
Challenges for ODP-based infrastructure for managing dynamic B2B networks

Lea Kutvonen
Department of Computer Science, University of Helsinki

Lea.Kutvonen@cs.Helsinki.FI

Abstract

The availability of open networks and the rise of service-
oriented architectures have created an environment where
collaboration between enterprise ICT systems becomes
technically plausible. The current challenges for collab-
oration management focus on ensuring the semantics and
pragmatics of collaborations. It is especially interesting
to capture the inter-enterprise business processes in such
a way that autonomous computing systems can control and
manage collaborations of that form. Furthermore, manage-
ment of open collaborations requires shared concepts and
protocols for trust management.

The reference model of open distributed processing (RM-
ODP) standards deal with distributed information process-
ing systems that are exploited in a heterogeneous environ-
ment, under multiple organizational domains. The stan-
dards provide, besides general terminology and viewpoints
for division of system specifications, a model for an infras-
tructure that supports distribution transparent communica-
tion at application level.

Our contributions to the field involve a B2B middleware
architecture for managing application level collaborations
in a evolvable and dynamic way. The work is consistent with
RM-ODP, but extends the management and communication
facilities. This paper discusses the challenges rising from
this approach.

1 Introduction

The globalization of business and commerce makes en-
terprises increasingly dependent on their cooperation part-
ners; competition takes place between supply chains and
networks of enterprises. In this competition, the flexibility
of enterprise information systems becomes critical. The IT
systems and development teams should be able to respond
in a timely way to the requirements arising from the chang-
ing co-operation networks and their communications needs.

The availability of open networks and the rise of service-
oriented architectures have created an environment where

collaboration between enterprise ICT systems becomes
technically feasible. The current challenges on collabora-
tion management focus on ensuring the semantics and prag-
matics of collaborations.

It is especially interesting to capture the inter-enterprise
business processes in such a way that autonomous comput-
ing systems can control and manage collaborations of that
form. We need automated processes - automated within rea-
son and trust - for creating inter-enterprise relationships so
that the selected business processes can span this new, tem-
porary business network. In these processes, fundamental
tools are those that ensure interoperability in a technically
and semantically heterogeneous environment. On the other
hand, we need environments where new business process
models can be developed, published, and evolved. Business
applications, business needs, and business network topolo-
gies change rapidly, and that change has to be reflected by
new business process models. Even more frequently there
are pressures on changing the membership of an existing
business network - a company fails, another provides a bet-
ter quality service, yet another has more robust suppliers.

This paper describes how the foundations of RM-ODP
(the reference model of open distributed processing) [8, 9]
have been expanded and interpreted in the web-Pilarcos
project for the benefit of open business network manage-
ment. The goal of the project is to develop middleware
services that support inter-organizational co-operation. The
web-Pilarcos project aims at managing dynamic communi-
ties in a way where membership requires technical, seman-
tic and pragmatic interoperability. The architecture design
specifically addresses the needs of independent evolution of
computing platforms, application services, and operational
policies in each enterprise involved. The solution gives spe-
cial emphasis to runtime expression of pragmatic aspects.
The perspective taken is of the interoperability middleware
developer. The concepts and services of the interoperabil-
ity middleware become available for applications, both for
service providers and service users.

In addition, this paper discusses some of the challenges
rising from the need for new, global infrastructure services
for B2B collaboration management. Some of these chal-



lenges can be addressed by the ODP development com-
munity itself, some others need to be resolved through
industry-driven consortia.

Section 2 outlines the required functionality for es-
tablishing eCommunities, controlling their behaviour, and
changing their behaviour and structure during their lifetime,
drawing attention to the challenges for B2B middleware.
The required concepts and their relationship to RM-ODP
concepts are discussed in Section 3. Section 4 briefly de-
scribes a B2B middleware architecture and services that are
partially addressed by RM-ODP functions but have been en-
hanced and refined by our work. The paper is concluded by
challenges for future work.

2 Composing and controlling eCommunities

Our essential goal is to support dynamic collabora-
tion between service components (even, enterprise appli-
cations), across autonomic enterprises. The basic idea is
very close to the ones behind virtual enterprises (VEs) or
extended enterprises, and builds on loosely-coupled, au-
tonomous services.

Traditional extended enterprise models evolved from
the intra-organizational integration of enterprise applica-
tions. The B2B application integration solutions lead to
tight coupling of applications based on data-oriented inte-
gration, application-interface oriented integration, method-
oriented integration, portal-oriented integration or process-
integration oriented integration [22]. On the other hand,
ERP systems were burdened with heavy development cycle
overhead, as enterprise application changes, IT computing
platform changes, and business process changes were not
supported. The next wave of systems took up a more dy-
namic approach [31]. The second phase ERP systems allow
dynamic configurations of applications with peer-to-peer
relationships. Also, the business process control aspects
and integration of workflow management have strengthened
the area. Furthermore, distributed business process manage-
ment systems have started to emerge.

A move from static, monolithic extended enterprises to
dynamically managed, loosely connected VEs has taken
place. However, the connection between VE management
mechanisms and business process management is not yet
well developed.

The challenges met with the loosely-coupled, open col-
laboration networks are three-fold.

1. The participating enterprises should be autonomous,
and furthermore, the services becoming part of the col-
laboration network should be autonomically adminis-
tered.

2. The B2B middleware should provide automatic facil-
ities for ensuring interoperability within the managed
collaboration networks.

3. The B2B middleware environment should provide a set
of concepts for managing collaboration network mem-
bership, conditions, and dynamics. These concepts
should be supported by pervasive middleware services.

Autonomy is one of the key design aspects. It spans

� selection of computing platform, and schedule of tech-
nical changes in it,

� selection of service components put externally avail-
able,

� evolution life-cycle of each offered enterprise applica-
tion, including withdrawal of services already part of
some VEs,

� decisions on the kind of collaborations that are entered,
� decisions on the kind of partners are accepted, and
� decisions on leaving existing collaborations.

Within each collaboration, situations may rise where the op-
erational goals of the collaboration and an enterprise contra-
dict. In contradictory situations, enterprises should be auto-
nomic in deciding whether they act according to their inter-
nal interests (and expect the sanctions of contract breaches)
or comply with the VE rules.

The autonomy challenge is addressed by the use of ser-
vice oriented architectures. For example, Web Services
technologies provide a suitable frame for hiding technical
processing differences. The engineering and deployment
detail of service provision is left for the enterprises to man-
age, and between enterprises, only such service features are
made visible (as metainformation) that are relevant to inter-
operability and managing dynamic changes in communica-
tion.

Another essential autonomy requirement of enterprises
is that they should be able to determine the set of potential
partner enterprises, a set of trusted partners. Trust informa-
tion services should become one of the global infrastructure
services (compare: DNS name service is a global infras-
tructure service). Trust should be tagged to each resource,
client, and VE, and the levels of trust be dependent on the
socially and technically correct behaviour of the element,
as seen by others in the network. Trust management is an
integral part of a VE architecture.

Collaboration between service components or enterprise
applications require interoperability. Interoperability – i.e.
the effective capability for mutual communication of infor-
mation, proposals and commitments, requests and results
– requires technical, semantic and pragmatic interoperabil-
ity [5]. Technical interoperability means that messages can
be transported from one application to another, for example
using a common transport protocol, or other shared signal-
ing method. Semantic interoperation means that the mes-
sage content is understood in the same way by the senders



and the receivers. This may require transformations or other
manipulation of messages, based on shared ontologies. Fi-
nally, pragmatic interoperability captures the willingness of
partners for the actions necessary for the collaboration. The
willingness to participate has two sides: capability of per-
forming a requested action (for example, whether there is
an application method available or not), and policy dictat-
ing whether the available action should or should not be
performed (for example, a bank transfer handled after of-
fice hours).

The purpose of the B2B middleware is to provide a set
of collaboration related concepts for application compo-
nents to use, without the need of application software to
include complex routines for example for partner discov-
ery, interoperability guarantee, or change management. The
concepts include community, role within the community,
member of a community in a role, business process, pol-
icy, eCommunity contract, and contract breach, all of which
have their counterparts in RM-ODP standards, as described
in Section 3.

The most prevalent concept for our collaboration man-
agement architecture is the model of dynamic collabora-
tions themselves, eCommunities. An eCommunity is con-
trolled at operational time by an eCommunity contract. The
eCommunity contract essentially uses a set of business pro-
cess models as a model of the behaviour of members within
the eCommunity. The collaborating services from each en-
terprise are aware of the business process model used be-
tween them, but do not implement the control of it. Instead,
the control is left for B2B middleware services. These mid-
dleware services run metalevel protocols for controlling the
eCommunity structure and state, including reports of con-
tract breaches.

The life-cycle of an eCommunity has two modes:

� establishment phase supported by a breeding environ-
ment that ensures selection of appropriate partners and
the interoperability of involved services, and

� operational phase supported by reflective control envi-
ronment that manages dynamic changes in the eCom-
munity, and detects and resolves breaches of contracts.

The services of the breeding environment may be used
even after reaching the operational phase, as the reflective
control facilities may call upon restructuring of the eCom-
munity. The breeding environment should allow as open as
possible route for enterprises to join in, giving an effective
market for new partners. It provides facilities to a) populate
an eCommunity to be created, b) negotiate eCommunity es-
tablishment, and c) commit eCommunity establishment.

The eCommunity management services at operational
time are provided by the eCommunity contract object itself
thought the following operations: a) terminate eCommu-
nity, b) notify of entering compensation process, c) notify

of detected eCommunity contract breach, d) query eCom-
munity contract metainformation and eCommunity status in
terms of progress in the business process, membership, and
breach management process definitions, e) repopulate and
negotiate an existing eCommunity; and f) for members to
join/leave an eCommunity role.

Access to these operations is made available at each plat-
form at each administrative domain, regardless of whether
the service is actually realized locally or remotely sup-
ported. (Different deployment models even open up new
electronic service market opportunities.)

The middleware services providing for these services are
discussed further in Section 4.

3 Refinement of RM-ODP concepts

The ODP standards provide for system architectures
that allow distributed information processing applications to
collaborate in a heterogeneous environment and under mul-
tiple organizational domains [7]. The ODP standards direct
systems to be built so that they support cost-effective inter-
operability of applications, despite their implementation us-
ing different platform architectures and resources. For this,
it is essential to accommodate system evolution and run-
time changes, and define a transparency support framework
for communication.

The RM-ODP provides a division of an ODP system
specification into viewpoints, in order to simplify the de-
scription of complex systems [9]. The viewpoint languages
each refine a set of general concepts defined for the ref-
erence model [8] The enterprise viewpoint language has
been further developed [16], as it brings in business related
aspects. Furthermore, the reference model defines struc-
turing rules and functions for a supporting infrastructure
for global computing. The functions that have been fur-
ther standardized include the trading service [10], naming
framework [12], type repository function [15], and inter-
face binding framework [11] together with the supporting
protocols [14].

In the web-Pilarcos architecture, we have tackled the
challenges of autonomy, interoperability, and suitable con-
cepts and services for managing eCommunities with these
tools. Conceptually, the terms service and service offer
management, community, federation and contract deserve
further attention.

The concept of service is missing from the RM-ODP
model, although it is mentioned in various term explana-
tions (e.g. object [8, 8.1]). We define service as an abstract
processing step that either creates, modifies, or consumes
information, from the point of view of its environment. Ser-
vices are made available at interfaces (seen from the com-
putational or engineering viewpoints) and defined by the
structural, behavioural and semantic rules of the interaction



involved (seen from the enterprise, information and compu-
tational viewpoints).

Services are provided by administrative domains, for ex-
ample by enterprises, departments or any independent ICT
systems. The administrative domains are the units of auton-
omy within our model. How engineering and deployment
of services are organized within the administrative domain
is hidden from the service users and B2B management ser-
vices. Only management functions within the administra-
tive domain, like node or object management, are involved
with the technology and engineering of these.

In RM-ODP, models of behaviour (including interactions
between objects and internal actions) are restricted to sig-
nals, announcements and interrogations, described using in-
terface signatures. Signatures reveal operation names and
data types, as well as parameters involved. However, for
business processes, more complicated choreographies need
to be expressed, although built on top of these basic prim-
itives. In addition, these primitive actions need to be at-
tached with nonfunctional features too, like QoS or trust.

For these challenges, enhancing RM-ODP with more
elaborate conversation models is not the right solution. In-
stead, tools for introducing and reflecting such models are
needed. Such models are specific to application areas, and
may need to evolve in time, or may be negotiable between
collaboration partners. In contrast to this, association of
nonfunctional features to interfaces should become an in-
tegral part of the RM-ODP model, but again leaving the on-
tologies of features and usable values open for extention.

For the use in eCommunities, the services can be pub-
lished by exporting service offers to a trading service. The
service offer represents details of the behaviour of the ser-
vice (what kind of application protocol needs to be followed
using it), and other information further describing the nature
of the service depending on the application domain.

The structuring rules of the web-Pilarcos style of service
offers is captured in Figure 1. The structure is more de-
tailed than can be found in the ODP trading function stan-
dard, which requires interface type name, interface refer-
ence, and some attributes as name-value pairs. What is to
be noted here is that the service offer captures aspects from
all five viewpoints, either as descriptions of the service to
be provided or as a requirement to be fulfilled by the envi-
ronment in the subsequent contract. This structure differs
from OWL-S and UDDI based solutions (e.g. [30]) by not
addressing the groundings (access details) or the actual lo-
cation of services. These locating aspects are only captured
by the eCommunity contract formed according the offers;
the grounding aspects are considered private for each en-
terprise. Only the interoperability-related features are re-
quired.

By capturing all viewpoint aspects into the service offer,
we address the interoperability ensuring challenge. Making
metainformation available in such structured way, we use

the interface matching mechanisms of the trading service
to match all relevant aspects of interoperability at the same
time. This of course applies only for static analysis; for ex-
ample for policies subject to further changes, only dynamic
monitoring can catch mismatches.

This kind of matching process requires that the service
offers are expressed in commonly understood terms in the
areas of business processes and services within that con-
text, nonfunctional features associable to processes or ser-
vices, and policy frameworks meaningful for the services in
question. In this area, some ontology creation tools exist,
but there is no consensus on what principle the ontologies
should be organized on.

service offer := ((interface syntax)
(interface protocol)
(information el format)
(nonfunct aspects)*)*
(policies)
(platform requirements)
(channel requirements)

interface syntax := <IDL specification> |
<WSDL specification>

interface protocol := <partial ordering
rules of operations
in syntax>

nonfunctional aspects:= <QoS offer> |
<trust requirement> |
<security mechanism name>

information element format
:= <schema>

policies := <policy framework
name> <policy name>
<policy value offer>

platform requirement := <platform name>
channel requirements := <channel type name>

<binding type name>

Figure 1. Structure of service offers.

The concept of community is used for describing the col-
laboration of several services. The ODP enterprise language
specifies a community as a configuration of enterprise ob-
jects with a contract on their collective behaviour [16,
5.1.1]. The community specification includes [16, 5.2]

� a set of roles; the role specification gives requirements
and restrictions for the behaviour of an object;

� rules for assigning enterprise objects to roles; the pol-
icy rules can address individual objects or relation-
ships between objects, and can make restrictions on
behavioural and non-behavioural properties of the po-
tential objects;

� policies that apply to roles; policy values act as se-
lectors for alternative behaviours for the objects – and
thus also for the community;

� description of behaviour that changes the structure or
the members of the community during its lifetime.

Each role [9, 9.14] in the community specification de-
notes a possible behaviour. The behaviour descriptions are



refined with policy statements indicating which parts of the
behaviour are prohibited, permitted or obliged to take place
and under what conditions.

A role can be populated by an object that represents an-
other community. In this way, larger systems can be com-
posed of subservices. Functional composition is better sup-
ported by inclusion of multiple community specifications
into a system specification and definition of the relation-
ships between communities.

A community specification may be divided into several
epochs, each epoch [9, 10.5] presenting a different set of
services supported by the community. For instance, a ser-
vice might have a configuration phase and an operational
phase; during the configuration phase only a management
interface is available, but during the operational phase the
actual service interfaces are also available.

The ODP community structure is used as a baseline for
defining eCommunity contract structure in web-Pilarcos.
The eCommunity contract has the structure that is outlined
in Figure 2.

The eCommunity contract structure is determined by the
selected business network model. This model is suggested
by the initiator of the eCommunity establishment. The mod-
els need to be available through a shared repository, so all
potential partners can assess whether the goal, structure and
terms of the community are acceptable.

Besides roles to be populated by services, the template
shows requirements for the binding objects that are needed
for realizing interactions between roles. For bindings, we
expect an explicit, open binding object [13, 1]. The binding
object provides a framework and interface for the commu-
nication service. The binding object also provides a man-
agement interface through with the internal structures can
be configured using the local communication facilities or
additional helper components. The benefit of this model is
that the requirements on shared platform services become
minimal: We need common understanding of interface de-
scriptions and common understanding of a few alternative
communication channel structures.

In addition to the metainformation contents, the contract
object provides operations for changing members and com-
munity structure.

For the purposes of web-Pilarcos architecture, we have
connected the role behaviour to a service behaviour. Thus,
assignment rules are directly related to import requests from
the trading service for suitable service offers from potential
members of the eCommunity. This is in line with current
trend of service oriented architecture (SOA) where the def-
inition of abstract service, service discovery, and semantic
composition of services are topical [25, 24, 24].

Service oriented architecture, and more specifically, web
services provide evidence for the industrial movement to-
wards independently developed and administered services.

� reference to the business network model;
� current epoch information;
� process for changing epoch;
� for each role

– assignment rules that specify the requirements on
� service type;
� nonfunctional aspects;
� restrictions on identity, participation on

other eCommunities, etc;
– conformance rules that are used for determining

conformance to the role which the assigned com-
ponent is in the role; similar as above;

� for each interaction relationship between roles

– channel requirements
– locations of the channel endpoints
– QoS agreement
– security agreement
– information presentation formats

� for each policy that governs the choices between al-
ternative behaviour patterns in the business network
model

– acceptable values or value ranges;
� references to alternative breach recovery processes;
� objective of the eCommunity (rules that can be used for

various nondeterministic choices in the eCommunity;
for example, what kind of attributes are more attractive
when selecting a new member, available info for these
rules is in service offers and in the business network
model and in policy values of this eCommunity)

Figure 2. eCommunity contract information.

The service itself has become the key element: the be-
haviour pattern, nonfunctional features, and contracting for
providing a specified service in a context. The context is
defined by an environment, including local and network re-
sources, availability of required services, etc.

As the business network model captures services in
terms of only their interface and external exchanges of in-
formation, the model is free from private information flows
and workflows within the service providing organization or
unit. This is a great benefit, as many industrial approaches
on inter-enterprise workflow and business process modeling
have reported that the current modeling languages and tools
enforce too tight coupling between partners [4, 27]. The
phenomenon is a natural consequence of the development
history through integrated ERP systems, to A2A integra-



tion, and further to process-aware B2B integration. The VE
approaches however do not yet have sufficient support for
business process management.

The basic ODP concepts introduce communities and
contracts as a way of expressing how the partners can reach
a shared goal. However, no notation or further refinement
has been given for expressing the goal or behaviour. We
have chosen to use an ad-hoc enterprise viewpoint language
for defining these aspects. The language resembles XML-
based business process modeling languages and workflow
languages; in practice, the service descriptions use en-
hanced WSDL descriptions [26].

We have not adopted the UML notations nor taken
MDA [28, 3] as a driving force for the design. As discussed
above, the focus in this work is not in the generation of ser-
vice implementations themselves, but in composing eCom-
munities from existing services. We do not use the term
reuse here, as the facilities for establishing collaborations is
the primary goal. Naturally, the descriptions required by our
infrastructure and those of MDA tools overlap, and this is
to be considered as a great benefit. However, there is a dif-
ference between the bias towards ergonomic modeling tool
view of the business network and the bias towards manage-
ment software beneath.

It should be noted that with this work, we do not drive
the standardization of domain specific business processes in
itself, but standardization of facilities that help in evolution.
A methodology where new standard processes or new sug-
gestions can be published and adopted efficiently is a more
persistent approach.

The ODP interface references and bindings [11] standard
discusses management of explicit binding objects. Intro-
duction of such binding objects with a set of selective trans-
parency support and nonfunctional aspects management is
needed. Many commercially interesting consortia recom-
mendations on the area of inter-enterprise workflows, web
services choreographies, and business process management
systems expect a transaction-aware communication layer to
appear. Although the current ODP standards create a place-
holder for a unifying structure, it is not concrete enough
to guide the isolated development trends for cross-platform
protocols and services in this area.

The RM-ODP defines <X> federation as a commu-
nity of <X> domains where there is a shared objective [9,
5.1.2,5.1.1]. A <X> domain is defined as a set of objects
with a shared controlling object over the characteristic fea-
ture X [9, 10.3].

In the web-Pilarcos architecture, we form federations be-
tween eCommunity management agents in administrative
domains. An administrative domain can be seen for ex-
ample as an enterprise, a division, or another unit: essen-
tially the domain is the unit of autonomy within our model.
The objective of the federation of eCommunity manage-

ment agents is collectively to form, maintain and use ap-
plication level services from their domains in the roles of
the eCommunity. As helpers, each agent has local manage-
ment services, such as node or object management, moni-
tors that are able to report breaches from the assumed inter-
action pattern, and binding factories. The shared goal of the
management agent federation is to keep the agreed eCom-
munity running according to the contract.

4 Open B2B infrastructure services for
collaboration management

In the web-Pilarcos environment middleware services for
B2B collaboration management fall into two categories: co-
operative management services for multidomain applica-
tions and local element management services [20].

The breeding environment services include only cooper-
ative services:

� The standard trading service [23] for maintaining a
repository of service offers, for the use of the enhanced
trader.

� The enhanced version of ODP type repository [6]
for holding relationship information between generic
types (service types, binding types, interface types)
that are technology-independentand used for matching
purposes and technology-dependent templates that are
used for instantiating the corresponding components
and objects [17]. This mapping information is created
by system programmers separately from business ar-
chitecture descriptions and service offers.

� The repository for publishing and relating various
business process models.

� The enhanced trader for populating business architec-
tures with selected components [21]. The business
process models contains roles as placeholders for ser-
vices, but the selection of services for neighbouring
roles is not independent, due to, for example, the need
for shared binding requirements.

� The federation manager for negotiating, maintaining
and renegotiating the eCommunity contract that repre-
sents an application instance.

The cooperative management services – enhanced trad-
ing, trading, type management, eCommunity management,
federated binding – are all services that have a local server
running in each domain. These active agents take care of
making requests to their peers in other domains, as there
is otherwise no authority to invoke management actions
in a foreign domain [18]. The requests carry contracts to
pass relevant meta-information that identifies what should
be done and how.



The operational environment services include both local
and cooperative services. The most essential cooperative
service is that of the eCommunity contract object itself, with
its management operations. The interface to the replicated
contract object is maintained by all eCommunity managers.

In traditional protocol systems, interoperability could
be verified statically, although with practical limitations
and with expense. However, the process models described
above cannot be fully verified any more. Two aspects, the
deontic guards on actions and pragmatic monitoring of re-
sources cause a situation where only some of the joint be-
haviour can be verified. For example, we can determine
non-interoperability if available functionality is not suffi-
cient for safe communication, leaving guards and pragmatic
decisions aside. Or, non-interoperability can be stated if
guards on actions are so contradictory that there are no ac-
ceptable traces through the process left.

Therefore, we need to add dynamic verification into the
system, meaning introduction of

� monitors that enforce enterprise policies on resources
(pragma) and notifies about discrepancies caused,

� monitoring of external service interaction confor-
mance to the business process, and notification if in-
consistent actions occur, and

� controllers of channels and notifications when channel
properties have changed in a significant way.

The local service management adds lifecycle services
and local bindings to this list.

� Service deployer for instantiating components for each
role according to the contract that represents the appli-
cation instance. The service deployer uses type repos-
itory information to map the contract onto appropriate
technology solutions [21].

� Binding factory for instantiating communication chan-
nels between components. Because no remote instanti-
ation service is supported across organizational bound-
aries, the binding factories at each computing sys-
tem involved must cooperate. Again, the factories use
repositories for mapping contract information onto ap-
propriate engineering solutions [21, 19].

� Implementation repository for storing software pack-
aging and maintaining their automatic installation
scripts.

The overall view to the operational environment is
twofold: First of all, the service components interact suc-
cessfully with their peers in the eCommunity through bind-
ing objects. We call this the real system. Secondly, there is
a level with a set of protocols for monitoring, configuring
and reorganizing the real system constantly. We call this
the metalevel. The relationship between these two layers is
taken from reflective system design.

In reflective systems [2], the metainformation constantly
describes the current real system structure, topology, state,
qualities, etc. The essential part of the system infrastruc-
ture services are those facilities that are needed to keep the
real system and the metadata in causal connection with each
other. This means that changes in metainformation need to
cause changes in the real system, and vice versa. For ex-
ample, if an eCommunity member fails permanently, the
eCommunity contract object reports that the member has
abruptly left the eCommunity. Furthermore, the eCommu-
nity contract object is proactive and starts the search for a
replacing member in the eCommunity. After commitments
from other members are received, the new member is joined
to the eCommunity contract, and consequently, the service
component is started up and bound to its peers through bind-
ing objects. Changes of metainformation can also be such
that they only take effect later in the real system. For exam-
ple, change in an enterprise policy is not necessarily effec-
tive immediately.

5 Conclusion

The above discussion shows that the RM-ODP concepts
are suitable for modeling enhanced system software ser-
vices for automated management of dynamic eCommuni-
ties. However, the standard definitions give fairly vague di-
rection to the work.

In the design, we have noted the need for further ODP
functions, such as

� business process model repository;
� community aware coordination functions; and
� trust management functions (build on top of security

functions).

Interoperability support mechanisms require definition
of new ontologies for defining terms and semantics for ele-
ments in the business or service models, and interoperability
related attribute sets to be used together with service types.
Similarly, ontologies for policy sets relevant for business
processes and resources would be needed.

Furthermore, some existing concepts and framework
standards need refinement. For example, concepts related
to service and various alternatives for explicit binding ob-
ject architectures were discussed above.

6 Acknowledgments

This article is based on work performed in the Pilarcos
and web-Pilarcos projects at the Department of Computer
Science at the University of Helsinki. The Pilarcos project
was funded by the National Technology Agency TEKES in



Finland, Nokia, SysOpen and Tellabs. In web-Pilarcos, ac-
tive partners have been VTT, Elisa and SysOpen. The web-
Pilarcos project is a member in national ELO program (E-
Business Logistics) [29]. The work is strongly integrated
with RM-ODP standards work, and recently has found an
interesting context in the FP6 INTEROP NoE collaboration.

References

[1] G. S. Blair, G. Coulson, N. Davies, P. Robin, and T. Fritz-
patric. Adaptive Middleware for Mobile Multimedia Appli-
cations. In Proceedings of the 8th International Workshop
on Network and Operating System Support for Digital Au-
dio and Video (NOSSDAV), 1997.

[2] G. Coulson. What is reflective middle-
ware? IEEE Distributed Systems Online,
2003. Area on Reflective Middleware –
http://dsonline.computer.org/middleware/RMaraticle1.htm.

[3] D. S. Frankel. Model Driven Architecture - Applying MDA
to Enterprise Computing. OMG Press, 2003.

[4] D. Hollingsworth. The Workflow Reference Model: 10 Years
On. Fujitsu Services, UK; Technical Committee Chair of
WfMC, 2004.

[5] INTEROP NoE, EU FP6. Interoperability research
for networked enterprises applications and software.
http://interop.aquitaine-valley.fr/.

[6] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. ODP Type Repository Function. IS14746.

[7] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 1: Overview, 1996. IS10746-1.

[8] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 2: Foundations, 1996. IS10746-2.

[9] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 3: Architecture, 1996. IS10746-3.

[10] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. ODP Trading function. Part 1: Specification, 1997.
IS13235-1.

[11] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – ODP Interface References and Binding, Jan.
1998. IS14753.

[12] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – ODP Naming framework, 1998. IS14771.

[13] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Interface references and binding, 1998. IS14753.

[14] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – Protocol Support for Computational Interac-
tions, 1999.

[15] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. ODP Type repository function, 1999. IS14746.

[16] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. ODP Enterprise Language, 2003. IS13235.

[17] P. Kähkipuro, L. Marttinen, and L. Kutvonen. Reaching In-
teroperability through ODP type framework. In TINA’96
Conference: The Convergence of Telecommunications and
Distributed Computing Technologies, pages 283 – 284. VDE
Verlag, Aug. 1996. Extended abstract.

[18] L. Kutvonen. Management of Application Federations. In
H. Konig, K. Geihs, and T. Preuss, editors, International
IFIP Working Conference on Distributed Applications and
Interoperable Systems (DAIS’97), pages 33 – 46, Cottbus,
Germany, Sept. 1997. Chapmann & Hall.

[19] L. Kutvonen. Trading services in open distributed environ-
ments. PhD thesis, Department of Computer Science, Uni-
versity of Helsinki, 1998.

[20] L. Kutvonen. Automated management of interorganisational
applciations. In EDOC2002, 2002.

[21] L. Kutvonen, J. Haataja, E. Silfver, and M. Vähäaho. Pilar-
cos architecture. Technical report, Department of Computer
Science, University of Helsinki, Mar. 2001. C-2001-10.

[22] D. S. Linthicum. B2B Application Integration - eBusiness-
Enable Your Enterprise. 2001.

[23] Object Management Group. OMG Trading Object Service
Specification, June 2000. OMG formal/2000-06-27.

[24] M. P. Papazoglou and D. Georgakopoulos. Service oriented
computing. Commun. ACM, Oct. 2003.

[25] M. P. Papazouglou and W.-J. van den Heuvel. Service-
oriented computing: State-of-the-art and open research is-
sues.

[26] T. Ruokolainen. Component interoperability. Master’s the-
sis, University of Helsinki, Department of Computer Sci-
ence, 2004. In Finnish.

[27] K. Schulz, K.-D. Platte, T. Leidig, R. Guggaver, K. Elams,
A. Zwegers, F. Lillehagen, G. Doumeingts, A. Berre,
M. Anastasiou, M. Nunez, R. Goncalves, D. Chen, and
M. Missikoff. A gap analyisis – interoperabilty develop-
ment for enterprise application and software - road maps.
Technical report, 2003.

[28] J. Siegel. Developing in OMG’s Model-Driven Architecture.
Object Management Group, Nov. 2001. White paper, revi-
sion 2.6.

[29] TEKES. ELO program, 2003.
http://www.tekes.fi/programs/elo.

[30] The Intelligent Software Agents Group The Robotics In-
stitute Carnegie Mellon University. Semanatic matchmak-
ing for web services discovery. Technical report, 2003.
http://www.damlsmm.ri.cmu.edu/.

[31] M. Ulieru and R. Unland. Emergent holonic enterprises:
How to efficiently find and decide on good partners. Inter-
national Journal of Information Technology and Decision
Making, 2(4), Dec. 2003.


