
Using the ODP reference model for Enterprise Architecture

Lea Kutvonen
Department of Computer Science, University of Helsinki, Finland

Lea.Kutvonen@cs.helsinki.fi

Abstract

The Open Distributed Processing Reference Model
(ODP-RM) provides viewpoints and abstract
infrastructure guidelines that can be used for a basis
for enterprise architecture, especially for an inter-
enterprise architecture. The ODP-RM does not
prescribe methodology for modeling itself, but provides
common vocabulary and focus for description. This
paper performs a brief analysis of the ODP-RM (and
Pilarcos extensions to it) in terms of defining
enterprise architecture. Special attention is given to
potential to provide support for consistency enforcing
between viewpoints, analysis of model properties, and
interaction between business and technology needs.

1. Introduction

“An enterprise architecture describes how the
elements of an organization fit together – the business
processes, organizations responsible for them,
Information Technology (IT) capabilities and
infrastructure – today and in the future“ [1]. For this
purpose, a large number enterprise architecture
methods, architecture frameworks and modelling tools
already exists (e.g., Zachman [2], TOGAF [3], ARIS
[4], Archimate [5], business architecture [6]) as well as
standard frameworks [7]. By their origin, the main goal
has been to enforce a shared vision of the enterprise
architecture to all involved parties (users, designers,
implementors, service providers) in the enterprise, and
to support coherent management even during changes
in the architecture.

Modern challenges for enterprise architecture arise
from the interoperability and federation needs: inter-
enterprise computing and merging of businesses cause
needs for loose integration of business services across
enterprise boundaries. Furthermore, there is increasing
demand for aligning the computing infrastructure to the
requirements of the business management activities.
Interoperability and federated management facilities

become fundamental requirements for the collaborative
architectures, covering processes, information, and
modularization of the application domain.

The Open Distributed Processing Reference Model,
ODP-RM [8,9], was initially developed for structuring
the application level concerns of communicating
systems in general. As part of the present trend,
business networks form an important focus area for
which the reference model can be applied. This paper
discusses the above mentioned enterprise architecture
challenges and required elements in the enterprise
architecture and points out what kind of solutions and
architecture patterns are already present in the ODP-
RM. As refinements of the ODP-RM generic
specifications, results from the Pilarcos project work are
used. The Pilarcos project has developed B2B
middleware [10] and is enhancing the research
activities towards service oriented software engineering
and enterprise architecture needs in a way consistent
with the ODP reference model.

Section 2 discusses formation of enterprise
architecture in general, while Section 3 states some
guidelines for a specific enterprise architecture for
networked business arena. This inter-enterprise
architecture is made visible through papers on the
Pilarcos work [1], which is shortly commented on in
Section 4 while the main contents of Section 4 is on
noting the solutions suitable for inter-enterprise
architecture directly provided by the ODP-RM. Section
4 further elaborates on the potential for cross-viewpoint
consistency maintenance both at architecting time and
operational time through monitoring and operational
knowledge collection and feedback processes.

2. Defining enterprise architecture

An enterprise architecture defines how business
strategy is realized using the processes and resources
available by the enterprise. The process by which the
architecture is defined and that evaluates its change
needs and describes its development steps rely on a)
common terminology, b) the methodology for

mailto:Lea.Kutvonen@cs.helsinki.fi

developing the system and its components, c)
explanation on how the developed components fit
together, and d) the set of tools that support the
methodology.

The enterprise architecture itself is commonly
divided to topic domains and layers of different levels of
detail. The domains should become connected together
by methodological means that supports consistency and
refinement steps. The variety and maturity of tools for
model creation and verification preserves attention too.

The subarchitectures commonly in use include
[e.g.,3] Business Architecture, Data Architecture,
Applications Architecture, and Technology
Architecture.

The business architecture is needed to start the
definition process, to define the business strategy, the
business processes of interest, and to define the
stakeholders and their viewpoints of interest to be
followed through in the other architecture models. The
resulting documentation should point out the reference
framework to be used, and identify the architecture
principles to be used in the architecture process.
Suitable reference architectures for business
architecture could include RosettaNet specifications etc.

The data architecture and application architecture
have the goals of defining the major types and sources
of information in a consistent, complete and stable
manner so it can be accessed and understood by all
stakeholders. On application side, the objective is to
determine the selection of information processing
applications relevant for the enterprise.

The technology architecture grounds the work on an
existing application platform, shared terminology and
production and deployment processes. Thus the selected
technology architecture restricts the correspondences
between the business and application architectures and
the technology support available or required.

The impact of the existence, maturity and timeliness
of the enterprise architecture is significant: it allows
informed decision-making while negotiating
commitments on inter-enterprise collaboration, on
provision of products or services to clients, and
controlling changes in the enterprise architecture.
When interoperability and collaboration management
are specifically addressed, the enterprise architecture
also has a considerable impact on the enterprise’s
agility.

3. Architecting networked businesses

Loosely-coupled, dynamic collaborations of business
services that are provided by autonomous enterprises

form a specific category of virtual enterprises (or
extended enterprises, business networks, etc.). This
section summarizes a few enterprise architecture
guidelines for enterprises wishing to emphasis potential
for agility in business networks.

In this future vision of inter-enterprise architecture,
the essential concepts are business service
interoperability and contract-governed collaboration
between business services.

We understand interoperability, or the capability to
collaborate, as the effective capability to mutually
communicate information in order to exchange
proposals, requests, results, and commitments (i.e., to
exchange speech acts common in business). The term
covers technical, semantic and pragmatic
interoperability. Technical interoperability is concerned
with connectivity between the computational services,
allowing messages to be transported from one
application to another. Semantic interoperability means
that the message content becomes understood in the
same way by the senders and the receivers. This
concerns both information representation and
messaging sequences. (More and more the ability to
transform information in messages between the source
and the targets is viewed as a service supporting
interoperability (e.g., enterprise application integration
(EAI) and enterprise service bus (ESB) [11]).
Pragmatic interoperability captures the willingness of
partners to perform the actions needed for the
collaboration. This willingness to participate refers both
to the capability of performing a requested action, and
to policies dictating whether it is preferable for the
enterprise. (In most integration products, workflows are
used to manage business processes. Here, the joint
understanding of external business processes and their
enactment is essential, not the actual enactment
technology.)

We expect the technology architecture to provide
common facilities for interoperability and collaboration
lifecycle management. The method of managing
collaborations and contracts is based on generic, B2B
middleware protocols and agents private to each
involved enterprise. In addition to the common
protocols, each enterprise needs expert systems to
support private decision-making on participation in
collaborations, management of private policies, etc.

The methodology for building the business networks
is semi-automated: based on a selected business
network model and service offers published by service
providing enterprises the B2B middleware is able to
suggest contracts that are ensured to represent
interoperable collaborations. The expected way of

business services to fit into the collaboration and to
each other is defined in terms of interoperability and
collaboration contract requirements and breaches.
These aspects are to be continuously monitored during
the collaboration lifecycle, at times triggering
management actions.

We call all kinds of the inter-enterprise
collaborations business networks. This is because the
business management activities appearing in different
types of business scenarios (e.g., supply chains, virtual
enterprises, and subcontractor networks) repeat largely
the same pattern. Looking at the common business
scenarios from the supporting technology point of view,
we can separate external business processes that express
what interactions the players in the business network
must take, and the service processing software at the
location of each player. The nature of supply chain or
virtual enterprise becomes expressed and defined by the
business processes, while the supporting technical
environment can be identical for all types. From the
technical point, we can consider that the primary goal
of each independent organization in these scenarios is
to provide added-value services by composing existing
services provided by different enterprises. However,
because of the different responsibility models important
for the business management perspective we need to
preserve the following separation:

orchestration, where the coordinator of the
composed service takes on the obligations of
providing the service; and
collaboration, where a mutual contract is formed
and the members of the collaboration are equal
and have their contracted obligations; the
coordination of the collaboration is maintained
by the supporting infrastructure.

Therefore, each business network is viewed as
collaboration between autonomously administered
business services. A business network is established
dynamically to serve a certain business scenario or
opportunity that is made commonly known by
publishing a business network model (BNM). The
business network model captures all those external
business processes that are relevant for the business
scenario. The business network model also gives
structure for the contract that is technically used for
governing the collaboration at runtime; the contract
captures most of the social behaviour requirements in
the collaboration. A business service is realized by a
business application implementation running under the
administration of a single authority. The potential of
activities of the business application is restricted and
controlled by enterprise policies to the degree that the

enterprise is prepared to make available for its clients.
The business services can fulfill roles in multiple
business networks simultaneously, based on their ability
to fulfill the behavioural and nonfunctional
requirements of the role and the contract.

In terms of defining an enterprise architecture for
networked business, we can state the following
guidelines. First, business scenarios should be formed
in a rather generic way and be refinable by policy
statements that can be negotiated for each collaboration
separately. The business scenarios should be modelled
in terms of business processes, compositions of business
processes, and provide control and monitoring potential
through addition of non-functional properties. The
resulting models should be verified and published on
trusted repositories available for all stakeholders.

Second, the open market of business services is
formed by federated service offer repositories, that are
trusted in terms of providing non-repudiation of offers
and traceabilty of the offer providers, and in terms of
checking conformance to known service types and
associated required properties within offers.

Third, business services are mapped to technical
service compositions under a single business
administration that has authority on deciding the
associated policies and contracts that constraint the
behaviour of the technical service. This authority must
be authorised and responsible for the enterprise
decision-making and traceable.

Fourth, the application platforms involved should be
able to support a service-oriented architecture. This
means that there should be either native or added-on
facilities to provide metainformation on the services
and reflect the metalevel commitments to the system
state (or to refuse changes), and strict encapsulation of
the implementation of the services provided through the
published interfaces.

Fifth, the technology environment should support
not only concepts for publishing, binding and
performing services, but to manage the lifecycle of
collaborations and to detect and maintain potential for
interoperability as needed.

Sixth, the technology architecture is a changing
element. Therefore, an especially important principle to
cover in the architecture process is to define solutions
that cut potential domino-effects from technology
changes to directly supported business or application
chains forcing re-implementations; legacy support, or
rather strong encapsulation of services (not only objects
or components) is a necessity.

Finally, the technology architecture should support
global description of relevant information between

services, but also relevant metainformation about the
services and collaborations.

The difference to other approaches can be found in
the strong encapsulation of business services, deliberate
omission of distributed execution facilities for shared
business processes, and emphasis on the ability of the
architecture itself to carry out the changes in the
business architecture, information system architecture,
and technology architecture. For all these aspects, the
B2B middleware is expected to provide semantically
consistent repositories and associated protocols for
publishing, retrieving, comparing and negotiating. In
addition, the view of the architecture is global, instead
of a single enterprise.

4. The ODP-RM solutions

In the early phases of the Pilarcos project series,
involvement on the ODP standardization was part of
the work. Therefore, a lot of alignment of the basic
concepts can be easily found. In this section, a brief
introduction to the ODP-RM is given, pointing out
aspects on which we can base the future, inter-
enterprise architecture view.

4.1. Family of ODP standards

The ODP reference model (RM-ODP) [8,9,13,14,
15] is a joint standardisation effort of ISO and ITU. It
was started with a basic reference model standardisation
officially already in 1989, and developed in interaction
with other distributed system models. Thus, ODP
reference model has had impact on industry trends
already during its development.

The ODP standardisation aims for development of
standards that allow distributed information processing
systems to be exploited in a heterogeneous environment
and under multiple organisational domains . This goal
is an enhancement to the openness requirement above.
In addition to the use of public and standardised
middleware services, the systems must be able to
support interoperation in spite the independent
evolution and independent technology decisions made
by the sovereign member systems.

The ODP standards support systems to be built so
that they a) provide software portability and
interoperability; b) support integration of various
systems with different architectures and resources
without costly ad-hoc solutions; c) accommodate
system evolution and run-time changes; d) federate
across autonomously administered or technically
differing domains; e) incorporate quality of service

aspects to failure concepts; f) include security service;
and g) offer selectable distribution transparency services
for communication.

These goals are acquired by the ODP reference
model through three already standardised aspects of the
basic reference model (which that was completed in
1996 [8,9]): First, a division of an ODP system
specification into viewpoints, in order to simplify the
description of complex systems [9]. Second, definition
of a set of general concepts for expressing the viewpoint
specifications [8]. Third, a model for an infrastructure
supporting, through the provision of distribution
transparencies, the general concepts that it offers for
specification purposes [9]. Finally, specification of some
essential middleware services as component standards.
These services include the already completed trading
service [15], naming framework [16], type repository
function [17], and interface binding framework together
with the supporting protocols.

4.2. Common concepts

Part 2 of the reference model provides a common
vocabulary to be used in any ODP system specifications.

Presently, the ODP reference model is often
undervalued solely due to its object-orientation.
However, the objects used are only a form of
abstraction, of strong encapsulation of behaviour and
information and more like the present service concepts.
In the correction cycle of the ISO and ITU standards, it
is suggested to point out the relationship of the present
object-oriented vocabulary and more modern service
concepts; the relationship is fairly straightforward [18].

One of the necessary steps for managing
collaborations across administrative domains is to
differentiate between ways by which objects (i.e.,
services) appear in the system. The ODP model allows
objects to appear in the system in two ways, by
instantiation or by introduction. Instantiation is the
often used model, where a template exists with
sufficient information for the creation of an object
instance. Introduction allows manipulation of objects
without knowledge of their instantiation methods – only
the object type is interesting. The ODP model defines
type as a predicate that classifies objects based on their
properties. A template is defined as a type detailed
enough for instantiation. The instantiation process is
naturally dependent on the platform facilities, and
therefore, whether a type is also a template depends on
the platform.

The object behaviour is specified as a set of
interfaces. An interface represents objects role as a

provider or exploiter of a service. As an object can
support multiple interfaces, it can also participate in the
provision of multiple services. A typical object supports
at least a mission specific interface and a management
interface.

An interface (at which two or more objects meet for
communication) is not specified as an indivisible,
global abstraction. Instead, both a client requesting a
service and a server providing such a service, can have
slightly different technical views of the interface. The
ODP communication model concepts declare how these
views can be mapped together in the binding process
that creates a communication channel between the
client and server interfaces. Object interfaces are bound
based on their type, the object template is not
considered. Because of the separation of client and
server interfaces, also the sub-typing and substitutability
concepts for ODP objects differ from other object
models. The type system of objects focus on the shared
features required from interfaces that need to be bound
together, instead of focusing on implementation
inheritance hierarchies. The essence of sub-typing rules
for ODP objects is contravariance: the offered
information must include at least the information
expected by the receiver. In most object models,
sub-typing is based on covariance: the replacing object
can both expect to receive and offer more information
that the replaced object expects and offers.

The separation of interfaces allows not only late
binding across enterprise boundaries, but also for
relaxed type-matching and automation of
transformation configurations into the communication
channels [19].

The ODP reference model introduces the structuring
concepts of community, domain, and federation. These
concepts can be used for organising objects for
producing and exploiting services. The structuring
concepts can be considered to be either static, design
time concepts, or dynamic, operation time concepts.

A community is a configuration of objects with a
common objective. For example, a business network is a
community where the common objective is explicitly
stated in the governing contract, capturing joint
business processes and policies as means to reach the
objective.

A <X> federation is community of <X> domains. A
<X> domain is a set of objects, each of which is related
by a characterising relationship <X> to a controlling
object. For example, a technology domain is the set of
objects conforming to a technical standard, and a
trading domain is the set of objects known to a trader
object. An example of a federation is a business network

where a group of B2B middleware agents work together
to manage the collaboration lifecycle and
interoperability.

4.3. Viewpoints supporting architecture
domains

The ODP reference model defines five viewpoints –
enterprise, information, computational, engineering and
technology viewpoints [9]. The viewpoint specifications
of a system can be regarded as separate projections of a
full system description. A system must be specified
from each of the viewpoints. Each viewpoint
specification is a consistent and complete specification
on its own, but it only considers those aspects of the
system that are valid on its point of view. So the
viewpoint specifications do not overlap totally, but they
may show different level of detail in the areas where
they need to discuss same or related features. The
engineering viewpoint specifications are tightly related
with the ODP infrastructure model that is specified as
part of the engineering viewpoint specification rules.

The enterprise viewpoint description of a system
specifies the activities and the responsibilities of the
system. Activity means any information exchange
sequence and it is a high-level abstraction of the
operations within the system. The system itself can have
any granularity that is interesting. The system can be as
wide as a global information network including
applications or as small as a memory cache. The
enterprise specification identifies the system, its
environment, and the required communication of the
system and its environment. The specification answers
to the questions “What is the purpose of the system?”
and “What services the system is responsible to
provide?” and “Who needs the services?”.

In respect of the enterprise architecture, each
enterprise viewpoint specification provides provide a
business architecture model, although without any
connections to component services to realise the
architecture or to technology architecture to support it.
However, the business network models that follow
rather closely the enterprise language structures and
requirements [20] provides definitions for expected
business values, and other non-functional aspects. The
enterprise specification thus sets guidelines that will be
reflected to the runtime environment, to the monitors
governing the collaboration and the business services;
the linkage between business architecture and
technology architecture is direct.

The information viewpoint description of a system
identifies logical information entities, their logical

contents, their repositories and the objects that are
responsible of the information flow in the systems.
Questions for information viewpoint specification are
“What information is needed to support the system's
services?”, “Where does the information come from and
go to?”, and “Is it necessary to store the information
somewhere?”. The information viewpoint specifications
should not describe data structures, but only the
semantics of the information. Also, the technique of
storing information is irrelevant in this viewpoint (as
the logical infrastructure supports storage services).

In respect of the enterprise architecture, each
information viewpoint specification provides a set of
relevant information elements that can be published in
common type repositories, making the information
accessible to all involved stakeholders. However,
associating the information definitions to business
network models, a more effective and non-overlapping
information base can be formed [22].

The computational viewpoint specification captures
the behaviour of the system. Behaviour is an abstraction
of how things are done, in contrast to the notion of what
things are characteristic in enterprise viewpoint
activities. An activity identified in enterprise viewpoint
may involve several objects to perform a sequence of
operations in computational viewpoint. The
computational viewpoint shows the system as a
composition of logical objects. For each object its
interfaces are described. If the interface involves
operations, each operation gets logical parameter
descriptions (information structures, not data structures)
– if the interface involves streams, each data flow
component of a stream gets logical protocol descriptions
instead. This is the viewpoint that usually explicitly
shows potential for distribution. Neither the enterprise
viewpoint nor the information viewpoint specifications
need to express any distribution concerns. The
computational viewpoint answers to questions like
“Which operations are available?”, and “Who (which
logical entity) performs the operation?”.

In respect of the enterprise architecture, the
computational viewpoint specifications can be written
so that they provide structure for business services and
thus elements to publish on the trading service to form
a global open service market. It is essential that there is
service types publicly defined in the type repository to
provide for mapping between business network roles
and business services.

The engineering viewpoint specification identifies
the infrastructure services needed for the system to
operate. The ODP-RM engineering viewpoint defines
the set of available infrastructure services, and all other

engineering viewpoint specifications should show how
the specified system utilise these services. The
engineering specification therefore answers the question
“By which services are the computational objects
supported?” The ODP infrastructure model identifies a
set of global, distributed basic services that should be
available at each node in the global system. These
include invocation of operations, transfer of continuous
data as streams, trading, type repository functions, etc.
These services facilitate selective transparency of
communication.

In respect to the enterprise architecture, the
engineering viewpoint specifications should capture the
functionality of the support environment as enhanced
with the B2B middleware repositories, especially their
contents, and the associated protocols between the
agents representing the enterprises. These elements
contribute to the technology architecture, and in
addition importantly to the business architecture,
information architecture and application (service)
architecture.

The technology viewpoint specification shows in a
concrete hardware and software configuration how the
system services and other required components are
realized. The specification answers the question “How
are the infrastructure services realized?”. This is a
direct mapping to the technology architecture.

The ODP viewpoint languages or specifications
address the required elements for enterprise architecture
definition, as can be seen for example by reviewing the
TOGAF architecture development method. In the
comparison, it should be noted that the TOGAF
architectures is a partitioning of the set of models
required to do enterprise architecture, not a set of
overlapping views. TOGAF also recognises the need for
views, that is an assembly of basic architecture elements
for a purpose.

Also, it should be noted that each viewpoint
specification adds to the set of further requirements on
the structure of service realisations, service descriptions
and service management information. The method that
can be built using the ODP-RM is thus incremental;
when the viewpoint specifications are made available
through public repositories this means a globally
evolvable collaboration knowledge base and automated
breeding environment. In addition, different enterprises
may have a different set of coexisting specifications in
use, making the environment flexible for different types
of enterprises or different maturity levels of
collaboration. The management structure is described in
the following section.

4.4 ODP-RM enhancements by B2B middleware

The ODP reference model defines an abstract
computing platform that comprises of a set of
coordination, management, and repository functions.
Each open system should independently support these
functions, and in some restricted cases, also allow other
systems to make controlled queries on the supported
interfaces. The functions are described using a set of
supporting concepts (nodes, capsules and clusters), that
give an internal engineering view of the middleware
software. However, these concepts are used only for
descriptive purposes, to ease discussion, not as
technology guidelines.

At the time of the ODP-RM creation, the abstraction
level for distribution platforms required that kind of
structuring, and still does, as the platforms have not yet
developed to level of maturity where there were a
consistent set of concepts available for selecting
properties like security, privacy, or dependability for the
transparent configuration of the communication layer.

However, on top of this communication layer, more
conceptual functionality must be provided. The
essential functions introduced in the ODP-RM include
trading function and type repository: The trader
provides a service offer repository [15], while the type
repository [17] provides structuring rules and
constraints for metainformation and service elements
managed by the platform.

In the Pilarcos environment we have extended this
abstract platform by management services, i.e.
pervasive functions as follows. First, tools and
repositories support developing and publishing of new
models for business networks,and defining new service
types for business services in such a way that the service
types match the needs of the business network roles
[21]. Second, service offer repositories enable
enterprises to publish business services to the open
service markets together with metainformation for
automated matching to roles and for interoperability
testing against peers in the business network [22].
Third, means are required for declaring policies that
govern the use and the availability of business services.
Fourth, new protocols are needed for negotiating
eContracts to govern a new business network [23]; the
establishment phase is partially performed by a third-
party population process, partially by a collective,
refining or dropping-out negotiation protocol between
becoming peers. Finally, facilities are needed for
monitoring the behaviour within eCommunities and
manage breaches within them as specified in the
eContract [24]. We believe that by this kind of generic

B2B middleware services that are available through
private agents at each enterprise, the right kind of
software investment cycles can be supported.

4.5. Consistency of viewpoint models

The system specification includes five complete
specifications, that all can be analysed as separate. Each
viewpoint reveals a different aspect of the system, and
therefore the full functionality can only be seen by
looking at all specifications together. As the viewpoint
specifications are all complete specifications on their
own, the abstraction levels of objects in the
specifications can differ. Still, the specifier must show
how the specifications are mapped together.

The ODP-RM aims for specifications that allow
software portability and interoperability and defines
four classes of reference points – points where the
conformance to the standard specification need and is
allowed to be tested. Other behaviour than that visible
at these reference points is not considered. The four
classes of reference points are programmatic,
perceptual, interworking and interchange conformance
points. For service-oriented architecture these two are of
interest: at a perceptual reference point there is some
interaction between the system and the physical world
while at an interworking reference point sets
conformance requirements for communication between
two or more systems in terms of the exchange of
information.

The conformance rules can be modeled across any
viewpoint specifications. For example, conformance
rules can expect enterprise viewpoint policies to be
adhered to at the technology level, or the information
exchange patters published to be followed at all
business processes and business services playing roles
in them.

In respect of enterprise architectures, the
conformance rules would be captured in methodology
guidelines.

In terms of consistency of the models, we need to use
the facilities provided by the viewpoint languages
themselves. Because the enterprise architecture clearly
utilizes a reflective system design, the semantic
constraints of metainformation is a key issue. Here, the
ODP information viewpoint language gives a good basis
by stating static schema, dynamic schema and invariant
schema, thus denoting the initial state of the system,
allowed state changes and their effect on information
content, and semantic restrictions that always hold over
the information state.

By using the information viewpoint over the B2B
middleware repositories, we can define semantic
constraints between newly defined and published
service types, business network models, and service
offers. When the repositories each have a set of required
information contents defined according to the B2B
management protocol needs, the essential type safety of
the overall system can be maintained [25]. This
promises for more effective and global tools than is
traditionally expected by enterprise architecture
methods for single enterprises.

5. Conclusion

We presented an enterprise architecture for
networked business. Each involved enterprise need to
have their private architectures, but in addition be able
to participate this larger architecture as a member in the
collaboration management activities.

The ODP-RM provides sufficient concepts to build
an evolvable enterprise architecture of this type.
Although some of its vocabulary needs bringing up to
date by adoption of service-oriented concepts and
enhancing discussion on non-functional properties, the
framework is still valid and in line with current widely
used description languages.

In comparison to traditional enterprise architecture
methods, the evolution steps of the architecture have
been taken as a part of the computing system
responsibilities and loosely-coupled interoperation that
can be modified and reconfigured at operational time as
a main method of collaboration.

References

[1] Mitre, “Guide to the Enterprise Architecture Body of
Knowledge”. http://www.mitre.org/tech/eabok/, 2004.
[2] J. A. Zachman, “A framework for information system
architecture,” IBM Systems Journal, 26:3, pp. 276–292, 1987.
[3] The Open Group, “Togaf 8.1.1 online,” Tech. Rep.,
http://www.opengroup.org/architecture/togaf8-doc/arch/.
[4] A.-W. Scheer and M. Nüttgens, “Aris architecture and
reference models for business process management,” Tech.
Rep., 1996.
[5] M. Lankhorst and H. van Drunen, “Enterprise architecture
development and modelling -- Combining TOGAF and
ArchiMate” Via Nova Architectura. March 2007.
[6] G. Versteeg and H. Bouwman. Business architecture: a new
paradigm to relate e-business strategy to ICT. ECIS 2004.
[7] K. Kosanke, “Standardization in enterprise inter- and
intraorganizational integration,” International Journal on IT
Standards and Standardization Res., 3 (2), pp. 42–50, 2005.

[8]. Information Technology – Open Systems Interconnection,
Data Management and Open Distributed Processing. Reference
Model of Open Distributed Processing. Part 2: Foundations,
1996. IS10746-2.
[9] Information Technology – Open Systems Interconnection,
Data Management and Open Distributed Processing. Reference
Model of Open Distributed Processing. Part 3: Architecture,
1996. IS10746-3.
[10] L. Kutvonen, J. Metso, and S. Ruohomaa, “From trading
to eCommunity management: Responding to social and
contractual challenges” ISF 9(2-3):181-194.
[11] D. A. Chappell, Enterprise Service Bus. O’Reilly. 2004.
[13] Linington, P. RM-ODP: The architecture. In The 3rd
International Conference on Open Distributed Processing –
Experiences with distributed environments, 1995.
[14] Raymond, K. Reference model of open distributed
processing (RM-ODP): Introduction. In The 3rd International
Conference on Open Distributed Processing – Experiences with
distributed environments , 1995.
[15] Blair, G., and Stefani, J.-B. Open Distributed Processing
and Multimedia. Addison-Wesley Publishing Company, 1997.
[16] Information Technology – Open Systems Interconnection,
Data Management and Open Distributed Processing – ODP
Naming framework. IS14771.
[17] Information Technology – Open Systems Interconnection,
Data Management and Open Distributed Processing. Reference
Model of Open Distributed Processing. ODP Type repository
function. IS14746.
[18] Lea Kutvonen and Janne Metso. Services, contracts,
policies and eCommunities - Relationship to ODP framework.
WODPEC 2005, pages 62-69, 2005.
[19] Lea Kutvonen. Relaxed Service-type matching and
Transformation management. In Workshop on Enterprise
Modelling and Ontologies for Interoperability, EMOI-
INTEROP 2005, June 2005.
[20] Information Technology – Open Systems Interconnection,
Data Management and Open Distributed Processing – RM-
ODP enterprise language. 15414
[21] T. Ruokolainen and L. Kutvonen. Service typing in
Collaborative Systems. In Interoperability for Enterprise
Software and Applications Conference (I-ESA2006).
[22] L. Kutvonen, T. Ruokolainen, and J. Metso.
Interoperability middleware for federated business services in
web-Pilarcos. IJEIS 3:1, 1-21.
[23] L. Kutvonen, J. Metso, and T. Ruokolainen. Inter-
enterprise collaboration management in dynamic business
networks. In On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE, Agia
[24] J. Metso and L. Kutvonen. Managing Virtual
Organizations with Contracts. In Workshop on Contract
Architectures and Languages (CoALa2005), Enschede, The
Netherlands, Sept. 2005.
[25] Lea Kutvonen. What applying of the ODP viewpoints
teaches us about tool-chains. In 10th IEEE International
Enterprise Distributed Object Computing Conference
Workshops (EDOCW'06), 2006. IEEE Computer Society.

http://www.mitre.org/tech/eabok/
http://www.opengroup.org/architecture/togaf8-doc/arch/.

