
Managing Virtual Organizations with Contracts
Janne Metso and Lea Kutvonen

Department of Computer Science
University of Helsinki, Finland

Email: { Janne.Metso | Lea.Kutvonen }@cs.Helsinki.FI

Abstract— Electronic business networks are formed by business
application services provided by autonomous enterprises. For
controlling the business network behaviour and partnerships,
electronics contracts are commonly used. This paper focuses on
dynamic virtual organizations where participants can join and
leave, or be removed, for various reasons, and the organization
structure can change for various reasons. A prototype B2B mid-
dleware solution is introduced for managing virtual organization
contracts that govern aspects ranging from business aspects to
technology issues; local middleware services at the enterprise
ICT systems are expected to reflect between the contract and the
actual runtime system. The contract carries information about
the expected participant roles, services, and properties, as well as
the expected collaborative business process between participants
for monitoring the conformant behaviour at each phase. In
addition, the contract covers commitments for recovery from
unacceptable situations and access to methods for introducing
changes to the organization structure.

I. INTRODUCTION

The present challenge for collaboration across enterprises is
to form electronic business networks, or virtual organizations.
This is a step forward from tightly-coupled, integrated solu-
tions where inter-enterprise networks are formed case-by-case,
and involving significant establishment and maintenance cost
for participants.

The current challenge is to form dynamic communities,
virtual organizations, where participants can be chosen from
fairly open markets: from those making appropriate services
available, trustworthy as partners, and interoperable in com-
munication technologies, information semantics, and expected
collaborative processes.

When dynamic control for any constellation is needed, the
common technique is to introduce a layer of metainformation
to model the computing entities and their communication. This
model is then made explicitly available during the operation,
and operations are provided for making changes to the model.

In the web-Pilarcos middleware architecture, the same prin-
ciple is used. The virtual organization structure, its partners,
and collaborative behaviour (functional and non-functional
aspects) between partners is explicitly stored into a distributed
contract. The B2B middleware designed and prototyped pro-
vides facilities for

• negotiating the contract,
• ensuring static interoperability properties of the suggested

virtual organization,
• preparing and establishing necessary control structures

for the formed community,

• monitoring the correct behaviour within the community
during its lifetime,

• changing members of the community,
• moving the community to new phases of operation,

i.e. epochs, where the structure of the organization can
change, and

• terminating the virtual organization.

The web-Pilarcos middleware architecture have been de-
scribed elsewhere [1], but this paper gives a more detailed
look at the implementation of the essential operational en-
vironment services that make dynamic aspects of the virtual
organizations possible. The facilities provided for gathering
metainformation and reasoning about the metadata include the
following services that can be seen as general infrastructure
services provided by trusted third parties, or taken care of more
local arrangements:

• business network model repository, where alternative
community structures are defined; the network models are
expressed in terms of roles, requirements (service, other
properties) for role fulfillers, and information exchanges
between roles;

• service offer repository, where service providers an-
nounce accessibility and properties of their services;

• service type repository, where service type names and
associated properties are defined for the use of service
trading and service offer matching against the business
network models.

Each of these repositories accept metainformation only
through a static verification process. Furthermore, the reposi-
tories must be distributed/partitioned appropriately to provide
a reasonable load balancing.

This paper concentrates on the features of contracts and the
B2B middleware that support changes in the virtual organiza-
tion structure. The contract carries information about the ex-
pected participant roles, services, and properties, as well as the
expected collaborative business process between participants
for monitoring the conformant behaviour at each phase. In
addition, the contract covers commitments for recovery from
unacceptable situations and access to methods for introducing
changes to the organization structure. Section II discusses
requirements for contracts, bringing up the needs for business
strategies and technical interoperability. Section III outlines the
middleware services in the web-Pilarcos prototype. Section IV
addresses virtual organization evolution and its management.

Section V gives some contrasts to related work.

II. CONTRACT REQUIREMENTS

The contract governing a virtual organization has to capture
aspects of collaboration at multiple levels [2]. The community
and its participants are supported by middleware level services
that take the responsibility of being aware of the interoperabil-
ity for involved business processes, preservation of semantics
in exchanges of information, and technical interoperability
while communicating.

The contract is a logically central element that can be used
to establish and monitor interoperability between independent
participants, and that can be considered to be impartial and
thus able to protect interests of all participants and the com-
munity itself.

The contract must have a degree of enforceability in respect
of the participating services. Aspects to be controlled include
service behaviour (and application level protocols used), com-
munication channel services (architecture and parameters), and
non-functional aspects of the application and communication
services, such as QoS.

The service behaviour descriptions for each role within
the virtual organization are recorded into the contract, and
thus can be used for monitoring whether actual behaviour is
conformant. Failures to comply are reported to all participating
organizations, and a decision process is initiated to decide
what recovery actions need to be taken. The corrective or
sanctioning processes can involve more than one partner in the
virtual organization, or participants outside of the virtual orga-
nization. These processes are an integral part of the business
network model; the business processes (seen as application
level protocols) can be verified in terms of their recovery
potential before associated with breach management processes.

Communication channel descriptions are needed to ensure
low level interoperability between service applications. Chan-
nel descriptions prevent mismatches that are caused by using
different transport layer protocols. These descriptions must be
defined for each connection between services and must allow
different channel types between different applications. For
example communication between application A and B could
use web services and communication between application B
and C could use CORBA. Part of the communication channel
descriptions are transactional and security requirements. These
help to provide advanced properties to the communication
and require minimal impact on the service application. Se-
cure communication allows virtual organization to conduct
business processes with minimal intervention from malicious
bystanders. Security measures include authentication of ser-
vice use and communication encryption. The last important
information derived from communication channels are ser-
vice endpoints for service applications which help to prepare
execution platforms and services implementations for virtual
organization execution.

The non-functional aspects to be enforced form a set of
semantically wide range of elements (from business strategy
needs, business values, and trust, to technical aspects such as

security and QoS). These aspects can be defined as rules to
be monitored during the virtual organization lifetime.

The technical level of interoperability captures the messages
used between service applications, and thus, the information
encoding and data formats used in passing information be-
tween organizations. This is important for syntactical parts
of the interoperability. The messagetypes help to enforce the
contract as they can be used while monitoring the message
exchanges between applications to determine if the messages
are syntactically correct or not.

In addition to the metainformation about interoperability
levels, the contract provides facilities for metainformation -
thus, virtual organization configuration - changes. Changes to
the virtual organization structure are made through epochs.
Each epoch has its own model and changing the epoch moves
the organization to a new model. The result is that epoch
change can alter the service that the virtual organization is
producing. Organization membership changes can be triggerd
in contract breach situations and introducing new organiza-
tions to the virtual organization requires renegotiations to the
contract.

Because the contract reflects the needs of enterprises doing
business through computing systems, the accountability of the
virtual organization and the contract itself is important. The
contract has to be able to capture restrictions on collaboration,
based on laws and regulations. However, our implementation
is more focused on technical, semantical, and process-aware
interoperability, and thus the additional requirements (rules) to
be expressed in the business network models are not further
discussed here.

For operational point of view the contract must be identi-
fiable. This requires unique identifier for the contract. If the
business process defined in the contract can be executed mul-
tiple times the contract needs some sort of session semantics
and identifiers. On the operational level the identifiers help
to keep up the state of the virtual organization and contract
enforcement in the form of service monitoring.

III. THE B2B MIDDLEWARE SERVICES

The web-Pilarcos prototype for the main middleware facili-
ties provides services for managing contracts, inter-enterprise
communication and monitoring the agreed behaviour deter-
mined in the contract. The components providing these ser-
vices are NetworkManagementAgent, Contract object, and
Monitors. As referred to in the Introduction, there are infras-
tructure repositories for discovering new partners to virtual
organizations and other metainformation. The related service
components include Populator (for lookup and interoperability
checking of service offers to fulfill the roles in a business
network model), TypeRepository, ServiceOfferRepository, and
BusinessNetworkModelRepository. The services and their re-
lationships are illustrated in Figure 1. The contract is stored in-
side the ContractRepository and they communicate with each
other through the NetworkManagementAgents. The agent,
contract, and monitors are discussed in further detail below.


~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Contract

Contract
Repository

Contract
Repository

Populator

Organisaational border

~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Policy Repository Policy Repository

Type Repository

~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Monitors Monitors

Contract Contract Contract
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Mgmnt App. Mgmnt App.N
etw

orkM
anagem

entA
gentti

N
et

w
or

kM
an

ag
em

en
tA

ge
nt

Service ApplicationService Application

Organisation A

Public Domain Services

Organisation B

Fig. 1. Web-Pilarcos prototype.

Web services are used as a distribution technology for both
inter-organizational and intra-organizational communication.
The prototype services described in this paper are all imple-
mented with J2EE [3] technology on top of JBoss [4] platform.

A. NetworkManagementAgent

NetworkManagementAgent provides a central interface to
an organization. It represents the organization in a eCommu-
nity. Contract objects use agents to communicate with each
other during life-cycle transitions and while error recovery.
Agents are responsible for configuring the local middleware
platforms and services to follow the rules agreed on in the
contract. Third role of the agent is to provide a contract life-
cycle management interface for internal applications.

The NetworkManagementAgent is implemented as a Ses-
sionBean. This solution gives good performance and allows
multiple threads to execute same code easily. This is important
because the agent is used simultaneously by multiple contract
objects and multiple partners in different virtual organizations.
At the same time local management applications connected
to user workstations can be using the life-cycle management
operations and planning new virtual organizations.

The protocols for life-cycle management include protocols
for all necessary steps. The necessary steps are building,
negotiation, execution and management and termination [5].
For each step is a separate protocol. For virtual organization
building our prototype uses a BusinessNetworkModel (BMN)
based Populator which selects a group of interoperable ser-
vices to fill the roles of the BNM. The result is returned to
the initiator and is only available to the initiator at the first
point.

After receiving results from the Populator the initiator
chooses the most suitable result for further negotiations. The
negotiations are implemented as coordinator driven n-to-n
negotiations. The coordinator is initially the initiator but it can
be switched to any of the participants during the first round of
negotiations or later. During the first round the initiator sends
a proposal for the contract to all participants. The proposition
is directly based on the Populator response.

After receiving a proposal the participants can either accept
the proposal or reject it directly. Another option for a given
participant is to make a counter-proposal. If a participant
rejects the proposal at any point during the negotiations, a new
participant is needed to fill the now vacant role. Finding a new
participant requires a new population. The participants can do
as many negotiation rounds as are needed for every participant
to accept the contract. The negotiations can be abandoned if
it seems that there is no result available that is accepted by all
participants.

After contract has been agreed on the contract is estab-
lished. This separate state is added in order to allow for the
participants to configure their local platforms and participating
services for use in the virtual organization. The coordinator
requests the establishment by sending a separate request and
when each of the participants have given a response the con-
tract can be executed. Both request for establish and response
are simple messages with only contract id as their parameter.
After the coordinator has received all responses it broadcasts
a message telling that the contract has been established and
the virtual organization is usable.

Figure 2 shows the building, negotiating and establishment
steps for a virtual organization. First the initiator populates a



Populator

Request for Populating BNM_A

Groups of interoperable services

Merge responds

Participant A Participant BInitiator

Send proposal to A and B

Negotiation Round

Establish Request

Confirm Etablishment
Confirm Establishment

Contract Established

Respond to Initiator

Respond to Initiator

Fig. 2. Building, negotiation, and establishment of the contract.

BNM titled BNM A using the Populator. After receiving the
groups of interoperable services the initiator sends the proposal
to organizations A and B. After A and B respond to the
proposal the initiator (here selected as the coordinator) merges
the results and proceeds to another round. After negotiations
have been finished the initiator sends a establishment request
to participants and waits for their confirmation. After confir-
mations have been received the initiator announces that the
contract and virtual organization is established and functional.

During the operation of the virtual organization two proto-
cols are used. These are the global state management protocol
and breach management protocol. Global state management
protocol is used to propagate task level progress of each
participating organization and to synchronize and manage
epoch changes during the execution. Each organization will
report their completed tasks using UpdateTaskState-message
which identifies the contract, used session, and identifier of the
task. Additionally there is information related to identifying
the partner such as the signature.

Epochs are changed by sending one message to all other
participants when the last of the tasks in the current epoch is
finished and the service applications and platforms reconfigure
for the new epoch if needed. After sending the message a
organization will wait for all other organizations to send the
same message. When all of the messages have arrived the
virtual organization is ready for the next epoch. In the future
when the epoch change will be more complicated (as described
in section IV) the protocol needs to be two phased to allow
for possible reconfigurations before starting a new epoch such
as finding a new participant.

For error resolving there is a protocol to report errors to the
coordinator. This protocol is used in situations where the error
between two participants is so major that it affects the whole
community. Minor errors can be dealt with compensations

between the participants. This is only a default protocol
and it can be replaced with case-specific protocols during
negotiations if desired. The protocol involves a message which
is used to report the failure to comply to the agreed behaviour
or a failure to produce the required service. The offender
can either admit the failure or deny it. To determine if the
failure really happened or not a monitoring system (described
in subsection III-C) is used. The offender can be removed
from the contract if that is voted to be necessary. However if
one participant is removed a new participant must be sought
by repopulating the BusinessNetworkModel and renegotiating
the terms of the contract.

B. Contract Object

The Contract object is a active distributed object in the sense
that contract objects communicate with each other to achieve
distributed decisions. The object is active because it guards
its content and manages its own lifecycle. The contract object
is implemented in J2EE as a EntityBean. Using EntityBean
provides additional robustness by storing the contract related
information and the state of the contract object to a database.
This means that the prototype is somewhat immune towards
server hardware problems.

The contract object encapsulates information described in
the section II. For service behaviour descriptions WS-CDL [6]
or BPEL [7] can be used. To describe communication channels
the prototype uses identifiers which can be used to detect
channel types defined in the Type Repository. QoS and other
properties appear as name value pairs.

Contact information for the partners is included in the
contract. Part of the contact information is organization sig-
natures which can be used to verify that messages indeed
are from the organization they are claimed to be sent from.
For organization signatures the prototype uses XML Digital



Contract
refuse

Populated

Negotiation start

Negotiation finish

Negotiated

Established Unusable

New participant required
and found

In−Negotiation

Not Populated

Usage start/ continue

Reorganisation

Major fault detected

Major fault solved

Participant remove

Population

New participant required but not found
Terminated

Contract termination

Fig. 3. States and state transitions of Contract.

signatures [8]. Signatures can also be used when encryption
keys are negotiated for inter-organizational communication.

Figure 3 describes the contract states and the transitions
between states. The states of the contract also determine the
lifecycle of the virtual organization. Contract state begins with
populated and is created from a population response from
the Populator by the NetworkManagementAgent. At this point
the contract draft is only available to the initiatior (organiza-
tion who requested the population). The contract enters In-
Negotiation state when it is sent to all potential participants of
the contract. The actual communication between organizations
during state transitions are described in subsection III-A. For
each negotiation round the participating organization consider
the terms of the contract and decide if they are acceptable
or not. Any of the participating organizations can terminate
the negotiations for their own part at any point it wishes. For
organizations who terminated the negotiations the contract will
move to Terminated state. When the negotiations are finished
the contract will globally move to Negotiated state. After
completing the negotiations there is a short configuration phase
for the participating organizations and when all participants
are ready the contract will move to Established state. During
established state the execution of contract is permitted. During
contract execution faults in operation can happen and to
resolve these situations the contract can move to Unusable
state. A major fault is defined as a error situation which needs
attention from the whole organization such as a failure from
one participant to provide required service. When the fault is
resolved the contract can return back to established state. If
one of the participants leaves during execution or while solving
a major fault the contract moves to Reorganization state.

In a reorganization case the contract will be repopulated
using the original service offers of the remaining participants.

This ensures that the new participant will be as compatible as
possible to the existing virtual organization. If the repopulation
does not return a new participant or it returns the same partic-
ipant that just left, the contract will move to Terminated state
and the virtual organization is cancelled. If the repopulation
returned a suitable new participant for the virtual organization,
the contract will reenter the populated state and will be
renegotiated using the same algorithm as previously described.

C. Monitoring Service

Monitors provide important support for contract enforce-
ment. Monitors are plugged to part of the communication
channel and are used during the contract execution. Monitors
are used to follow the service behaviour and its compliance to
the behaviour agreed on in the contract.

Monitors are implemented as a mix of EntityBeans and
SessionBeans. The state of the monitored business process
is stored as EntityBeans to database and processing of the
monitored business process and observed messages are im-
plemented as SessionBeans. Monitors connect directly to
NetworkManagementAgents and monitoring metadata is con-
figured to the monitors by the NetworkManagementAgent.

The monitoring algorithm is based on a matrix representa-
tion of the business process state machine where the business
process states and transitions between the states are coded into
a matrix [9]. The matrix is then used to verify is a message
allowed to be exchanged between the applications during a
certain time. Into this matrix can be coded both the different
execution paths and the required message types in these paths.
When a message is detected the monitors traverse the matrix
to find the current state of the business process and determines
which messages can be used to move forward in the process.
If the message is not any of the required types, sending the
message is not conformant with the service behaviour.



SOAP

HTTP

TCP/IP

SOAP

HTTP

TCP/IP

WS−Tr. WS−Tr.

Service Application Service ApplicationMonitorMonitor

6.3.

BusinessNetworkManagementAgent BusinessNetworkManagementAgent

1.

C o m m u n i c a t i o n   C h a n n e l

8.

O
rganizational B

order2. 7.a

Context information and rules7.b

5.

Context information and rules
4.b

4.a

1.   Application sends a message
2.   Monitor intercepts the message

4.a IF message was ok: let the message go out of org.
4.b ELSE report fault to BNMA

5.   Monitor intercepts the message

7.a IF message was ok: let message go to application
7.b ELSE report fault to BNMA
8.   Application receives message

3.   Monitor checks compliance to context and rules
6.   Monitor checks compliance to context and rules

Fig. 4. Monitor as a part of communication channel.

The monitor can be configured to be be either proactive,
active, or passive. When it is proactive the monitor will
actively stop all communication that is not conformant to the
service behaviour and report them to the NetworkManage-
mentAgent. With active and passive monitoring the monitor
will not intervene as strongly to the application behaviour as
with proactive monitoring. The messages are not blocked but
with active monitoring the monitors will report non compliant
service behaviour to the NetworkManagementAgents. If the
monitor is configured for passive monitoring, the monitor will
only log service behaviour and conformance to the agreed
behaviour can be verified at a later time.

Figure 4 positions the monitor as a part of the commu-
nication channel. The context information and monitoring
rules for a service application are configure to the monitor
by NetworkManagementAgent in both participating organi-
zations. When the application send a message using the
communication channel, the monitor intercepts the message
and determines if sending the message conforms to the service
behaviour description. In Figure 4 the monitor is proactive
and prevents the message from going further if the message
was not conformable. Monitors in the prototype are placed
symmetrically to both ends of the communication channel. The
communication channel can consist of further properties and
characteristics such as transactional properties as demonstrated
by the WS-Tr. on top of the SOAP layer [10].

When the monitor is configure to be proactive both incom-
ing and out going messages will be stopped. This represents
the highest level of contract enforcement in our prototype.
Even though proactive monitoring is not extensively used in
industry, there is demand for it in rapidly evolving virtual
organizations. Further proactive monitoring is very useful
when combined with reputation management systems. By us-
ing proactive monitoring an organization can prevent negative
impact on reputation from badly behaving service applications.
However monitoring can not help in situations when the
application malfunctions producing unexpected results or fails
completely.

Reports of the monitor depend on the configuration as
stated above. In addition to fault reports the monitor reports
to NetworkManagementAgents based on the progress of the
external behaviour. The behaviour is divided into tasks and
monitor reports to the agent when a task is started and finished.
When the monitor detects a task start or task end it calls
updateEpochState operation from the agent interface.
This operation determines the session in which the message
that caused the state change was executed, role of the applica-
tion, the epoch in which the update was executed and the new
state of the task. The states of the task are not started, started,
finished, and failed. The task based grouping of business
process activities is similar to WS-CDL [6].

The reports allow the agent and contract object to be aware
of the progress of the whole business process of the virtual
organization. This is important because the epoch transitions
are synchronized through out the virtual organization. The
progress of each participating organizations is shared between
all the other participating organizations. The progress is shared
on task basis. Only the task end reports are propagated to all
other participants.

IV. MANAGING CHANGES IN VIRTUAL ORGANIZATIONS

Changes in virtual organization structures can occur for two
reasons. First, a participant can behave incorrectly and thus a
separate breach management process is entered. Second, the
virtual organization can transit to use a new business network
model. An epoch change is used to synchronize the virtual
organization so that all participants do the model change.

In both cases the necessary technical steps to support the
changes are fairly similar. The virtual organization needs to
be synchronized to determine the effects of, for example,
changing a participant and to minimize them. The virtual
organization needs to be repopulated, and interoperability
checked. After introducing the new participant the contract
must be renegotiated in order to reach acceptable terms for all
participants.



An epoch change is a well defined point in collaboration
where changing of the underlying model is permitted. In
contrast, single misbehaving participants can be removed from
the virtual organization at any point. A contract can cover a
number of epochs depending how many modifications to the
virtual organization structure are needed. Epochs are defined
in the BusinessNetworkModel during its design.

Changing participants during the virtual organization life-
time requires major support from the B2B middleware. First
of all, it is necessary to support repopulation of the contract
to find a new partner, renegotiation of the contract with the
new partner, and capabilities to adapt to the resulting changes
in service endpoints and policies. More difficult are questions
on restart or transfer of ongoing business transactions to new,
replacing partners. This is particularly challenging because of
heterogeneous implementation platforms the state of services
is not easily transferable to another organization (if at all).
Therefore, the middleware must be able to gracefully terminate
affected business transactions and restart them with as little
interference to other transactions as possible.

In practice, most of the business transactions between
multiple partners are related to or nested with each other. The
worst case scenario is that all ongoing transactions need to
be rolled back in every participants’ IT infrastructure. This
poses potentially a considerable cost to changing participant.
The issue is highlighted when there are multiple concurrent
executions of the contract. These problems can be minimized
by designing such BNMs that the business transactions be-
tween two participants are as independent as possible from
other transactions.

The epoch changes can also serve as a point where the
business processes themselves are redefined. The refining can
be done in order to improve efficiency or to fix problems in
the BNM. Epoch change is also a suitable point to introduce
more partners in to the virtual organization. For example in
a situation that not all roles was populated during the initial
population a missing partner can be introduced. The reason
that a partner is missing can be that there was not suitable
service provider available or the service is not needed until at
a later phase in the contract execution.

Introducing new partners during the execution of the con-
tract business process requires a new round of negotiations
to the contract in order to be acceptable for all partners.
The BNM must be designed so that the introduction of a
new partner to the virtual organization does not interfere with
already accepted policies or the impact is minimal. If the
nature of the BNM is such that the impact can not be avoided
it must be clearly stated in the description so that potential
users of the BMN can take it into account.

Concurrent executions of contract business process make the
situation somewhat difficult. There is two possible solutions
and the first is to introduce a new partner only once when the
first execution reaches the point of requiring a new partner.
The second choice is to introduce a new partner each time
a execution reaches the point of needing a new partner. The
second option will lead to increasing complexity and need for

negotiations each time a new participant is introduced. The
introduced participant can be the same each time but that can
not be relied upon. For these reasons the second option should
be avoided in favor of the first option.

Releasing partners from the organization can be done dur-
ing epoch changes in similar manner than introducing new
partners. It has the same set of requirements for the BNM
and similar concerns for concurrent executions. Releasing a
partner before it is certain that a partner is no longer needed
causes the remaining portion of the contract business process
execution to lack one partner and the virtual organization must
be repopulated. This means another round of negotiations to
incorporate the new partner to the virtual organization.

V. RELATED WORK

In respect to the contractual concepts, the web-Pilarcos
project relates for example to BCA [11]. The BCA con-
tracts have legal and business level focus, while the web-
Pilarcos approach ties together ICT related viewpoints of
ODP (Open Distributed Processing reference model [12]),
also ranging to some features of business aspects. The ODP-
RM introduces information, computational, engineering and
technical viewpoints. Each of these present interrelated but
somewhat independent aspects of the collaboration features
and its composition using more basic computing services.
The web-Pilarcos contract structure captures these aspects in
its BNMs, binding requirements, and behavioural and non-
functional monitoring rules [13]. Furthermore, BCA is closely
related to an approach [14] with a centralized notary to detect
contract breaches post-operatively. The web-Pilarcos approach
aims for more real-time intervention.

The main difference between our approach and other agent
based approaches such as MASSYVE [15] is the fact that our
agents do not provide other services than network management
services themselves. The services are provided by separate
components. The second difference is that our agents do not
manage workflows. The workflow is managed by separate
engines or by applications themselves. In contrast to [16]
monitors are used to follow the service behaviour instead
of agents and monitors report to agents. In our approach
the agents have the task of semantic verification and error
resolving during the contract execution.

Most virtual enterprise support environments trust on mod-
els for distributed business process enactment. However the
web-Pilarcos approach leaves enactment as a local business
processing task, concentrating on interoperability monitoring.
CrossFlow [17] uses contracts as a basis for cooperation man-
agement. The key element in the architecture is a matchmaking
engine (trader) that matches contract suggestions and requests
from potential partners. Based on the specifications in the
contract, a dynamic contract and service enactment infrastruc-
ture is set up. The architecture involves matchmaking and
outsourcing. WISE (workflow-based internet services) [18],
[19] addresses process definition, enactment, monitoring and
coordination in virtual enterprises. The process definition
component allows composition of virtual business processes



from building blocks published by partners. The process model
is then compiled for enactment. The process monitor provides
information for load balancing, routing, QoS and analysis pur-
poses. Contract-based coordination is also presented by [20],
[21].

VI. CONCLUSION

The web-Pilarcos architecture provides a B2B middleware
layer that supports management of virtual organizations. The
management facilities are based on shared vision of metain-
formation captured into a eContract. Changes in the contract
are locally reflected to the enterprise computing system; and
correspondingly, relevant progress and breach reports are de-
livered to partners through the eContract.

The architecture follows a federated approach: participating
services are independent and pre-existing, and the collabora-
tive behaviour model is used only for watching conformance.
Enforcement of the contract is reached through the indepen-
dent monitoring facilities at each participant. Those monitors
basically react to events that should not take place at that
service or resource interface. Those self-protective reactions
are then used as triggers for corrective actions for the benefit
of the whole virtual organization.

The evolution support suggested by the web-Pilarcos project
is challenging and has not yet been studied much elsewhere.
However, the facilities required for evolution steps are mostly
made available by the original breeding environment services.

The major drawback in the architecture is in the lack of
trust management: business can only be run based on suffi-
cient trust between organizations getting involved to the joint
business network. Therefore, we are in process of intertwining
a trust-based interception system designed in the TuBE [22]
project with the monitoring system. Trust and reputation based
decisions are relevant at virtual organization population phase,
and again, at each business process.

ACKNOWLEDGMENT

This article is based on work performed in the Pilarcos and
web-Pilarcos projects at the Department of Computer Science
at the University of Helsinki. The Pilarcos project was funded
by the National Technology Agency TEKES in Finland, Nokia,
SysOpen and Tellabs. In web-Pilarcos, active partners have
been VTT, Elisa and SysOpen. The work much integrates
with RM-ODP standards work, and recently has found an
interesting context in INTEROP NoE collaboration.

REFERENCES

[1] L. Kutvonen, T. Ruokolainen, J. Metso, and J.-P. Haataja, “Interoperabil-
ity middleware for federated enterprise applications in web-Pilarcos,” in
INTEROP-ESA’05, 2005.

[2] L. Kutvonen, “Automated management of inter-organisational
applications.” in Eight IEEE International Enterprise Distributed
Object Computing. IEEE Computer Society, 2002, pp. 27–38, http:
//www.cs.helsinki.fi/group/pilarcos/deliverables/kutvonen manageme%
nt edoc 2002.pdf.

[3] “Java2 Enterprise Edition,” Sun Microsystems Inc., May 2004, http:
//java.sun.com/j2ee/.

[4] “JBoss, J2EE Application Server,” May 2004, http://www.jboss.org.

[5] S. Neal, J. Cole, P. Linington, Z. Milosevic, S. Gibson, and S. Kulkarni,
“Identifying requirements for business contract language: a monitoring
perspective,” in Proceedings of the seventh International Enterprise
Distributed Object Computing Conference. IEEE Communications,
2003, pp. 50–61, http://www.cs.kent.ac.uk/pubs/2003/1807.

[6] N. Kavantzas, D. Burdett, and G. R. et al., Web Services Choreography
Description language, W3C, Oct. 2004, http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041012/, Working draft.

[7] S. Thatte, T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, , I. Trickovic, and S. Weer-
awarana, Business Process Execution Language for Web Services, BEA
Systems, IBM, Microsoft, SAP AG, and Siebel Systems, ftp://www6.
software.ibm.com/software/developer/library/ws-bpel.pdf.

[8] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, XML-
Signature Syntax and Processing, W3C, Feb. 2002, http://www.w3.org/
TR/xmldsig-core/.

[9] J.-P. Haataja, “Automatized monitoring of inter-enterprise interoper-
ability,” C-2005-17, Department of Computer Science, University of
Helsinki, 2005, in Finnish.

[10] L. Kutvonen, “Trading services in open distributed environments,” Ph.D.
dissertation, Department of Computer Science, University of Helsinki,
1998.

[11] Z. Milosevic, P. F. Linington, S.Gibson, S. Kulkarni, and J.Cole, “Inter-
organisational collaborations supported by e-contracts,” in The fourth
IFIP conference on E-commerce, E-Business, E-Government, Toulouse,
France, Aug. 2004.

[12] Information Technology – Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open
Distributed Processing., ISO/IEC JTC1, 1996, iS10746.

[13] L. Kutvonen, “Challenges for ODP-based infrastructure for managing
dynamic B2B networks,” in Workshop on ODP for Enterprise
Computing (WODPEC 2004), A. Vallecillo, P. Linington, and B. Wood,
Eds., 2004, pp. 57–64. [Online]. Available: http://www.lcc.uma.es/∼av/
wodpec2004/WODPEC2004-Proceedings.pdf

[14] G. Quirchmayr, Z. Milosevic, R. Tagg, J. Cole, and S. Kulkarni,
“Establishment of virtual enterprise contracts,” in Database and Expert
Systems Applications : 13th International Conference, vol. LNCS 2453.
Springer-Verlag, 2002, pp. 236–.

[15] R. Rabelo, L. M. Camarinha-Matos, and R. V. Vallejos, “Agent-
based brokerage for virtual enterprise creation in the moulds in-
dustry,” in E-business and Virtual Enterprises, 2000, http://gsigma-
grucon.ufsc.br/massyve.

[16] A. Daskalopulu1, T. Dimitrakos, and T. Maibaum, “Evidence-based
electronic contract performance monitoring,” Group Decision and Ne-
gotiation, vol. 11, no. 6, pp. 469 – 485, Nov. 2002.

[17] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig, “CrossFlow: Cross-
Organizational Workflow Management in Dynamic Virtual Enterprises,”
International Journal of Computer Systmes Sciences and Engineering,
vol. 15, no. 5, pp. 277–290, 2000.

[18] C. Schuler, H. Schuldt, G. Alonso, and H. H. Schek, “Workflows over
workflows: Practical experiences with the integration of sap r/3 busienss
workflows in wise,” in Enterprise-wide and Cross-enterprise Workflow
Managment: Concepts, Systems, Applications, Paderborn, Germany,
1999.

[19] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler, “The wise approach
to electronic commerce,” International Journal of Computer Systems
Science and Engineering, 2000.

[20] H. Weigand and W.-J. van den Heuvel, “Meta-patterns for electronic
commerce transactions based of flbc,” 1999.

[21] W.-J. van den Heuvel and H. Weigand, “Coordinating web-service
enabled business transactions with contracts,” in Proceedings of the
15th Conference on Advanced Information Systems Engineering (CAiSE
2003), vol. LNCS, 2681. Springer Verlag, 2003, pp. 568–583.

[22] L. Viljanen, S. Ruohomaa, and L. Kutvonen, “The TuBE approach to
trust management,” in Proceedings of the 3rd iTrust internal workshop,
2004, to appear.


