Ubiquitous & Mobile Computing

Connectivity: Ubiquitous Communications

Dr. Erwin Aitenbichler

Copyrighted material; for CBU ICT Summer School 2009 student use only

Prof. Dr. M. Muhlhauser
Telekooperation

Distributed Systems

Distributed Systems

ADPACatiONs, SerVices

- Additional abstraction layer on top E——
of communication networks Midgseware
request-reply protocol layers
- Extension of familiar prog. models marshaling and extemal dala representatin
to distributed systems: UDP and TCP

e.g., IPC, RPC, DOC
- Advanced models: e.g., Pub/Sub,

Tuple Spaces, DSM, PVM, MPI Ny NP ENTATON
Problems with classical systems in o, —
UbC t Xt are man CLIENT ::.’, .opcralmn() (SERVANT)

] Omp Con e y OuUt angs © retumn value

/

’

- Connections assumed to be static

(2)—

Il)l.
DSI
SKELETON
ORB] ' ulun‘lj
INTERFACE

IDL
- Strict (protocol) layering principle [S“’“] \\[
- Middleware not modular; computers %\\ = S]

just became more powerful
- Often not open (CORBA interface IDs)
- Often simple abstraction (WS -> RPC, REST -> IPC)

O ORB-SPECIFIC INTERFACE () stanparD prOTOCO!

©

Prof. Dr. M. Muhlhauser
Telekooperation
©

Remote Method Call/Invocation
(here: CORBA)

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY
in args
OBJECT
ration
CLIENT OB’ operation() (SERVANT)
yﬂt args + return V'Ilue
IDL J[Dsg
SKELETON
IDL ORB OBJECT
STUBS INTERFACE ADAPTER

(GIOP/IIOP) % \
y

O STANDARD INTERFACE \\ O STANDARD LANGUAGE MAPPING

Q ORB-SPECIFIC INTERFACE Q STANDARD PROTOCOL

——

Prof. Dr. M. Muhlhauser
Telekooperation
©

New in UbiComm

e Some important aspects of ubiquitous communications:

reqired s

Machine-to-machine
communication

Heterogeneity support

Openness

Adaptivity

Decoupling of communication partners
Publish/Subscribe

Protocol Heaps

Modular operating systems, middleware,
applications

Peer discovery (node discovery)
Decoupling of software components
Service discovery

Service deployment

Flexible comm. architectures
Enhanced service discovery
Connection-aware distributed objects
Decentralized control

Communication Microkernel

MundoCore: Architecture

- Basic abstraction:
Channel-based
Publish/Subscribe

Service

- Aggregates objects
- In- and Out-Ports

Channels

- unicast or multicast

pr. cerwin Aitenbichler
Prof. Dr.-M. Mihlhauser
Telekooperation

[
P[s

Service 1

il

P|S

Private
Object

Pubhsher

Subscriber

Exported
Object

emits

interface

Service 2

Service

©

=

N

Modular

Layer Model

vr. Erwin Artenbichter
Prof. Dr.-M. Mihlhauser
Telekooperation

©

MundoCore:

Microkernel architecture
Services and Components

Groups communication services by function
Core: Publish/Subscribe

Brokering
(indirect] 11
addressing) TopicBroker = ContentBroker

e Modular

- Microkernel architecture
- Services and Components

e Layer Model

- Groups communication services by function
- Core: Publish/Subscribe

e Routing: 3 network types

- Single hop

- Unstructured P2P

- Structured P2P

vr. Erwin Artenbichter
Prof. Dr.-M. Mihlhauser
Telekooperation

©

MundoCore: Layers

.\——"

Brokering
(indirect i r
addressing) TopicBroker ContentBroker

Routing . .
(direct Single Hop Distance Vector
addressing) “

pr. cerwin Aitenbichler
~ Prof. Dr.-M. Miihlhduser
et (0] M. Mihlhause

N Telekooperation
3 ©
e

MundoCore: Layers

e Modular
- Microkernel architecture
- Services and Components
e Layer Model
- Groups communication services by function
- Core: Publish/Subscribe
e Routing: 3 network types
- Single hop
- Unstructured P2P
- StructuredP2P =00z s mETmMITOOnETTT S SSEmeTOT e
e Transport
- Discovery of nearby nodes

v

Brokering
(indirect i r
addressing) TopicBroker ContentBroker

Routing . .
(direct Single Hop Distance Vector
addressing) '

Transport P » RFCOMM | [Infrared -

pr. cerwin Aitenbichler
~ Prof. Dr.-M. Miihlhduser
et (0] M. Mihlhause

N Telekooperation
3 ©
e

MundoCore: Layers

e Modular
- Microkernel architecture
- Services and Components
e Layer Model
- Groups communication services by function
- Core: Publish/Subscribe
e Routing: 3 network types
- Single hop
- Unstructured P2P
- StructuredP2P =00z s mETmMITOOnETTT S SSEmeTOT e
e Transport
- Discovery of nearby nodes

v

Brokering
(indirect i r
addressing) TopicBroker ContentBroker

I
Routing . :
(direct Single Hop Distance Vector | Pastry
addressing) ' | '

Transport P » RFCOMM | [Infrared -

vr. Erwin Artenbichter
et Prof. Dr.-M. Mihlhauser

.} :: Telekooperatiog
o MundoCore: Layers
e Modular

- Microkernel architecture
- Services and Components
e Layer Model
- Groups communication services by function
- Core: Publish/Subscribe
e Routing: 3 network types
- Single hop
- Unstructured P2P
- StructuredP2P =00 z@Wuism mEmiSmshuTasatT TS SOt
« Transport Language | RMC Stubs |

\’

- Discovery of nearby nodes S Marshaliing Streaming
e Paradigms T - - T - - - - T T T T~ T T T
- Publish/Subscribe Brolang] |
- Distributed 00-Programming addressing) TopicBroker = ContentBroker | Scribe
- Streaming = 0O W == SRR SUS Si —-——-
Routing
(direct Single Hop Distance Vector | Pastry
addressing) - I

Transport P » RFCOMM | [Infrared |

10

vr. Erwin Artenbichter
et Prof. Dr.-M. Mihlhauser

.} :: Telekooperatiog
o MundoCore: Layers
e Modular

- Microkernel architecture
- Services and Components
e Layer Model
- Groups communication services by function
- Core: Publish/Subscribe

e Routing: 3 network types

\’

- Single hop
- Unstructured P2P Application Application Service
- StructuredP2P = =0 0zl @z Wi WSS TE ST
o Transport Language L MG Stubs |
- Discovery of nearby nodes S Marshaliing Streaming
e Paradigms T - - T - - - - T T T T~ T T T
- Publish/Subscribe Brolang] |
- Distributed OO-Programming addressing) TopicBroker | = ContentBroker | Scribe |
- Streaming =0 @ —v= =heibimisieRess S wRde i
Routing
(direct Single Hop Distance Vector | Pastry
addressing) ' |

Transport P » RFCOMM | [Infrared |

11

Protocol Layering (1)

« State of the art: Protocol Layering

Served well for strict end-to-end model
of original Internet

Today: many ,,middle boxes*:

. . Middleware
firewalls, NAT, proxies, caches Layers
Inserted functionality here: RMI

 MPLS ®@layer 2.5
e IPsec @3.5
e TLS @4.5
Reasons for inserting functionality:
e Re-use of working implementations
e Long-standing inter-layer interfaces

» Coarse granularity of protocol
functionality

e Drawbacks of Layering

Message flow strictly defined,
i.e. a message can only be passed
from layer n to layer n+1 or n-1

Cannot add functionality in or
between layers

0OS
Layers
IP-Stack

<

vr. Erwin Artenbichter
Prof. Dr.-M. Mihlhauser
Telekooperation

Application Layer

Stub/Skeleton Layer

Remote Reference L.

RMI Transport Layer

6: Presentation Layer

5: Session Layer

4: Transport Layer
TCP, UDP

3: Network Layer
IP

2: Data Link Layer

1: Physical Layer

©

Prof. Dr. M. Muhlhauser
Telekooperation
©

Protocol Layering (2)

Communication in the Internet
- Mostly file transfers, so TCP/IP is fine

Communication in Ubiquitous Computing / Smart Environments
- More machine-to-machine communication = message-based traffic

- Sensor data = low latency required
» in most cases no retransmissions required
» sometimes Forward Error Correction (FEC) required for better reliability

- Media appliances = streaming with rate control
= Totally different traffic
More problems with TCP/IP

- Poor performance in wireless networks, because of unsuitable
congestion control

- Stream-based, not message-based

13

pr. cerwin Aitenbichler
Prof. Dr.-M. Muhlhauser
Telekooperation

©

Protocol Layering (3)

OSI Model: Data Units

| = interface
e P = protocol
e S =service

e DU = data unit
e Cl =control information

(n-1) layer

14

Protocol Heaps

Role-based Architecture (RBA)

Instead of last-on/first-off
model: random access to
RSHs (role-specific headers)

Problem: Nondeterminism -
Which role handler should
be invoked next?

A simple solution is:

- Pass messages down like in
layered architecture

- Introduce ,,address“ RSH with
MIME-Type and use this info
when passing messages up

vr. Erwin Artenbichter
Prof. Dr.-M. Mihlhauser
Telekooperation

A Role B G

\ - / ‘

et I A P T -
4 aars 1 | ‘ Payload >

Packet
“ v
1P Hdr '“""‘d:‘ L] \ [o Payload

| Heap Area \ B O

=

—__Packet Layout |

DDescr | Length (bytes)

Flags
RodelD
N .
odelD or zero A RSH B()d)‘ 2
Stack
Flags Byte Offset
Chain .
Access
Bits

15

©

MundoCore

Caller

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

AnyTransport

Protocol Heap

Node 2

Combination of protocol heap and configurable protocol stack

Service Provider

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

AnyTransport

Monitoring

TopicBroker

AnyRouting

BinSerializer

AnyTransport

pr. cerwin Aitenbichler
Prof. Dr.-M. Mihlhauser

Telekooperation
©

16

MundoCore

- Combination of protocol heap and configurable protocol stack

Protocol Heap

- Downward processing: defined by stack + Any* proxies

Node 1

Caller

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

AnyTransport

:> AnyTransport

Node 2

Service Provider

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

Monitoring

TopicBroker

AnyRouting

BinSerializer

AnyTransport

pr. cerwin Aitenbichler
Prof. Dr.-M. Mihlhauser

Telekooperation
©

17

MundoCore

Combination of protocol heap and configurable protocol stack

Protocol Heap

Downward processing: defined by stack + Any* proxies

Upward processing

e Phase 1: Use MIME-Type to determine next handler

Node 1

Caller

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

AnyTransport

Node 2

Service Provider

Monitoring

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

:> AnyTransport

pr. erwin Aitenbichler
Prof. Dr.-M. Miihlhauser
Telekooperation

18

©

MundoCore

Combination of protocol heap and configurable protocol stack

Protocol Heap

Downward processing: defined by stack + Any* proxies

Upward processing

e Phase 1: Use MIME-Type to determine next handler

e Phase 2: Kernel knows service interconnections = Use stacks

Node 1

Caller

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

\/' AnyTransport

Node 2

Service Provider

Monitoring

RMC Stubs

Activation

TopicBroker

AnyRouting

BinSerializer

:> AnyTransport

pr. Erwin Aitenbicnler
Prof. Dr.-M. Muhlhauser
Telekooperation

19

©

Prof. Dr. M. Muhlhauser
Telekooperation
©

Combination of Pub/Sub and RMC

Externalization and Serialization

are separate concepts in MundoCore

Externalization: transforms a message containing an active object
graph into a message containing a passive data structure.

A passive message contains typed name-value pairs. Only base types
(int, float, String, etc.), arrays, and maps are allowed as types.

Serialization: transforms a passive message into an XML/SOAP
document or into some binary representation

Benefits are, e.g.,

« Send notification using oneway RMC and define pub/sub filter on passive
form

Remote Method Calls

Automatic generation of client and server stubs by precompiler
Naming service implicitly provided by Pub/Sub

Connector-Abstraction

Automatic generation of connectors by precompiler

Java Language Extension with emits keyword 20

et Prof. Dr. M. Muhlhauser
.} Telekooperation

Messages vs. RMC ;

——

e Note: two different levels of abstraction!

I I
Publisher f——p = (S| Publisher |
Subscriber (€ Object & SS/ € Subscriber [€—
I I
Service Service
| I
Publisher |—> > CSP»| Publisher |—>
Subscribelr < Object &4 S5/ Subscriber €
| I
Service Service
e Send e Send
pub = session.publish(zone, channel); stub = new DoX();
pub.send(message); Signal.connect(stub, ...publish(...))
. stub.doSomething();
» Receive Recel
eceive
sub = session.subscribe(zone, channel, ’
new IReceiver() { Signal.connect(...subscribe(...),
public void received(... targetObject)

})
21

i RMC Client

e Importing an Object

DoChatService stub = new DoChatService();
Signal.connect(

stub,

getSession().publish("lan", "chat_rmc")

);
 Remote call
- Synchronous
stub.chatMessage(In);
- One-way (,,fire and forget*)
stub.chatMessage(In, stub.ONEWAY);

- Asynchronous
stub.chatMessage(In, stub.ASYNC);

Prof. Dr. M. Muhlhauser
Telekooperation
©

22

Asynchronous Calls

Example:

class Calculator {
@mcMethod
int add(int x, int y);
}

Asynchronous call:

AsyncCall callObject = stub.add(1, 2, stub.ASYNC);

int result=((Integer)callObject.getObj()).intValue();
Asynchronous call with Callback:

AsyncCall callObject = stub.add(1, 2, stub.CREATEONLY);
callObject.setResultListener(
new AsyncCall.IResultListener() {
public void resultReceived(AsyncCall callObject) {
int rslt = ((Integer)callObject.getObj()).intValue();
}
b;

callObject.invoke();

Prof. Dr. M. Muhlhauser
Telekooperation
©

23

Prof. Dr. M. Muhlhauser
Telekooperation
©

Serialization

e Example:

@mcSerialize

public class Message {
public String text;
public Message() {

}
public Message(String t) {
text ={;
}
}
e Note

- @mcSerialize: mcc generates serializers for all non-transient fields

- Class must have public nullary constructor - otherwise it cannot be
instantiated by reflection

24

Parameter Marshalling

e Local:
e Primitive types: by-value
e Objects: by-reference

e RMC:
e Primitive types: by-value
e Objects: by-value
Deep copy by serialization

« Distributed Objects: by-reference
(Classes with Do-Prefix)

o Client receives Reference to remote object

e As return value of an RMC call

Prof. Dr. M. Muhlhauser
Telekooperation
©

e By using the Signal.connect method (cf. RMC Client example)

25

Prof. Dr. M. Muhlhauser
Telekooperation
©

MundoCore: Build Process

e Precompilation for Java 1.1-

ChatService.oj

Client-Stub,
,Distributed Object“

DoChatService.java

mcc

v SrvChatService.java

ChatService.java

Server-Stub

e Precompilation for Java 1.5-

ChatService.java

Client-Stub,
,Distributed Object“

DoChatService.java

mcc

SrvChatService.java

Server-Stub 26

Prof. Dr. M. Muhlhauser
Telekooperation

MundoCore: Interoperability

IService.h

Interface Repository

l

mcc

IService.java

/

> IService.wsdl

e MundoCore uses WSDL

- common representation of interfaces

- extension: data objects

» description for object serialization
» constants also supported

mcc DolService.java

SrviService.java

27

©

Prof. Dr. M. Muhlhauser
Telekooperation
©

Decoupling of Services

Exported
Object

emits

1
interface

Service

Signal.connect(sourceObject,
...publish(...))

Signal.connect(...subscribe(...),
targetObject)

Will be possible in future releases:
Signal.connect(doSource, doTarget)

e Support for output interfaces in MundoCore
- Java language extension, handled by mcc
e Services can be connected from “outside”

- No explicit creation of distributed objects, connects, channel names in
service code

e MundoCore is aware of all links between services
- Allows dynamic service loading/unloading, persistence, migration

- Allows separate evolution of connectors

28

Prof. Dr. M. Muhlhauser
Telekooperation

MundoCore: Output interfaces

inbound

outbound

Procedure call

class C implements | {

Signal event

class C emits | {

oneway void m() {} void e() {}

3 3

i.m(); emit.e();

Function call Anonymous request/reply
request/ | class C implements | { class C emits | {
reply int m() { return 3; } int m() {3

} 3

x=1.m(); x=emit.m();

29

©

Prof. Dr. M. Muhlhauser
Telekooperation
©

MundoCore: Peer Discovery

Rendezvous via the primary port

- All nodes in the same overlay network share the same
primary port (default: 4242)

- If at least one MundoCore-process is running on a host, then
this port is bound by some process

UDP Broadcast

- Reaches all nodes configured with the same primary port
in the same subnet

UDP Multicast

- Reaches all nodes in the same multicast group (configuration
setting)

- Multicast packets can also reach other subnets, if supported by
router

Neighbor-Messages
- Uses R-Multicast provided by routing services

- All-or-nothing-semantics: A new node can either use all services
available or does not get access to them at all.

30

Prof. Dr. M. Muhlhauser
Telekooperation

©

MundoCore: Service Discovery

Builds internally on content-based publish/subscribe
- Services offered by a node are published
e when the node joins/leaves the network
e when services are registered/unregistered
e on explicit query
In most cases: discovery based on interfaces
Service Query:

filter = new ServicelnfoFilter();

filter.filterinterface("org.mundo.service.llODevice");
filter.zone = "lan®;

filter._op_zone = IFilter. OP_EQUAL;

ResultSet rs = ServiceManager.getinstance().query(filter, null);
Thread.sleep(1000);
System.out.printin(rs);

e Continuous Query with contQuery()

o Listener receives inserted, removing, removed, propChanged
events until result set is closed

31

Prof. Dr. M. Muhlhauser
Telekooperation
©

MundoCore: Adaptivity

Application-aware:
collaboration between system and application

A

Laissez-faire: Application-transparent:
no system support no changes to application
Spectrum of adaptation strategies (Satyanarayanan,1996)
Application-transparent:
- Switching between different transport and routing services
- Peer discovery: only discovery strategies are configured, no addresses
- Service discovery, migration
- Conditional protocol handlers
Application-aware:
- Process node join/leave events
- Process service register/unregister events

- Process objectConnected/objectDisconnected events
32

——

Conditional Protocol Handlers

o Example: (default stack defined in node.conf)

<default-stack xsi:type="array”>
<handler>org.mundo.net.ActivationService</handler>
<handler>org.mundo.net.P2PTopicBroker</handler>
<handler>org.mundo.net.RoutingService</handler>
<if xsi:type="map">
<condition>org.mundo.net.ip.IfUDP</condition>
<then xsi:type="array">
<handler>org.mundo.net.NAckHandler</handler>
<handler>org.mundo.net.BinSerializationHandler</handler>
<handler>org.mundo.net.BinFragHandler</handler>
</then>
<else xsi:type="array">
<handler>org.mundo.net.BinSerializationHandler</handler>
</else>
</if>
<handler>org.mundo.net.ip.IPTransportService</handler>
</default-stack>

Prof. Dr. M. Muhlhauser
Telekooperation
©

33

Prof. Dr. M. Muhlhauser
Telekooperation
©

L Decentralized Control

« Example: MVC Pattern implemented with Publish/Subscribe

- Model does not have to keep track of views
- Easy to support multiple models -> decentralized control

View \ View &
: : P P
View Model View ¢ g| Model
: /) P
View View ¢
Synchronous RMC Publish/Subscribe

34

vr. Erwin Artenbichter
Prof. Dr.-M. Mihlhauser
Telekooperation

©

Network Types

e Overlay networks add an abstraction layer atop the phys. network

e ... to implement content-based addressing, caching/replication, better fault
tolerance, etc.

e In the following, we consider object location in P2P systems as example

e We can distinguish two main types
- Unstructured networks
e based on searching: networks find objects by searching with
keywords that match objects’ descriptions
- Pro: No need to know unique names or hashes
- Con: Hard to make efficient
e Unstructured does not mean complete lack of structure: Network
has structure, but peers are free to join anywhere and objects can
be stored anywhere
- Structured networks
e based on addressing: networks find objects by addressing them
with their unique name, hash value, etc.
- Pro: Object location can be made efficient
- Con: Unique name/hash must be known, no wildcard searches
e Network structure determines where peers belong in the network

and where objects are stored 35

Prof. Dr. M. Muhlhauser
Telekooperation
©

MundoCore: Network Types

b
Unstructured o <4

- Single-hop routing i))
e Fully meshed network \ /

e Scales up to ~30 clients
» Best reliability

e MundoCore: P2PTopicBroker oo s i‘;. 22
- Super-peer network T)
« Only super-peers are fully meshed O T
e Only super-peers run full pub/sub-broker 2 s :
» Leaf nodes are only pub/sub clients — -
e MundoCore: DVEventRouter oy
Structured vy —
- MundoCore: PastryERS < f
' g \ "fg‘;,
Hybrid configurations possible I

36

Prof. Dr. M. Muhlhauser
Telekooperation
©

MundoCore: Summary

Different traffic in UbiComp

- Three kinds: event-based, request/reply, (media) streaming
Flexible communication architectures

- Modular middleware; case study: MundoCore

- structured messages = event filtering (brokering layer)

- typing ® RMC and object marshalling (language binding layer)
Adaptivity

- Peer discovery, Service discovery

- Application-transparent adaptation: “Any-Proxies”, conditional
protocol handlers, peer and service discovery, anonymous
request/reply

- Application-aware adaptation: node join/leave, service register/
unregister, object connect/disconnect

Decoupling
- ...of communication: publish/subscribe
- ...of services: Output interfaces, connector abstraction
» ListenerList bookkeeping should not be part of event source

- Rethink traditional implementations 37

