


Java Network Programming

Network programming in Java in general much easier than in C...
...except some advanced things which are harder ®
Setting socket options, no select () -call
But threads help with missing select ()
Java supports both TCP and UDP sockets
Many different ways to read/write sockets
Differentiates between text and binary ®
Often several correct ways to handle socket

TIMTOWTDI: There Is More Than One Way To Do It



Using TCP Sockets

Client side:

Socket sock = new Socket (host, port);
String host = host to contact, int port = port
Host can also be InetAddress instead of String

Server side
ServerSocket sock = new ServerSocket (port) ;
Listen for incoming connections

Socket client = sock.accept()



Using UDP Sockets

Same for client and server
DatagramSocket sock = new DatagramSocket() ;
For server, give port number as argument

Send packets with send ()
Receive packets with receive ()

UDP packets implemented in DatagramPacket-class



Reading and Writing TCP Sockets

Socket has InputStream and OutputStream
Need to wrap other streams around them
Some wrappers implement buffers

Java has many different I/O Streams
See Java API for others (e.g., reading files)
Relevant for sockets:
InputStreamReader, OutputStreamWriter
BufferedReader, BufferedWriter
DataInputStream, DataOutputStream



Reading from a Socket

Typical code:
InputStream is = socket.getlInputStream() ;
InputStreamReader isr = new InputStreamReader (is) ;

BufferedReader br = new BufferedReader (isr) ;

Read text by calling br. readLine ()



Writing to a Socket

Typical code
OutputStream os = socket.getOutputStream() ;
OutputStreamWriter osw = new OutputStreamWriter (os) ;

BufferedWriter bw = new BufferedWriter (osw) ;

Write by calling one of many write () -functions
See the different classes for different possibilities
Strings need to be converted to bytes with getBytes ()
Can also write directly to OutputStream



DataInputStream

DataInputStream can read binary data from socket
Also can send primitive data types
Typical code

InputStream is = socket.getInputStream() ;

DataInputStream dis = new DatalInputStream(is) ;

Read binary data with read () (see API for details)
Bonus functionality: Read text with readLine ()
But DataInputStream.readLine () is deprecated ®



DataOutputStream

DataOutputStream can be used to write
Typical code:

OutputStream os = socket.getOutputStream() ;
DataOutputStream dos = new DataOutputStream(os) ;

DataOutputStream can also write text and binary
Has writeBytes () -function
- no need for String.getBytes ()



. Differences Between Output Streams?!?

What is the difference between DataOutputStream and normal
OutputStream wrapped with BufferedWriter?

There is no difference in practice

Some subtleties:

Possible problems with conversion between 8-bit and 16-bit characters
(e.g., DataInputStream.readLine())

Possible text/binary data issues

Possible problems with buffering (use £1lush ())

dos.writeBytes (str) vS.bw.write(str.getBytes())
No “correct” way, use either as long as it works

Be careful not to get confused!






Assignment Details

TCP client and server
Simple Web server
Web server improvements (+ optionals)






