Technische Universität Darmstadt

Ubiquitous & Mobile Computing Adaptability: Context

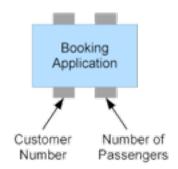
Dr. Erwin Aitenbichler

Copyrighted material; for CBU ICT Summer School 2009 student use only

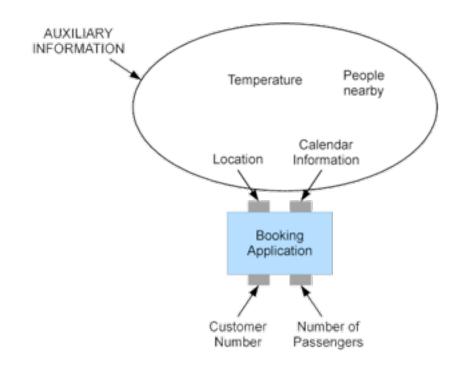
Why use context?

• Humans use context for adapting their behavior to the current situation (e.g. time of day, location, people they are with)

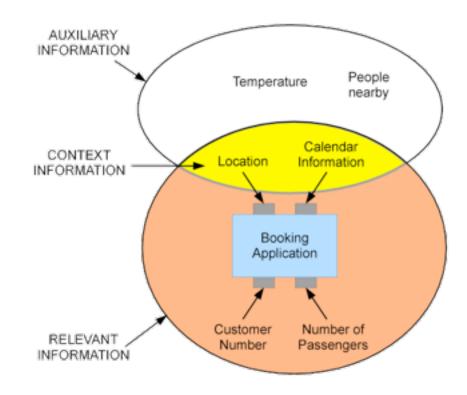
• Goal:


- Applications, environments, ... that reduce cognitive load of users

- How:
 - Proactivity
 - Setup environment according to user's preferences or usage history
 - Auto-completion of forms (location, time in HEAG timetable)
 - Reminders
 - Search and filter information according to the user's current needs
 - Avoid interrupting the user in inappropriate situations
 - Smart environments
 - Turn devices on/off, start applications, ... depending on location, time, situation (lecture, meeting, home cinema, ...)
 - Discover and use nearby interaction devices

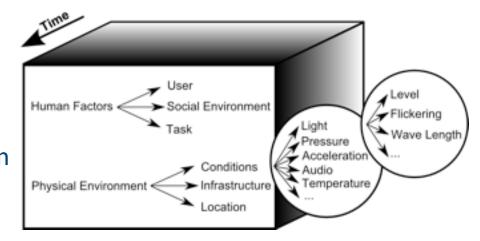

- Two prominent definitions in research literature:
- Context (Dey):
 - Context is any information that can be used to characterize the situation of an entity. An entity is a person, place or object that is considered relevant to the interaction between a user and an application, including the user and application themselves.
 - Context-aware System:
 - A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task.
- Context (Schmidt/Gellersen):
 - Abstrakte Beschreibung der Situation oder von signifikanten Merkmalen der Situation in der lokalen Umgebung eines Benutzers.
 - System mit Kontextbezug:
 Ein System das die F\u00e4higkeit hat, Aspekte der Umgebung als Kontext zu erfassen und diese f\u00fcr ein situatives Verhalten zu nutzen.

 \bigcirc


- Example: (Train) booking application requires
 - User input: booking details, such as customer#, # of passengers

- Example: (Train) booking application requires
 - User input: booking details, such as customer#, # of passengers
 - Auxiliary information: location, calendar information, temperature, people nearby, ...

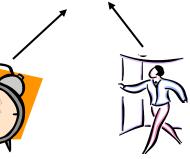
- Example: (Train) booking application requires
 - User input: booking details, such as customer#, # of passengers
 - Auxiliary information: location, calendar information, temperature, people nearby, ...
 - Only some of this information is relevant


Definition

- Context (Mühlhäuser et al.):
 - Context characterizes the actual situation in which an application is used.
 - We only refer to information as Context that can actually be processed by an application (relevant information), but that is not mandatory for its normal functionality (auxiliary information).

• Context-aware system: system that adapts itself to context

Examples


- Human Factors
 - information on user:
 - knowledge of habits, emotional state, biophysical conditions
 - user's social environment
 - co-location of others, social interaction, group dynamics
 - user's tasks
 - current activity, ongoing tasks, general goals
- Physical environment
 - location
 - absolute or relative position
 - infrastructure surrounding resources for computation, communication
 - physical conditions noise, light, pressure

Context Types

- Sensed context
 - Physical sensors or virtual sensors (applications)
 - Examples: temperature, Outlook calendar entries
- Inferred or derived context
 - Combination of context data to gain new information ("higher level context")
 - Examples: Activity (e.g. "being in a meeting"), symbolic location (e.g. "S202|A124")

Time: 12:00

John leaves office

Context Type	Sensors	Examples
Sensed context	Physical sensors	Temperature
	Virtual sensors	Outlook
Inferred Context	Logical Sensors	Activity

Context Models

- Context data must be represented in machine readable form to enable application to use it
- Context model defines exchange of context information
- Context model has to provide a useful set of attributes for each context data (type, value, timestamp, source...), ideally it addresses how to cope with incompleteness and ambiguity of context information
- Existing Context Models can be classified by means of the data structure they use for exchanging context information:
 - Key-Value Model
 - Markup Scheme Model
 - Ontology-based Model
 - Object-oriented Model
 - Logic-based Model

Key-Value Model

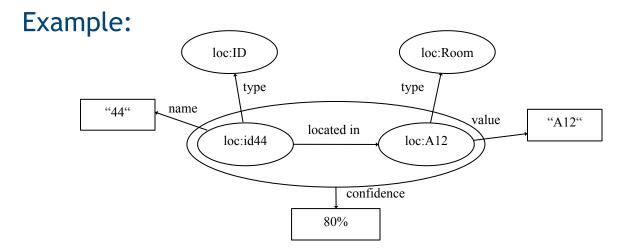
- Simplest model
- Describes context as a set of attributes
- Easy to manage
- Missing structural information
- Often used in service frameworks for describing the capability of a service

Example:

 $\begin{array}{rcl} \text{Room} &= & \text{A12} \\ \text{ID} &= & 44 \end{array}$

Dr. Erwin Aitenbichler Prof. Dr. M. Mühlhäuser Telekooperation

Markup Scheme Model

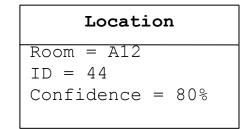

- Hierarchical structure
- Consists of markup tags with attributes and content
- Allows type and range checking for numerical values
- Typically used for modeling profiles, e.g. as extensions for CC/PP (Composite Capabilities / Preferences Profile); CC/PP defines profiles for mobile devices
 - Based upon the Resource Description Framework (RDF)
 - Capabilities of device like device screen size defined in profiles
 - CC/PP Context Extension: Network Interfaces of devices, Location, DisconnectionStatus, ...

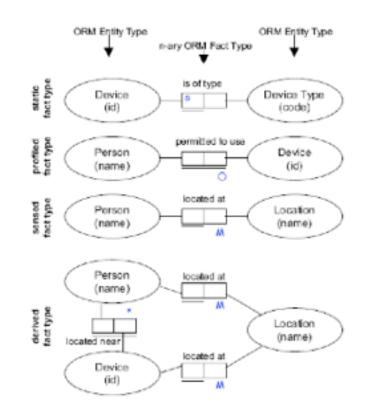
Example:

<Location confidence="80%"> <Room>A12</Room> <ID>44</ID> </Location>

Ontology-based Model

- Ontology consists of concepts, properties, relations and axioms
- Provides uniform way to specify a model's core concepts
- Facilitates sharing knowledge between different applications by defining a common vocabulary
 - Common upper ontology captures general model
 - Several domain or application-specific ontologies refine model




 \bigcirc

Object-oriented Model

- Allows encapsulation and reuse of parts of the model
 - Entities and relations modeled as objects
 - Processing/reasoning done by "widgets"
- Representation of context, e.g., by Object-Role Modeling
 - "Typed" relation between classes → fact types
 - Instances are called facts

Example:

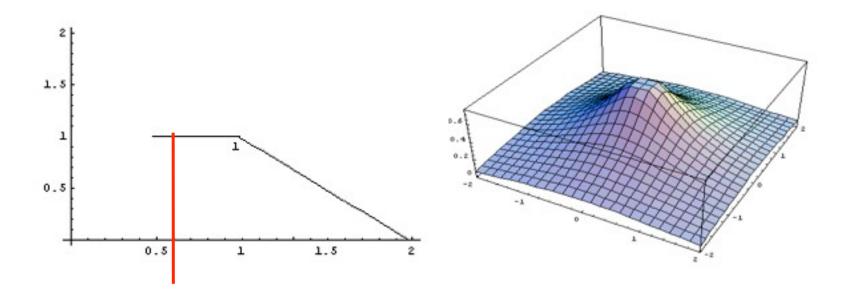
Logic-based Model

- Formal system based on facts, expressions and rules
- Context information is added, updated, deleted from logical system
- Logical system infers new context information depending on the specified rules
- Mathematic properties useful for applications in the area of artificial intelligence
- Does not contain straightforward representation of quality metainformation

Example:

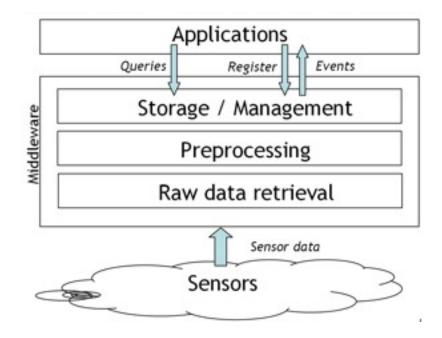
locatedAt("44", "A12", 80%)

Dealing with Uncertainty


- Has to be handled in three areas:
 - Sensing context information
 - Inferring context information
 - Using context information
- How to determine uncertainty of sensed context
 - can be reported by sensor (e.g. biometric authentication devices give a measure for the confidence in reported data)
 - specified relevance function takes freshness of context data into account. Validity decreases with distance to acquisition event
- How to determine uncertainty of inferred context
 - Most widely used reasoning strategies are probabilistic and fuzzy logic and Bayesian networks
- How to use uncertain context information
 - Specify required confidence level (e.g. for authentication)
 - Only regard the context value with maximum probability as valid

FuzzySpaces: Assumptions

- principle of location
 - context has place of origin
 - relevance is max. at origin, drops with distance towards 0, e.g.:
 - temperature measurement accurate at thermometer
 - temperature is similar "nearby"
 - multiple sensors -> nearest has maximum relevance
- principle of time
 - context has time of origin
 - then relevance is maximal
 - relevance drops with time towards 0
 - multiple sensors -> latest acquisition has maximum relevance
- principle of independency
 - context producer and consumer are independent
 - producers of (even the same) context exist independently
 - consumers of context exist independently
 - applications use context


FuzzySpaces

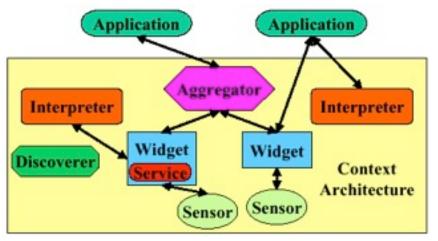
- Observations influenced the context model:
 - context C = (ID, description, unit, range of values, value, probability)
- Validity of context described by functions determining
 - temporal relevance
 - location relevance

Context Middleware

- Facilitates the development of context-aware applications by separating the detection and usage of context data → use a reusable and extensible middleware for the detection
- Most middleware approaches use an architecture with the following layers

Context Middleware

- Raw data retrieval
 - uses drivers for querying physical sensors and APIs for querying virtual sensors
- Preprocessing


Interpret and reason over context information by using:

- Context aggregation / fusion: combine context values, cope with sensing conflicts
- Context filtering: filter unnecessary data
- Context interpretation: combine context data with static information (e.g. turn absolute coordinates into symbolic like "S202/A124")
- Storage and Management
 - Manages gathered data and offers public interface to the client applications

Answers queries and notifies interested applications about events Stores the context history

Example: Context Toolkit

- Developed by Dey et al. 2001 [Dey 2001b]
- Consists of context widgets and an infrastructure hosting the widgets
- Offers several software components for context acquisition to facilitate the software development:
 - Context widgets: collect context information from sensors
 - Context services: perform action on behalf of an application (e.g. sending an email)
 - Context interpreters: convert context between different representations
 - Context aggregators: combine data from several widgets and interpreters
 - Discoverers: maintain registry of available widgets

Presence info

for Kari Laa.

Current : location

People close-by:

Current Profile: Meeting

Kumpula, HKI

Speaker off Vibrator on

1 friend(s)

ast phone use: 0:02 ago

for the last 0:30

6 other person(s

Close

Context-aware Applications

- **Presentation** of information and services to a user
 - Tourist Guides
 - ContextPhone: present information contacts (location, people nearby, phone use activity)
 - Google Mail displays advertisements according to email content
- Automatic execution of a service for a user
 - PARCTAB System: Bind room resources to user on entering
- Tagging of context to information to support later retrieval
 - Add context at data acquisition time to improve later retrieval
 - Digital camera with GPS
 - CybreMinder: Reminder notes can be associated with location
- Adaptation of application's behavior and appearance
 - Automatically forward call to the phone in the vicinity of the user
 - Delay user interruption until an appropriate point in time
 - Highlight options/commands that best fit current needs

Example Applications

- Google Mail displays advertisements according to the email content (<u>http://mail.google.com</u>)
- Use mobile phone to get traffic information for the current location without having to enter it explicitly
- One of the first context-aware applications was the Active Badge System [Harter 1994] to locate people in the office and forward calls to a nearby phone
- Most popular applications: location based services (e.g. GUIDE a travel guide system for Lancaster [Cheverest 2000])
- Memory-aids: provide user with reminders or information recorded from previous interaction that could be relevant in the current situation (e.g. Remembrance Agent [Rhodes 1997])

Context: Summary

- Context Definition
 - **context** is information that is **relevant** (for application) and **auxiliary**
- Context Feature Space
 - human factors, physical environment, ...
- Context Categories
 - Sensed and inferred context
- Context Models
 - key-value, markup, ontology-based, object-oriented, logic-based
- Dealing with Uncertainty
 - FuzzySpaces
- Context Middleware
 - Context Toolkit
- Example Applications