
What applying of the ODP viewpoints teaches us about tool-chains

Lea Kutvonen

Department of Computer Science, University of Helsinki, Finland

Email: Lea.Kutvonen@cs.Helsinki.FI

Abstract

For some time, we have focused our research on the

generic B2B middleware services for managing inter-

enterprise communities of autonomous business ser-

vices. In contrast to some earlier papers where the rela-

tionships between the Pilarcos concepts and their coun-

terparts from the ODP-RM are shown, this paper ap-

proaches the management system for inter-enterprise

communities itself as the ODP system of interest. The

lessons learned underline a number of research chal-

lenges we are currently working with, especially for

the B2B middleware repositories, their federations, and

service development tools relying on the federated repos-

itories.

1 Introduction

In terms of developing enterprise systems or business
services for open markets, we are currently witnessing
a relative revolution from monolithic stovepipe systems
to systems with open, evolvable architecture and adap-
tation to differences in business processes and business
rules between enterprises. The list of present buzz-
words, such as SOA or SOC (service-oriented architec-
ture and computing) [17, 23], MDA or MDD (model-
driven architecture or development) [4, 22], and VE
(virtual enterprises)(e.g. [1, 5, 13, 19, 24]), take us
closer to the aimed global computing architecture.

In this revolution, the essential axes are as follows.
First, instead of integrating monolithic enterprise com-
puting systems, the aim must be set at interoperability
of large-granule business services provided by compa-
nies on open, interoperable computing platforms. Sec-
ond, instead of generating service implementations that
are able to manage interoperability or inherently pre-
serve model-level interoperability, the open computing
platform should provide generic middleware services to
call. Third, instead of ensuring that the service devel-
opment processes are integrated and interoperable, the

products should use high-level interoperability middle-
ware services and not get involved in interoperability
or community management at all. Finally, new facil-
ities should be introduced to capture those business-
oriented aspects that refine business processes in a
manner meaningful to business-strategists, e.g. needs
for security, trust, exceptions on contracts, and man-
aging business value.

The Pilarcos middleware services [11, 12] drive to-
wards these targets, as described below. To collect the
relevant buzzwords, the approach is model-driven, re-
flective, and provides inter-enterprise service-oriented
computing. The architecture is strongly based on au-
tonomous agents representing each independent enter-
prise (regardless of whether that is a company or gov-
ernmental organisation or a legally less independent
department) and managing dynamic communities at
operational time through eContracts. The intended
tool-chains produce artefacts such as a) models for
community structure and behaviour rules a basis for
eContracting, b) service types for matching purposes,
c) service descriptions and service realisations, and d)
management information and policies.

This paper approaches the Pilarcos architecture in
terms of new tool-chain requirements. The exercise is
performed by outlining the main issues of the Pilar-
cos B2B middleware from the ODP viewpoints. This
leads us to the requirements for the tool-chain for var-
ious products required for the gradual evolution of
eContract-based communities. The lessons learned un-
derline a number of research challenges we are currently
working with, especially for the B2B middleware repos-
itories, their federations, and service development tools
relying on the federated repositories. We conclude by
reflecting the usability of the ODP viewpoints as a de-
sign framework.

2 The Pilarcos middleware from four

ODP viewpoints

Although we here assume familiarity with the ODP-
RM (Open distributed processing reference model) and
its five viewpoints [6–8, 14, 18], a few positioning sen-
tences are needed.

Although the viewpoints are often considered as lay-
ers and providing a stepwise development process, our
approach is, however, to keep the viewpoints strictly
as projections of the same system – except that the
viewpoints express the required and sufficient building
instructions for the system. In the case that the avail-
able instructions contradict each other, the consistency
control mechanism within the tools or the self-aware
system must rise to the issues. This is illustrated in
Figure 1, captured from teaching material.

Figure 1. The ODP viewpoints.

Effectively, the tool-chain suitable for building inter-
enterprise communities is a self-aware system into
which a set of separate design tools can introduce a)
new building blocks, b) new compositions from those
blocks, and c) new consistency requirements within the
compositions.

Another point in Figure 1 deserves attention: For
inter-enterprise computing we do not use the technol-
ogy viewpoint in most discussions at all. Due to the
goal of technology-independent solutions, the technol-
ogy decisions become private, except of those that di-
rectly affect the transfer of messages between systems.
Even there, we expect an open binding pattern [3] into
which interceptors (i.e., transformers) are chosen de-
pending on the communication environment and the
context (with challenges on performance, flexibility, re-
liability, and security).

3 Enterprise specification

The enterprise viewpoint specification of the Pilar-
cos B2B middleware sets the objective as providing
a support environment for business service develop-
ers and composers so that they are provided neces-
sary functions for requesting community management
services and interoperability ensuring facilities. This
is done in two separate epochs, namely the breeding
environment [12] and the operational time environ-
ment [11]. As the goals and functionalities of these
epochs have been described earlier, we concentrate here
on the roles involved, and policies.

The breeding environment roles are as follows: Com-

munities are built by network management agents from
business services. Network management agents each
represent their local enterprise in negotiations and
management activities of the community. Business

services are independent configurations of enterprise
applications providing a meaningful whole. Service

providers make business services available on an open
service market by advertising their services in terms
that are made commonly understandable by publishing
service types for common shared structure and vocabu-
lary. Service type designers design these service types,
and make them publicly available. Business network

modellers are business experts and understand motiva-
tions in choosing certain business processes; supported
with modelling languages and technical experts they
provide models that can be automatically manipulated.

These roles describe the need of a tool-chain for
building up metainformation for the community es-
tablishment. In short (and showing details from other
viewpoints), the tool-chain is illustrated in Figure 2.

The above gets more interesting as we add policies,
especially obligations, to the enterprise specification.
To give a first example, service providers are required
to provide service offers that are accountable, legally
binding offers, and only offer service properties that can
be met. As it is clear that there is no engineering mech-
anism that would provide such a property, we must as-
sume that there is social enforcement support, for ex-
ample trust management in place. Depending on how
prompt and federated this kind of new management
is required to be, we end up in computational models
ranging from preventive [15] to post-sanctioning sys-
tems [16].

Another policy example is that the modellers and
designers are required to publish only valid models that
are based on best practices and follow the regulations
on the business area, and to maintain those published
models available as long they are used. On the other
side, the users of these models may choose whether to

Type
Repositories

Service−
offer
rep.

Software
Engineering
Tools

Enterprise
Modelling
Tools

Runtime
Platform

Meta−information
exchange:

Uses−relationship:

BNM
Repositories

ModellingImplementation

web−Pilarcos middleware interfaces

uses

uses

Configuration
Facilities

Community

Design Deployment Runtime

Service
Modelling
Tools

Figure 2. The tool-chain for creating necessary metainformation and business services [20].

use new or old models. Because of the need for auton-
omy at each site, it is not possible to externally enforce
appropriate behaviour from the publishers, and there-
fore, we end up choosing a solution where repositories
hold the advertisements, and also police the quality
of published material. It is a matter of the designers’
taste whether these repositories also become roles in
the specification; we prefer not to do so because the in-
clusion would require addition of clearly computational
design choices as well.

In the objectives clause above, we have already in-
cluded an overall architecture requirement that in tra-
ditional software development processes would be part
of the early phases: we have considered it as an essen-
tial engineering specification principle that the model
information provided by designers and modellers is
made usable both in the breeding and operational en-
vironment epochs.

This decision differentiates between the present
wave of MDA tool development and the future tool
development based on the eContracting middleware.
The MDA tool track is involved in ensuring model-
interoperability [2], while the middleware track leaves
the software production tools as private issue, and is
involved only with the contents of the eContracts and
availability of interceptor transformations for commu-
nication. Still, the transformations may need to cap-
ture modifications from messaging techniques through
semantics representation to business level process dif-
ferences or resolving policy-mismatches. The architec-
ture is further discussed after analysis of the informa-
tion specification.

4 Information specification

The information viewpoint specification defines the
relevant information repositories (i.e., logical bodies of
knowledge) and items of information to be exchanged
between roles. It is relevant to focus on the informa-
tion semantics, not on the representation engineering.
In the Pilarcos publications, we have described service
offer repositories [9], service type repositories [21], and
business network model repositories [21], as well as the
structure for eContracts [10]. The same publications
cover the computational specification, introducing the
operations on these metainformation repositories.

The information viewpoint structuring rule requires
information and information repository behaviour to
be defined through static, invariant and dynamic

schemata. The static schemata define the structure
and the semantics of each item and repository.

The invariant schemata define the ontology rules
and type discipline for the repository. The invariants
may state for example, that service offers can only ex-
ists if there is a published service type, and the service
offer conforms to all criteria defined for that service
type. The invariant indeed locksteps the service types
and offers to an understandable whole, without pre-
venting new types and corresponding offer sets from
emerging. The invariant schemata can also be used for
defining validation and verification rules for models to
be entered in the repositories. We currently have work
in progress for defining these rules and applying them
to the type repository implementation [21].

The dynamic schemata define the acceptable modi-

fications to the information state. Such state changes
include, for example,

• change of business policy values,

• change of monitoring rules over the community be-
haviour against the eContract, and

• creating a substitutability relationship between
two service types by introducing a transformation
between them and storing it into the service type
repository.

The first two examples of dynamic schemata items
raise a design issue for the present set of business pro-
cess description languages. We have based our business
network models on the ODP enterprise language spec-
ification, as it provides the essential concepts required
for collaborative behaviour description. In early con-
tributions to the development of the ODP enterprise
language, we pushed for the inclusion of assignment
rules for services into roles, and furthermore, role cri-
teria for checking conformance during the community
lifetime. This opens space not only for the functional
monitoring of service behaviour, but also for the non-
functional aspects.

At present there are a number of emerging languages
and MDD-related projects where the non-functional as-
pects are becoming part of the business process defini-
tion language. However, it is by far not clear that the
monitoring aspects should be statically built in into the
process definition.

Another idea is to provide a tool for each enterprise
administrator to modify the monitoring rules, meth-
ods and reactions at operational time, depending on
the perceived cost versus importance of the monitoring.
Naturally, these administrative actions may have their
effect on the eContract between autonomous partners
in the community, thus requiring a negotiation protocol
to be used between parties.

This is one of the areas where the MDD track and
the B2B middleware track lead to differing sets of tools
and different level of functionality for community man-
agement.

The last example above falls into a category where
the middleware track ends up in far less demanding
software generation challenges. Looking into the man-
agement of non-functional aspects of interoperability
by MDD tools, a need emerges to either produce a
very generic framework able to optimise the final con-
figuration, or to produce a sophisticated tool envi-
ronment that effectively restricts the functionality to
reasonably-performing solutions. In the middleware
track, the middleware itself provides a framework with
the generic optimisation facilities implemented once in

an interoperable manner, and moreover, also the weav-
ing of various aspects into the behavioural structure in
a consistent way.

5 Computational and engineering

specifications

The computational viewpoint specification covers
the operations for metainformation repositories, but
also for agents such as the populator [10], eContract
negotiation and monitoring [11], and trust manage-
ment [10, 25].

The engineering viewpoint specification is spelt out
mostly together with the computational view, but still
needs to be complemented with the distribution deci-
sions for the metainformation repositories.

It is not feasible to assume all the essential reposi-
tories to be centralised, nor that each enterprise would
have a private repository. The social infrastructure
needs and business strategies define whether an enter-
prise assumes a private repository or trusts an exter-
nal one. It is to be expected that service offer repos-
itories are fairly common and overlapping in terms of
offers; this allows different service type ontologies to be
utilised when marketing services. Service type reposi-
tories are expected to have less need for marketing their
contents, but still have a fair load to share between each
other. Especially for service type repositories the avail-
ability of published information is essential. For the
business network model repositories, we would expect
organisations such as standards bodies, governmental
agencies and market drivers on various business areas
to provide model information.

A fundamental engineering challenge is securing the
middleware repositories from unauthorised modifica-
tions or fraudulent publications. Furthermore, there
may be needs to compare the reputation of reposito-
ries in markets for their quality. But most importantly,
it is essential that the identification of the repositories
and the publishers is made tractable.

6 Conclusion

This paper has given an example of the usability of
the ODP viewpoints as a design framework for a very
large scale distributed system. We have found that re-
turning to the basics of viewpoint specification does
indeed clarify the design, and helps in searching func-
tionality missing from the architecture. When we have
used the ODP viewpoints in smaller student projects,
we have found that the prerequisite of being able to
efficiently use the ODP framework is to have sufficient

knowledge of concrete distributed systems prior to the
introduction of the ODP terminology. The thinking
patterns provided by the ODP-RM are good for com-
paring solutions, and ensuring a consistent design, but
too abstract for the basis of a learning experience.

As we have demonstrated here, even a rather infor-
mal analysis of the viewpoint specifications on a system
that is not originally designed using the viewpoints sys-
tematically (or consciously) brings up new challenges
for further research and provides a number of guide-
lines for already running studies.

This exercise indicated the following needs and pos-
sibilities. First, new lessons were learnt about the rela-
tionship of the ODP-RM, MDD, and SOA. Second, we
were able to improve the formalisation of the metain-
formation repository semantics. Third, we were able to
solve a nagging discrepancy in the approaches of the
business process definition languages and eContract-
ing in the area of non-functional aspects. Finally, we
identified a number of trust and security related re-
quirements for the middleware repositories for further
work.

Acknowledgement

This article is a product of the work performed at
the Department of Computer Science at the Univer-
sity of Helsinki, running the Collaborative and Inter-
operable Computing group towards the next project,
SOAMeS.

References

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor.
Contstraing driven web service composition in meteor-
s. In Proceedings of the IEEE SCC, 2004.

[2] C. Atkinson and T. Kuhne. Model-driven develop-
ment: a metamodeling foundation. IEEE Software,
(5):36 – 41, Sept. 2003.

[3] G. S. Blair, G. Coulson, N. Davies, P. Robin, and
T. Fritzpatric. Adaptive Middleware for Mobile Mul-
timedia Applications. In Proceedings of the 8th In-
ternational Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV),
1997.

[4] D. S. Frankel. Model Driven Architecture - Applying
MDA to Enterprise Computing. OMG Press, 2003.

[5] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig.
CrossFlow: Cross-Organizational Workflow Manage-
ment in Dynamic Virtual Enterprises. International
Journal of Computer Systmes Sciences and Engineer-
ing, 15(5):277 – 290, 2000.

[6] ISO/IEC JTC1. Information Technology – Open Sys-
tems Interconnection, Data Management and Open

Distributed Processing. IS10746 Reference Model of
Open Distributed Processing, 1996.

[7] ISO/IEC JTC1. Information Technology – Open Sys-
tems Interconnection, Data Management and Open
Distributed Processing. IS15414 ODP Enterprise Lan-
guage, 2003.

[8] L. Kutvonen. Architectures for Distributed Systems:
Open Distributed Processing Reference Model. In
HeCSE Workshop on Emerging Technologies in Dis-
tributed Systems, Lammi, Finland, Jan. 1998. Helsinki
University of Technology, Digital Systems Laboratory,
Series A, Number 50.

[9] L. Kutvonen. Automated management of inter-
organisational applications. In 6th International
Enterprise Distributed Object Computing Conference
(EDOC 2002), 2002.

[10] L. Kutvonen, J. Metso, and S. Ruohomaa. From
trading to ecommunity population: Responding to
social and contractual challenges. In The Tenth
IEEE International Enterprise Computing Conference
(EDOC2006), 2006.

[11] L. Kutvonen, J. Metso, and T. Ruokolainen. Inter-
enterprise collaboration management in dynamic
business networks. In On the Move to Mean-
ingful Internet Systems 2005: CoopIS, DOA, and
ODBASE: OTM Confederated International Confer-
ences, CoopIS, DOA, and ODBASE, volume 3760
of Lecture Notes in Computer Science, Agia Napa,
Cyprus, Nov. 2005.

[12] L. Kutvonen, T. Ruokolainen, and J. Metso. Inter-
operability middleware for federated business services
in web-pilarcos. International Journal of Enterprise
Information Systems (IJEIS), 2006.

[13] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler.
The wise approach to electronic commerce. Interna-
tional Journal of Computer Systems Science and En-
gineering, 2000.

[14] P. Linington. RM-ODP: The architecture. In K. Ray-
mond and L. Armstrong, editors, The 3rd Interna-
tional Conference on Open Distributed Processing -
Experiences with distributed environments, pages 15–
33, Brisbane, Australia, 1995. Chapmann & Hall.

[15] J. Metso and L. Kutvonen. Managing Virtual Orga-
nizations with Contracts. In Workshop on Contract
Architectures and Languages (CoALa2005), Enschede,
The Netherlands, Sept. 2005.

[16] Z. Milosevic, P. F. Linington, S. Gibson, S. Kulka-
rni, and J. B. Cole. Inter-Organisational Collabora-
tions Supported by E-Contracts. In W. Lamersdorf,
V. Tschammer, and S. Amarger, editors, Building The
E-Service Society: E-Commerce, E-Business, and E-
Government -IFIP 18th World Computer Congress
TC6/TC8/TC11 4th International Conference on E-
Commerce, E-Business, E-Government (I3E 2004),
IFIP Conference Proceedings, pages 413–429. Kluwer,
2004.

[17] M. P. Papazoglou and D. Georgakopoulos. Introduc-
tion. Communications of the ACM, 46(10):24 – 28,
2003.

[18] J. R. Putman. Architecting with RM-ODP. Prentice
Hall, 2001.

[19] R. Rabelo, L. M. Camarinha-Matos, and R. V.
Vallejos. Agent-based brokerage for virtual enter-
prise creation in the moulds industry. In E-business
and Virtual Enterprises, 2000. http://gsigma-
grucon.ufsc.br/massyve.

[20] T. Ruokolainen and L. Kutvonen. Service typing
in Collaborative Systems. In Interoperability for
Enterprise Software and Applications Conference (I-
ESA2006). Springer Verlag, 2006.

[21] T. Ruokolainen and L. Kutvonen. Service Typing in
Collaborative Systems. In Interoperability of Enter-
prise Software and Applications (I-ESA 2006), 2006.

[22] J. Siegel. Developing in OMG’s Model-Driven Archi-
tecture. Object Management Group, Nov. 2001. White
paper, revision 2.6.

[23] M. P. Singh and M. N. Huhns. Service-Oriented Com-
puting: Semantic, Processes, Agents. John Wiley &
Sons, Ltd., 2005.

[24] W.-J. van den Heuvel and H. Weigand. Coordinating
web-service enabled business transactions with con-
tracts. In Proceedings of the 15th Conference on Ad-
vanced Information Systems Engineering. LNCS 2681,
pages 568–583. Springer Verlag, 2003.

[25] L. Viljanen, S. Ruohomaa, and L. Kutvonen. Guard-
ing enterprise collaborations with trust decisions—
the TuBE approach. In Proceedings of the First In-
ternational Workshop on Interoperability Solutions to
Trust, Security, Policies and QoS for Enhanced En-
terprise Systems (IS-TSPQ 2006), Mar. 2006.

