
Introduction to Java Network Programming

Jussi Kangasharju

Java Network Programming

 Network programming in Java in general much easier than in C...

  ...except some advanced things which are harder

 Setting socket options, no select()-call

 But threads help with missing select()

 Java supports both TCP and UDP sockets

 Many different ways to read/write sockets

 Differentiates between text and binary

 Often several correct ways to handle socket

 TIMTOWTDI: There Is More Than One Way To Do It

Using TCP Sockets

 Client side:
Socket sock = new Socket(host, port);
 String host = host to contact, int port = port
 Host can also be InetAddress instead of String

 Server side
ServerSocket sock = new ServerSocket(port);
 Listen for incoming connections
Socket client = sock.accept();

Using UDP Sockets

 Same for client and server
DatagramSocket sock = new DatagramSocket();
 For server, give port number as argument

 Send packets with send()
 Receive packets with receive()

 UDP packets implemented in DatagramPacket-class

Reading and Writing TCP Sockets

 Socket has InputStream and OutputStream
 Need to wrap other streams around them
 Some wrappers implement buffers

 Java has many different I/O Streams
 See Java API for others (e.g., reading files)

 Relevant for sockets:
 InputStreamReader, OutputStreamWriter

 BufferedReader, BufferedWriter

 DataInputStream, DataOutputStream

Reading from a Socket

 Typical code:
InputStream is = socket.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

 Read text by calling br.readLine()

 Can be used only for reading text!

Writing to a Socket

 Typical code
OutputStream os = socket.getOutputStream();
OutputStreamWriter osw = new OutputStreamWriter(os);
BufferedWriter bw = new BufferedWriter(osw);

 Write by calling one of many write()-functions
 See the different classes for different possibilities
 Strings need to be converted to bytes with getBytes()
 Can also write directly to OutputStream

 BufferedWriter only for text output!

DataInputStream

 DataInputStream can read binary data from socket
 Also can send primitive data types
 Typical code
InputStream is = socket.getInputStream();
DataInputStream dis = new DataInputStream(is);

 Read binary data with read() (see API for details)
 Bonus functionality: Read text with readLine()

 But DataInputStream.readLine() is deprecated

DataOutputStream

 DataOutputStream can be used to write
 Typical code:
OutputStream os = socket.getOutputStream();
DataOutputStream dos = new DataOutputStream(os);

 DataOutputStream can also write text and binary
 Has writeBytes()-function

 no need for String.getBytes()

Differences Between Output Streams?!?

 What is the difference between DataOutputStream and normal
OutputStream wrapped with BufferedWriter?

 Answer: There is no difference in practice

 Some subtleties:
 Possible problems with conversion between 8-bit and 16-bit characters

(e.g., DataInputStream.readLine())

 Possible text/binary data issues

 Possible problems with buffering (use flush())

 dos.writeBytes(str) vs. bw.write(str.getBytes())

 No “correct” way, use either as long as it works
 Be careful not to get confused!

Assignment

Java Network Programming

Assignment Details

1.  TCP client and server
2.  Simple Web server
3.  Web server improvements (+ optionals)

  http://www.cs.helsinki.fi/u/jakangas/Teaching/CBU/lab1.html

Questions?

