
Relaxed Service-Type matching and

Transformation management

Lea Kutvonen

Department of Computer Science, University of Helsinki, Finland
Lea.Kutvonen@cs.Helsinki.FI

1 Introduction

Current technological developments with service oriented architectures (SOA) [1],
model-driven techniques – with model repositories (e.g., ebXML [2]) and heteroge-
neous implementation frames (e.g., MDA [3]) – and middleware level interoperabil-
ity support facilitate inter-enterprise collaboration. Thus the development of loosely-
coupled cross-organisational business networks is becoming more mature.

The web-Pilarcos and Pilarcos projects [4, 5] have worked towards an experimental
interoperability middleware. The web-Pilarcos B2B middleware provides services for
managing the life-cycle of dynamic business networks in an inter-enterprise environ-
ment. The middleware supports concepts of eCommunity, eCommunity contract, busi-
ness policies, and operational time conformance to the contracted business network
model. The middleware services aim for a rigorous level of transparent interoperabil-
ity support as part of the eCommunity life cycle services. Aspects of interoperability
include awareness of collaboration processes, and collaboration level adaptation to
breaches in operation.

In this environment, there are three interoperability challenges of interest. First,
the services provided for the business network should match the purpose and role
division of the network. Here the semantics of the services is of importance, espe-
cially the information flow between role holders in the network. Second, the service
interfaces provided by the actual implementations should work together, although
they do not need to be identical. There are lots of software engineering methods for
designing, implementing and generating interceptors / transformers to plug service
users and service providers together (e.g., connectors [6]). However, most of it con-
siders integration or configuration of modules into a larger composition of objects or
components. In the inter-enterprise environment we are more concerned of finding
services that are interoperable in terms of the provided and used service interfaces,
and furthermore, allow some relaxation in the matching process. Finally, below the
application level semantics of the interactions, there is a layer of communication ser-
vices: transfer of messages, encoding of information, and layers of support protocols
for achieving transactions, secure and private communication, QoS management, etc.

This paper discusses solutions to the second challenge. During the business net-
work establishment phase, the web-Pilarcos middleware tries to ensure that interact-
ing services have interoperable interfaces. This is done using the help of federated
type repositories, where service type descriptions are stored and together with some
verified relationships between known service types. As an important property, each
relationship carries a reference to the interceptor that needs to be placed between
those interfaces to gain interoperability.



2 Relaxed service-type matching

Although much of service discovery research, like UDDI and semantic web extensions,
is directed towards user-oriented browsing and discovery of human-usable services, we
aim to software-composition oriented type matching for interoperability purposes. In
this case, the directive ontology is derived from the three challenges noted in above.
First, the business network requirements for a service are to be derived from the role
requirements. Second, the implementor needs to express the interface description of
the service provided for matching and discovery purposes. This is further detailed
below. Finally, the service description itself does not involve the abstract communi-
cation layer concerns, but those are addressed separately by a compulsory part in the
service offers collected to a service offer repository. The service matching process has
to check both parts, but separately: as a result, interceptors can be added for both
levels independently [7].

The service descriptions are based on predefined service types. All parties of the
common network are allowed to define new service types, so that creates an evolving
type system. A service type defines functional and non-functional properties for a class
of business services. Functional part of a service type comprises of interface signature
(service interface syntax), interface protocol and additionally semantic annotations
for exchanged documents (messages). Interface protocol describes the externally vis-
ible behaviour of a service in a bilateral conversation. Non-functional properties of a
service type describe for example QoS-requirements and policies. When a new ser-
vice is published to a public service offer repository its behavioural properties and
especially its conformance to the claimed service type must be verified. Behavioural
descriptions of service types are also needed for static verification of service interoper-
ability and runtime monitoring of conformance between the community contract and
actual service behaviours.

Often, only equality or subtyping relationships are considered when service types
are matched. Or, as with semantic web, there is an ontology into which services are
grouped and matching descriptions can be found based on hierarchical positioning.

Here, we form the relevant service type ontology little by little into the type
repository system. The ontology is fairly flat, but wide: as the users of the repository
are middleware agents, they cannot adapt to generalizations or specializations of a
service type very far, but are more agile in plugging new technology dependent pieces
into an already existing framework. The main purpose of the type repository is to allow
checking that service types match together, and to give references to small modules
needed in the framework to patch minor technical differences. Therefore, there is an
technology independent level of services that is concerned with information exchange
relationships, and a more technology oriented level that is concerned on information
representation and application level protocols. This is adequate, taken that a further
technology dependent layer is separately organised to support these selections.

The relationships of interest for the type repository users are: no match, similar
types (equality of text or reference, subtyping), and interoperable with interception.
The comparison and judgment is not fully automated and cannot be made (due
performance issues) at the time of query. Instead, the service type publication process
involves verification of the type, comparison to other named types, and verification
of the type relationships. The process of interceptor creation is external to the type
repository.



3 Type repository services

The initial Pilarcos type repository was developed during the work on the ODP type
repository function standard [8], and OMG MOF specification [9]. Although there
are certain differences, most interfaces are similar. Thus the type repository offers
operations [7] for

– publishing realizations of abstract types,
– checking whether two type realizations are conformant and interchangeable,
– retrieving subtypes or supertypes of a type realization,
– retrieving templates for a given abstract type,
– translating one type realization to another,
– retrieving names for abstract types and type realizations in other type domains.

The type repository information base is organized by abstract services types; for
each of them there is a set of concrete service descriptions. In contrast to the original
type repository, where templates were stored into the common repository as well,
we have diverged in web-Pilarcos, and take all technology and enterprise specific
templates to be stored locally.

Another development step is in the service interface descriptions, where we have
moved from the OMG IDL descriptions to Web Services oriented WSDL descriptions,
enhanced with annotations for nonfunctional aspects.

The service type descriptions stored have to reflect two important design issues:
federation of type repositories for the global network, and access performance. For
these, we allow relationships to be defined across individual type repositories. In
addition, a cache system and appropriate data partitioning are required to improve
performance.

Technically, the type repository items [7] consist of

– type repository interface reference,
– type name to be interpreted via that interface,
– classification for the abstract service type (service type, interface type, behaviour

type, etc. to help the type repository server to choose a structure for interpreta-
tion),

– names of component types (such as signature and behaviour type names),
– immutability policy (such as ‘immutable’, ‘mutable using protocol’, ‘temporary’),
– notification protocol for modified definitions,
– relationships to other types either within the same type domain or in other do-

mains (such as ‘equal’, ‘subtype’, ‘interceptable’),
– interceptor interface reference, and
– cache for type descriptors from other type repositories, time-to-live for cache, and

re-evaluation instructions.

Currently, we are enhancing the type system to take into account protocol-based
behaviour [10, 11].

Effectively, the type repositories form a distributed naming system for service types
that are described in more or less heterogeneous style [12]. The pragmatical needs for
finding relationships between definitions drive type publishers to create interceptors,
and to verify relationships so that they are accepted and stored to the type repository.



4 Conclusion

The federated type repository service is an essential element of a B2B middleware that
supports establishment of new business networks, or in a more simple case, connection
between independently administered clients and servers.

The role of the type repository is to provide a trustworthy source of service type
information, and furthermore, provide transformation services for communication be-
tween almost similar interfaces.

The service types can thus be matched with each other in a more relaxed way,
only limited with interoperability requirement. As an enhancement, the cost of con-
nection can be added to direct users to choose ”native” types instead of transformed
connections.

The service type matching approach supports evolution of services in a heteroge-
neous environment, where independent actors create new items, and where market
forces has effect on the usability of items, in addition to the verifiable correctness
properties. Furthermore, the approach gives a natural tool for managing one type
of transformation components needed in the current component-based, model-driven
networking environment.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Communications
of the ACM 46:10 (2003). pp. 24–28.

2. ebXML Technical Architecture Project Team: ebXML Technical Architecture Specifi-
cation v1.0.4. Technical report, ebXML (2001) http://www.ebxml.org/specs/ebTA.pdf.

3. Siegel, J.: Developing in OMG’s Model-Driven Architecture. Object Management Group.
(2001) White paper, revision 2.6.

4. Kutvonen, L., Ruokolainen, T., Metso, J., Haataja, J.: Interoperability middleware for
federated enterprise applications in web-Pilarcos. In: First International Conference on
Interoperability of Enterprise Software and Applications (INTEROP-ESA’05).

5. Kutvonen, L.: Automated management of interorganisational applications. In: Enter-
prise Distributed Object Computing (EDOC2002).

6. Balek, D.: Connectors in Software Architectures. PhD Thesis, Charles University, Czech
Republic (2002).

7. Kutvonen, L.: Trading services in open distributed environments. PhD thesis, Depart-
ment of Computer Science, University of Helsinki (1998)

8. ISO/IEC JTC1: Information Technology – Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. ODP Type repository function. (1999) IS14746.

9. Object Management Group: Meta-Object Facility (MOF).
10. Ruokolainen, T.: Component interoperability. Master’s thesis, University of Helsinki,

Department of Computer Science (2004) In Finnish.
11. Ruokolainen, T.: Type management for service oriented computing. In: First European

Young Researchers Workshop on Service Oriented Computing. (2005)
12. Kutvonen, L.: Challenges for ODP-based infrastructure for managing dynamic B2B net-

works. In Vallecillo, A., Linington, P., Wood, B., eds.: Workshop on ODP for Enterprise
Computing (WODPEC 2004). pp. 57–64.


