 

 Setting socket options, no select()-call

 But threads help with missing select()

 Java supports both TCP and UDP sockets

 Many different ways to read/write sockets

 Differentiates between text and binary 

 Often several correct ways to handle socket

 TIMTOWTDI: There Is More Than One Way To Do It

Using TCP Sockets

 Client side:
Socket sock = new Socket(host, port);
 String host = host to contact, int port = port
 Host can also be InetAddress instead of String

 Server side
ServerSocket sock = new ServerSocket(port);
 Listen for incoming connections
Socket client = sock.accept();

Using UDP Sockets

 Same for client and server
DatagramSocket sock = new DatagramSocket();
 For server, give port number as argument

 Send packets with send()
 Receive packets with receive()

 UDP packets implemented in DatagramPacket-class

Reading and Writing TCP Sockets

 Socket has InputStream and OutputStream
 Need to wrap other streams around them
 Some wrappers implement buffers

 Java has many different I/O Streams
 See Java API for others (e.g., reading files)

 Relevant for sockets:
 InputStreamReader, OutputStreamWriter

 BufferedReader, BufferedWriter

 DataInputStream, DataOutputStream

Reading from a Socket

 Typical code:
InputStream is = socket.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

 Read text by calling br.readLine()

 Can be used only for reading text!

Writing to a Socket

 Typical code
OutputStream os = socket.getOutputStream();
OutputStreamWriter osw = new OutputStreamWriter(os);
BufferedWriter bw = new BufferedWriter(osw);

 Write by calling one of many write()-functions
 See the different classes for different possibilities
 Strings need to be converted to bytes with getBytes()
 Can also write directly to OutputStream

 BufferedWriter only for text output!

DataInputStream

 DataInputStream can read binary data from socket
 Also can send primitive data types
 Typical code
InputStream is = socket.getInputStream();
DataInputStream dis = new DataInputStream(is);

 Read binary data with read() (see API for details)
 Bonus functionality: Read text with readLine()

 But DataInputStream.readLine() is deprecated 

DataOutputStream

 DataOutputStream can be used to write
 Typical code:
OutputStream os = socket.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);

 DataOutputStream can also write text and binary
 Has writeBytes()-function

 no need for String.getBytes()

Differences Between Output Streams?!?

 What is the difference between DataOutputStream and normal
OutputStream wrapped with BufferedWriter?

 Answer: There is no difference in practice

 Some subtleties:
 Possible problems with conversion between 8-bit and 16-bit characters

(e.g., DataInputStream.readLine())

 Possible text/binary data issues

 Possible problems with buffering (use flush())

 dos.writeBytes(str) vs. bw.write(str.getBytes())

 No “correct” way, use either as long as it works
 Be careful not to get confused!

Assignment

Java Network Programming

Assignment Details

1.  TCP client and server
2.  Simple Web server
3.  Web server improvements (+ optionals)

  http://www.cs.helsinki.fi/u/jakangas/Teaching/CBU/lab1.html

Questions?

