
Copyrighted material; for CBU ICT Summer School 2009 student use only

Technische Universität Darmstadt

Telecooperation

Ubiquitous & Mobile Computing
Connectivity: Ubiquitous Communications

Dr. Erwin Aitenbichler

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Distributed Systems

• Distributed Systems
– Additional abstraction layer on top

of communication networks

– Extension of familiar prog. models
to distributed systems:
e.g., IPC, RPC, DOC

– Advanced models: e.g., Pub/Sub,
Tuple Spaces, DSM, PVM, MPI

• Problems with classical systems in
UbiComp context are many
– Connections assumed to be static

– Strict (protocol) layering principle
– Middleware not modular; computers

just became more powerful
– Often not open (CORBA interface IDs)

– Often simple abstraction (WS -> RPC, REST -> IPC)
– …

2

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Remote Method Call/Invocation
(here: CORBA)

3

Prof. Dr. M. Mühlhäuser
Telekooperation

©

New in UbiComm

• Some important aspects of ubiquitous communications:

required solutions

Machine-to-machine
communication

Decoupling of communication partners
Publish/Subscribe
Protocol Heaps

Heterogeneity support Modular operating systems, middleware,
applications

Openness Peer discovery (node discovery)
Decoupling of software components
Service discovery
Service deployment

Adaptivity Flexible comm. architectures
Enhanced service discovery
Connection-aware distributed objects
Decentralized control

4

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

• Communication Microkernel
– Basic abstraction:

Channel-based
Publish/Subscribe

• Service
– Aggregates objects

– In- and Out-Ports
• Channels

– unicast or multicast

Publisher
Subscriber

Private
ObjectPrivate
ObjectPrivate
Object

Exported
Object

emits
interface

Service
Service 1 Service 2

P S P S

MundoCore: Architecture

5

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

MundoCore: Layers
• Modular

– Microkernel architecture
– Services and Components

• Layer Model
– Groups communication services by function
– Core: Publish/Subscribe

6

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

MundoCore: Layers
• Modular

– Microkernel architecture
– Services and Components

• Layer Model
– Groups communication services by function
– Core: Publish/Subscribe

• Routing: 3 network types
– Single hop
– Unstructured P2P
– Structured P2P

7

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

MundoCore: Layers
• Modular

– Microkernel architecture
– Services and Components

• Layer Model
– Groups communication services by function
– Core: Publish/Subscribe

• Routing: 3 network types
– Single hop
– Unstructured P2P
– Structured P2P

• Transport
– Discovery of nearby nodes

8

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

MundoCore: Layers
• Modular

– Microkernel architecture
– Services and Components

• Layer Model
– Groups communication services by function
– Core: Publish/Subscribe

• Routing: 3 network types
– Single hop
– Unstructured P2P
– Structured P2P

• Transport
– Discovery of nearby nodes

9

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

MundoCore: Layers
• Modular

– Microkernel architecture
– Services and Components

• Layer Model
– Groups communication services by function
– Core: Publish/Subscribe

• Routing: 3 network types
– Single hop
– Unstructured P2P
– Structured P2P

• Transport
– Discovery of nearby nodes

• Paradigms
– Publish/Subscribe
– Distributed OO-Programming
– Streaming

10

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

MundoCore: Layers
• Modular

– Microkernel architecture
– Services and Components

• Layer Model
– Groups communication services by function
– Core: Publish/Subscribe

• Routing: 3 network types
– Single hop
– Unstructured P2P
– Structured P2P

• Transport
– Discovery of nearby nodes

• Paradigms
– Publish/Subscribe
– Distributed OO-Programming
– Streaming

11

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

Protocol Layering (1)

• State of the art: Protocol Layering
– Served well for strict end-to-end model

of original Internet
– Today: many „middle boxes“:

firewalls, NAT, proxies, caches
– Inserted functionality

• MPLS @layer 2.5
• IPsec @3.5
• TLS @4.5

– Reasons for inserting functionality:
• Re-use of working implementations
• Long-standing inter-layer interfaces
• Coarse granularity of protocol

functionality
• Drawbacks of Layering

– Message flow strictly defined,
i.e. a message can only be passed
from layer n to layer n+1 or n-1

– Cannot add functionality in or
between layers

1: Physical Layer

2: Data Link Layer

3: Network Layer
IP

4: Transport Layer
TCP, UDP

5: Session Layer

6: Presentation Layer

RMI Transport Layer

Remote Reference L.

Stub/Skeleton Layer

Application Layer

Middleware
Layers

here: RMI

OS
Layers

IP-Stack

12

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Protocol Layering (2)

• Communication in the Internet
– Mostly file transfers, so TCP/IP is fine

• Communication in Ubiquitous Computing / Smart Environments
– More machine-to-machine communication  message-based traffic

– Sensor data  low latency required
• in most cases no retransmissions required
• sometimes Forward Error Correction (FEC) required for better reliability

– Media appliances  streaming with rate control

 Totally different traffic
• More problems with TCP/IP

– Poor performance in wireless networks, because of unsuitable
congestion control

– Stream-based, not message-based

13

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

Protocol Layering (3)

OSI Model: Data Units

• I = interface
• P = protocol
• S = service

• DU = data unit
• CI = control information

(n+1) layer

(n) layer
(n)-IDU

(n)-SDU
(n)-ICI

(n-1)-ICI

(n)-PCI

PCI (n)-SDU

(n-1)-ICI

(n-1)-IDU
(n-1) layer

(n)-PDU

(n-1)-SDU

(n)PCI (n)-SDU

14

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

Protocol Heaps

• Role-based Architecture (RBA)

• Instead of last-on/first-off
model: random access to
RSHs (role-specific headers)

• Problem: Nondeterminism –
Which role handler should
be invoked next?

• A simple solution is:
– Pass messages down like in

layered architecture

– Introduce „address“ RSH with
MIME-Type and use this info
when passing messages up

15

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

• MundoCore
– Combination of protocol heap and configurable protocol stack

Protocol Heap

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Caller

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Service Provider

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Monitoring

Node 1 Node 2

16

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

• MundoCore
– Combination of protocol heap and configurable protocol stack

– Downward processing: defined by stack + Any* proxies

Protocol Heap

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Caller

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Service Provider

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Monitoring

Node 1 Node 2

17

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

• MundoCore
– Combination of protocol heap and configurable protocol stack

– Downward processing: defined by stack + Any* proxies
– Upward processing

• Phase 1: Use MIME-Type to determine next handler

Protocol Heap

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Caller

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Service Provider Monitoring

Node 1 Node 2

18

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

• MundoCore
– Combination of protocol heap and configurable protocol stack

– Downward processing: defined by stack + Any* proxies
– Upward processing

• Phase 1: Use MIME-Type to determine next handler
• Phase 2: Kernel knows service interconnections  Use stacks

Protocol Heap

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Caller

AnyTransport

BinSerializer

AnyRouting

TopicBroker

Activation

RMC Stubs

Service Provider Monitoring

Node 1 Node 2

19

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Combination of Pub/Sub and RMC

• Externalization and Serialization
– are separate concepts in MundoCore

– Externalization: transforms a message containing an active object
graph into a message containing a passive data structure.
A passive message contains typed name-value pairs. Only base types
(int, float, String, etc.), arrays, and maps are allowed as types.

– Serialization: transforms a passive message into an XML/SOAP
document or into some binary representation

– Benefits are, e.g.,
• Send notification using oneway RMC and define pub/sub filter on passive

form

• Remote Method Calls
– Automatic generation of client and server stubs by precompiler

– Naming service implicitly provided by Pub/Sub
• Connector-Abstraction

– Automatic generation of connectors by precompiler
– Java Language Extension with emits keyword

20

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Messages vs. RMC
• Note: two different levels of abstraction!

Publisher

Subscriber

Service

Publisher

Subscriber

Service

• Send

• Receive

pub = session.publish(zone, channel);
pub.send(message);

sub = session.subscribe(zone, channel,
 new IReceiver() {
 public void received(…
})

.

Publisher

Subscriber

Service

Object SS

CS

Publisher

Subscriber

Service

Object SS

CS

• Send

• Receive

stub = new DoX();
Signal.connect(stub, …publish(…))
stub.doSomething();

Signal.connect(…subscribe(…),
 targetObject)

21

Prof. Dr. M. Mühlhäuser
Telekooperation

©RMC Client

• Importing an Object

• Remote call
– Synchronous

– One-way („fire and forget“)

– Asynchronous

DoChatService stub = new DoChatService();
Signal.connect(
 stub,
 getSession().publish("lan", "chat_rmc")
);

stub.chatMessage(ln);

stub.chatMessage(ln, stub.ONEWAY);

stub.chatMessage(ln, stub.ASYNC);

22

Prof. Dr. M. Mühlhäuser
Telekooperation

©Asynchronous Calls
• Example:

• Asynchronous call:

• Asynchronous call with Callback:

class Calculator {
 @mcMethod
 int add(int x, int y);
}

AsyncCall callObject = stub.add(1, 2, stub.ASYNC);
…
int result=((Integer)callObject.getObj()).intValue();

AsyncCall callObject = stub.add(1, 2, stub.CREATEONLY);
callObject.setResultListener(
 new AsyncCall.IResultListener() {
 public void resultReceived(AsyncCall callObject) {
 int rslt = ((Integer)callObject.getObj()).intValue();
 }
});
callObject.invoke();

23

Prof. Dr. M. Mühlhäuser
Telekooperation

©Serialization

• Example:

• Note
– @mcSerialize: mcc generates serializers for all non-transient fields

– Class must have public nullary constructor – otherwise it cannot be
instantiated by reflection

@mcSerialize
public class Message {
 public String text;
 public Message() {
 }
 public Message(String t) {
 text = t;
 }
}

24

Prof. Dr. M. Mühlhäuser
Telekooperation

©

• Local:
• Primitive types: by-value
• Objects: by-reference

• RMC:
• Primitive types: by-value
• Objects: by-value

Deep copy by serialization
• Distributed Objects: by-reference

(Classes with Do-Prefix)

• Client receives Reference to remote object
• As return value of an RMC call
• By using the Signal.connect method (cf. RMC Client example)

Parameter Marshalling

25

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Build Process

• Precompilation for Java 1.1-

ChatService.oj

DoChatService.java

SrvChatService.java

mcc

ChatService.java

Client-Stub,
„Distributed Object“

Server-Stub

• Precompilation for Java 1.5-

ChatService.java

DoChatService.java

SrvChatService.java

mcc

Client-Stub,
„Distributed Object“

Server-Stub 26

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Interoperability

• MundoCore uses WSDL
– common representation of interfaces

– extension: data objects
• description for object serialization
• constants also supported

IService.h

IService.wsdlmcc

Interface Repository

mcc

IService.java

DoIService.java

SrvIService.java

27

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Decoupling of Services

• Support for output interfaces in MundoCore
– Java language extension, handled by mcc

• Services can be connected from “outside”
– No explicit creation of distributed objects, connects, channel names in

service code
• MundoCore is aware of all links between services

– Allows dynamic service loading/unloading, persistence, migration
– Allows separate evolution of connectors

Exported
Object

emits

interface

Service

Signal.connect(sourceObject,
 …publish(…))

Signal.connect(…subscribe(…),
 targetObject)

Signal.connect(doSource, doTarget)
Will be possible in future releases:

28

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Output interfaces

inbound outbound

oneway

request/
reply

class C implements I {
 void m() {}
}

i.m();

class C implements I {
 int m() { return 3; }
}

x=i.m();

class C emits I {
 void e() {}
}

emit.e();

class C emits I {
 int m() {}
}

x=emit.m();

Procedure call

Function call Anonymous request/reply

Signal event

29

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Peer Discovery

• Rendezvous via the primary port
– All nodes in the same overlay network share the same

primary port (default: 4242)
– If at least one MundoCore-process is running on a host, then

this port is bound by some process
• UDP Broadcast

– Reaches all nodes configured with the same primary port
in the same subnet

• UDP Multicast
– Reaches all nodes in the same multicast group (configuration

setting)
– Multicast packets can also reach other subnets, if supported by

router
• Neighbor-Messages

– Uses R-Multicast provided by routing services
– All-or-nothing-semantics: A new node can either use all services

available or does not get access to them at all.

30

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Service Discovery

• Builds internally on content-based publish/subscribe
– Services offered by a node are published

• when the node joins/leaves the network

• when services are registered/unregistered

• on explicit query

• In most cases: discovery based on interfaces
• Service Query:

filter = new ServiceInfoFilter();
filter.filterInterface("org.mundo.service.IIODevice");
filter.zone = "lan“;
filter._op_zone = IFilter.OP_EQUAL;
ResultSet rs = ServiceManager.getInstance().query(filter, null);
Thread.sleep(1000);
System.out.println(rs);

• Continuous Query with contQuery()
• Listener receives inserted, removing, removed, propChanged

events until result set is closed
31

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Adaptivity

• Spectrum of adaptation strategies (Satyanarayanan,1996)
• Application-transparent:

– Switching between different transport and routing services
– Peer discovery: only discovery strategies are configured, no addresses

– Service discovery, migration
– Conditional protocol handlers

• Application-aware:
– Process node join/leave events

– Process service register/unregister events
– Process objectConnected/objectDisconnected events

Laissez-faire:
no system support

Application-transparent:
no changes to application

Application-aware:
collaboration between system and application

32

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Conditional Protocol Handlers

• Example: (default stack defined in node.conf)

 <default-stack xsi:type="array">
 <handler>org.mundo.net.ActivationService</handler>
 <handler>org.mundo.net.P2PTopicBroker</handler>
 <handler>org.mundo.net.RoutingService</handler>
 <if xsi:type="map">
 <condition>org.mundo.net.ip.IfUDP</condition>
 <then xsi:type="array">
 <handler>org.mundo.net.NAckHandler</handler>
 <handler>org.mundo.net.BinSerializationHandler</handler>
 <handler>org.mundo.net.BinFragHandler</handler>
 </then>
 <else xsi:type="array">
 <handler>org.mundo.net.BinSerializationHandler</handler>
 </else>
 </if>
 <handler>org.mundo.net.ip.IPTransportService</handler>
 </default-stack>

33

Prof. Dr. M. Mühlhäuser
Telekooperation

©

• Example: MVC Pattern implemented with Publish/Subscribe
– Model does not have to keep track of views

– Easy to support multiple models -> decentralized control

Model

View P
S

View P
S

View P
S

P
SModel

View

View

View

Decentralized Control

Synchronous RMC Publish/Subscribe

34

Prof. Dr. M. Mühlhäuser
Telekooperation

©

Dr. Erwin Aitenbichler
Prof. Dr. M. Mühlhäuser

Telekooperation
©

Network Types
• Overlay networks add an abstraction layer atop the phys. network

• … to implement content-based addressing, caching/replication, better fault
tolerance, etc.

• In the following, we consider object location in P2P systems as example

• We can distinguish two main types
– Unstructured networks

• based on searching: networks find objects by searching with
keywords that match objects' descriptions

– Pro: No need to know unique names or hashes
– Con: Hard to make efficient

• Unstructured does not mean complete lack of structure: Network
has structure, but peers are free to join anywhere and objects can
be stored anywhere

– Structured networks
• based on addressing: networks find objects by addressing them

with their unique name, hash value, etc.
– Pro: Object location can be made efficient
– Con: Unique name/hash must be known, no wildcard searches

• Network structure determines where peers belong in the network
and where objects are stored

35

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Network Types

• Unstructured
– Single-hop routing

• Fully meshed network

• Scales up to ~30 clients

• Best reliability
• MundoCore: P2PTopicBroker

– Super-peer network
• Only super-peers are fully meshed

• Only super-peers run full pub/sub-broker
• Leaf nodes are only pub/sub clients

• MundoCore: DVEventRouter

• Structured
– MundoCore: PastryERS

• Hybrid configurations possible

36

Prof. Dr. M. Mühlhäuser
Telekooperation

©

MundoCore: Summary
• Different traffic in UbiComp

– Three kinds: event-based, request/reply, (media) streaming
• Flexible communication architectures

– Modular middleware; case study: MundoCore
– structured messages  event filtering (brokering layer)
– typing  RMC and object marshalling (language binding layer)

• Adaptivity
– Peer discovery, Service discovery
– Application-transparent adaptation: “Any-Proxies”, conditional

protocol handlers, peer and service discovery, anonymous
request/reply

– Application-aware adaptation: node join/leave, service register/
unregister, object connect/disconnect

• Decoupling
– …of communication: publish/subscribe
– …of services: Output interfaces, connector abstraction

• ListenerList bookkeeping should not be part of event source

– Rethink traditional implementations
37

