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Abstract—Service outsourcing is a business paradigm in
which an organization has a part of its business process
performed by a service provider. Process views are pivotal to
support this way of working. A process view shields secret
or irrelevant details from a private business process, thus
allowing an organization to reveal only public, relevant parts
of its private business process to partner organizations. The
paper introduces a conceptual framework to support service
outsourcing using process views. The framework gives rules
that can be used to construct a process view from a conceptual
process and vice versa. Based on these rules, the framework
defines several projection relations that can exist betweencon-
ceptual processes of consumers and providers and their process
views. Finally, the framework gives a set of configuration
options that specify which combinations of projection relations
are useful for service consumers and service providers. The
framework is applied in a BPEL-based case study.

Keywords-Cross-organizational; process trees; matching;
B2B; process visibility

I. I NTRODUCTION

The way companies collaborate with each other experi-
ences significant changes. With the emergence of service-
oriented computing (SOC), companies embrace the vision of
using web services for engaging dynamically and flexibly in
business-to-business (B2B) collaboration. Web services [3]
are an important vehicle for enabling organizations to co-
operate with each other and ways of inter-organizationally
linking business processes [13], [14] with orchestration
languages have been investigated, opening up the way to
service outsourcing.

Service outsourcing is a business paradigm in which a
service-consumer organization has a business-process part
performed by a service-provider organization. Outsourced
services need to expose details of the private provider
process in a process view [9], [11]. Service consumers can
use the process view to monitor and control the progress of
service execution [12] at the provider.

Figure 1 shows a specification framework for service
outsourcing proposed by Grefen et al. [11]. At the concep-
tual level, business processes are specified independent from
technology, so no infrastructure and collaboration details are
specified there. The internal level is infrastructure specific,

Figure 1. A three-level specification framework for serviceoutsourcing.

so depending on existing technology. Conceptual processes
are mapped to internal processes for enactment, see [25] for
details. Both conceptual level and internal level processes
are private to each organization. The external level contains
a shared process view, which is fuelled by the conceptual
process of the provider, and used by the consumer to monitor
the progress and interact with its own local, inhouse process.
The external process view is a projection of the conceptual
level model, in which business internals at the conceptual
level can be shielded from the environment. This paper
focuses on process models at the conceptual and external
level.

While the distinction between conceptual and external
processes is generally recognized as useful [5], [11], in
the context of service outsourcing, concrete guidelines for
constructing process views and relating them to underlying
conceptual process are missing. A few approaches tackle
the generic problem of constructing process views from
conceptual processes [9], [19] or the reverse direction [2],
but these approaches only consider one part of the problem,
and are not specific to service outsourcing. Instead, they
only support one kind of projection relation whereas service
outsourcing requires multiple.

This paper fills the gap by defining a framework that
uses projection rules for constructing a process view from
a conceptual process. The rules ensure that the process
view and its underlying process are consistent with each
other. Based on these projection rules, we define extreme



projection relations that may exist between a conceptual
process and a process view. Some of these projection
relations have been identified in a Petri-net setting [25]
before, but not in the context of abstraction and extension
rules for process views. Moreover, we also show that in
the context of outsourcing, only specific combinations of
projection relations for consumer and provider make sense.
We refer to related work [18], [25] for a mapping to the
internal level.

The remainder of this paper is structured as follows. As
preliminaries, Section II gives a running example of service
outsourcing. Section III introduces a formal definition of
process trees. Section IV defines projection rules on process
trees that can be used for constructing a process view.
The rules can also be used to extend an process view
into a conceptual process. Based on the projection rules,
Section V identifies several useful projection relations that
exist between a conceptual process and a process view.
Section VI defines configuration options for an outsourcing
collaboration. Section VII presents a case study showing
how the definitions and rules are applied in a BPEL setting.
Section VIII presents related work. Finally, Section IX
concludes this paper.

II. OVERVIEW

For the service-outsourcing approach of this paper, we
focus on block-structured process models [17], or structured
process models for short. Many existing process descrip-
tion languages, including industry standard BPEL [10] and
OWL-S [22], are structured into blocks. Each block has
a unique entry and a unique exit point, and blocks are
properly nested. If a structured process model is sequential,
its structure is similar to that of a structured program.
Block-structured process models have the advantage that
they do not contain structural errors such as deadlocks [17],
for example, the block-structure forbids that an OR-split is
immediately followed by an AND-join. Note that there exist
approaches for converting an unstructured process model
into a structured one [17], [27]. Extending the approach
to unstructured, error-free process models is part of future
work.

We introduce the problem of service outsourcing using
process views by means of an example, adapted from [31]. In
the next section, processes are formalized. Figure 2(a) shows
an example consumer-process view of a telecom company.
In the process, a GSM is delivered to a client. The bold lined
nodes are invokable nodes: the corresponding activities like
gG (get GSM) need to be initiated by the environment. All
the other nodes in Figure 2(a) are observable but not initiated
by the environment. The prefixc: for activities is used to
indicate that the activities are consumer-side activities.
The consumer process can be completely outsourced. In
Figure 2(b) and (c), two conceptual provider processes are
shown. The prefixespx: andpy: for an activity indicates that

Figure 2. Consumer-process view and provider processes.

the activity is done at the provider-side. Both processes share
some activities and ordering constraints with the consumer
process, for examplegG, but have some extra activities, that
are not always observable. The question arises whether the
consumer-process view is actually satisfied or implemented
by these two conceptual provider process. We will answer
this question in the next sections.

Finally, it must be mentioned that the consumer-process
view of Figure 2(a) is located on the external level of
a collaboration configuration while the provider processes
are located on the conceptual level (see Figure 1). The
conceptual consumer process (not shown here) is typically
partitioned in two parts that interact with each other. One of
the parts is outsourced through the consumer-process view,
while the other part interacts with the provider processes
through the consumer-process view. Section VII discusses
this issue in more detail. In the remainder of this paper, we
will use the example processes of Figure 2 to explain the
main concepts and rules of the outsourcing framework.

III. PROCESSTREES

As explained in the introduction, we consider structured
processes, of which examples are presented in Figure 2.
We formalize structured processes as trees, of which the
leaves specify the execution of basic activities and internal
nodes specify ordering constraints on their child nodes. The
following ordering types are considered. Asequencenode
specifies sequential execution of children nodes. Anand
node specifies concurrent execution. Anxor node specifies
one of its child nodes is executed. There are two kinds
of xor: an internal xor, where the choice is made by the
system, and anexternalxor, where the choice is made by the



environment of the system. This distinction between internal
and external choice is also made in other languages, notably
CSP [29] and YAWL [1]. Finally, a while node specifies
structured loops.

To cater for outsourcing, we employ a framework-
distinguishing feature, namely observable and invokable
activities [7], [28]. Observable activities are initiatedand
executed by the service provider, but can be monitored by
the service consumer. Invokable activities are initiated by the
service consumer (or requester) but executed by the service
provider. Thus, a service consumer can exert more control
over an invokable activity than over an observable activity.
The sets of observable and invokable activities are disjoint.
At the external level, each activity is either observable or
invokable. At the conceptual level, an activity may also
be not observable and not invokable, i.e., the collaborating
counterpart does not perceive the enactment effects.

We now present a formal definition for process
trees [8], [9]. A process tree P is a tuple
(A, N, child, type, rank, label) where:

• A is the set of basic activities. As subsets ofA, we
consider disjoint setsIn, Ob, so In ∩ Ob = ∅, where
In is the set of invokable activities, andOb is the set
of observable activities,

• N is the set of nodes,
• child ⊆ N × N is a relation such that(x, y) ∈ child

if x is a child ofy,
• type : N → {BASIC, SEQ, AND, EXOR, IXOR,

LOOP} is a function that assigns to each node its type
of which aBASIC node has no children, aSEQ node
specifies a sequential behavior, anAND node parallel
behavior, anIXOR andEXOR node exclusive behav-
ior, where the specific branch to be executed is decided
internally forIXOR and externally forEXOR nodes,
and aLOOP node specifies iterative behavior,

• rank : N → N is a partial function that is used to
indicate the ordering of children ofSEQ nodes. We
require that two different nodes with the same parent
have different ranks.

• label : N → A is a function labeling a basic node with
a basic activity.

We require that the start activities under anEXOR node are
invokable. That is, the selection which branch of theEXOR

is to be executed externally by invoking the corresponding
start activity of the branch.

For a noden, let children(n) = {x|(x, n) ∈ child}.
By children∗ and children+, we denote the reflexive-
transitive closure and the irreflexive-transitive closureof
children, respectively. Ifn ∈ children∗(n′), we say that
n is a descendant ofn′ and thatn′ is an ancestor ofn.
In particular, each noden is ancestor and descendant of
itself, so n ∈ children∗(n), but n 6∈ children+(n). We
require that thechild relation leads to a tree, so each node
has one parent, except one noder, which has no parent.

Additionally, it is required thatr is ancestor of every node
in N . These constraints ensure that nodes are structured in a
tree with rootr. Leaves of the tree areBASIC nodes while
internal nodes have typeSEQ, AND, EXOR, IXOR, and
LOOP .

An internal node may have only one child. In that case, if
the internal node is not aLOOP node, the internal nodei
can be safely removed by letting its childc become a child
of the parent ofi. We will use this transformation in the
sequel when constructing process views.

IV. PROJECTIONRULES

In this section, we define three projection rules for con-
structing an external-level process view from a process at
the conceptual level. The projection rules are useful for both
provider and consumer side processes. The three rules are:

• Hiding: a set of nodes that are executed at the con-
ceptual level are not shown in the process view at the
external level.

• Omitting: a set of nodes that do not need to be executed
at the conceptual level are not shown in the process
view at the external level.

• Aggregation: a set of nodes that are executed at the
conceptual level are aggregated into a single node in
the process view at the external level.

At the end of the section, we explain how the rules can
be used for constructing conceptual processes from external
process views.

We now explain and define the three rules. Each rule takes
as input a process treeP and a setS of nodes, and returns
an abstracted process treeP ′ in which the input nodes are
hidden, omitted, or aggregated into a new activity. For the
last rule, the new aggregate activity is an additional input.
In the descriptions, we use the concept of observable and
invokable nodes, which are nodes of which the activities are
labeled as observable or invokable, respectively.

Rule 1 (Hiding): A set of nodes is hidden in the view
if the nodes and their corresponding activities are not shown
in the process view, but still executed at the conceptual level.
This way, execution details from the conceptual process can
be hidden at the external level. If a single node is hidden,
this coincides with projection inheritance [2]. Followingthe
rules of projection inheritance, a hidden node can either be
shown at the external level as an internalτ -action or be
completely omitted.

However, hiding is only allowed if the setS of omitted
nodes only contains observable nodes. An invokable node
cannot be hidden, since the corresponding activity, which is
executed at the conceptual level, cannot be invoked if it is
hidden. Moreover, setS must form a complete branch of
a SEQ node or anAND node or aLOOP node, that is,
there is a noden ∈ S such thatn is ancestor of all nodes
in S, so S is a subtree with rootn, and the parent ofs is
a SEQ, AND, or LOOP node. IfS is a complete branch



of an EXOR or IXOR node, then hiding is not allowed,
since the branch cannot be omitted at the external level.

Let P be a process tree(A, N, child, type, rank, label).
If S ⊆ N is the set of nodes to be hidden from process
tree P , then the resulting process treeP ′ is defined as
(A′, N, child, type, rank, label′) where :

• A′ = { y | ∃x ∈ N ′ \ S : (x, y) ∈ label′ }
• label′ = label ⊕ {(n, τ) | n ∈ S}

To illustrate the definition, consider Figure 2(c). Node
p:cG can be hidden; it’s label then becomesτ . However,
nodep:DP cannot be hidden, since its parent is anIXOR

node. This means the provider decides internally whether
p:dP or one if its sibling nodes is entered. Thus,p:dP is
always executable, and cannot be omitted. Ifp:dP were
hidden, sop:dP is not shown in the process view, then the
process view would not offer the appropriate status to the
consumer ifp:dP is active at the conceptual level, since the
τ action hides the business activity actually being executed.

Rule 2 (Omitting): A set of nodes is omitted in the
process view if the nodes and their corresponding activities
are not shown in the process view and not executed at the
conceptual level. If a single node is omitted, this coincides
with protocol inheritance [2]. There is no restriction on
the set of omitted nodes, that is, omitted nodes can be
observable, invokable, or neither observable nor invokable.

However, omitting is only allowed if the setS of omitted
nodes forms a completeEXOR branch, or more precisely,
if there is a noden such thatS is a subtree with rootn,
so S = children∗(n), andn has anEXOR parent. In all
other cases, omitting the nodes results in a process tree with
deadlocks. For example, if in Figure 2(b) nodeSEQ3 and
its children are omitted, the conceptual process deadlocks,
sinceIXOR requiresSEQ3 is completed before it can start.

Note that if n has anIXOR parent, omitting is not
allowed. For example, if from Figure 2(b) nodep:dR is
omitted, then the provider-process view does not contain
this node, but the provider conceptual process still does,
and therefore may decide to execute it. Ifn has anEXOR

parent, this is not true, since there the consumer, not the
provider process, decides which choice is made

Let P be a process tree(A, N, child, type, rank, label).
If S ⊆ N is the set of nodes to be omitted from
process treeP , then the resulting process treeP ′ =
(A′, N ′, child′, type′, rank′, label′) is defined as:

• A′ = { y | ∃x ∈ N ′ : (x, y) ∈ label′ }
• N ′ = N \ S

• child′ = child ∩ (N ′ × N ′)
• type′ = type ∩ (N ′ ×

{BASIC, SEQ, AND, EXOR, IXOR, LOOP})
• rank′ = rank ∩ (N ′ × N)
• label′ = label ∩ (N ′ × A)

Note that therank numbers does not need to be updated,
so the rank of the nodes that are inP stays the same for

P ′, because after omitting nodes, still two nodes sharing the
same parent have different ranks.

The omitting rule can be applied to Figure 2(b). By
omitting nodep:wE, nodeEXOR has one child only. As
explained in Section III, thenEXOR can be eliminated too,
and thusp:wP becomes child ofSEQ1.

Rule 3 (Aggregation):If nodes are aggregated, they
are still executed at the conceptual level, but not explicitly
shown in the process view at the external level. Instead, a
new nodenagg with a new activityanew is shown. However,
this is only allowed if each of the aggregated nodes is
observable, so not invokable.

For the purpose of this paper, a set of nodesS is an aggre-
gate if they form a subtree, so they share a common ancestor
n of which all descendants are inS, soS = children∗(n).
For example, in Figure 2(b) set{SEQ3,p:dT,p:DRo} is an
aggregate, sinceSEQ3 is common ancestor to all nodes in
the set, and all descendants ofSEQ3 are in the set. For a
more complex definition, that allows an aggregate to have
multiple common ancestors, which share the same parent
that is not in the aggregate, we refer to [9].

Let agg be an aggregate with common ancestorn for
process treeP = (A, N, child, type, rank, label), soagg ⊆
N , and let anew be the new basic activity that replaces
the activities corresponding to the nodes inagg. Then the
process tree under aggregationP ′ is constructed by replacing
agg with a new nodenagg 6∈ N that does not get any
children in the process viewP ′ and gets labelanew. Node
nagg is attached to the parentl of n.

Formally, P ′ = (A′, N ′, child′, type′, rank′, label′)
where

• A′ = { y | ∃x ∈ N ′ : (x, y) ∈ label′ } ∪ {anew}
• N ′ = N \ agg ∪ {nagg}
• child′ = (child ∩ (N ′ × N ′)) ∪ {(nagg, l)}
• type′ = type ∩ (N ′ ×

{BASIC, SEQ, AND, EXOR, IXOR, LOOP})
∪{(nagg, BASIC)}

• rank′ = (rank ∩ (N ′ × N)) ∪ {(nagg, rank(n))}
• label′ = (label ∩ (N ′ × A)) ∪ {(nagg, anew)}

The aggregation rule can be applied to Figure 2(b): node
SEQ3 and its children can be aggregated into nodep:sR
(which becomesc:sR at the consumer side in Figure 2(a)).

Example: Now that we have explained and illustrated
the abstraction rules, we revisit the example processes in
Figure 2. Let Figure 2(a) specify the process view and let
Figure 2(b) and (c) be provider processes. Then Figure 2(a)
is a correct view of Figure 2(b), but not of Figure 2(c).
For the latter, no hiding or omitting rule can be applied to
the nodep:dP, which has no counterpart in the consumer-
process view.

Extending process views:The projection rules are not
only useful for constructing external process views from
conceptual processes, but also for deriving a conceptual
process from a process view. The conceptual process can be



created in a process editor by adding or inserting activities
and control flow to the process view. If this extension is
equivalent to applying the thee projection rules in a certain
order, the derivation is allowed. For example, this allows
the derivation of Figure 2(b) from Figure 2(a) since the
extensions can be omitted and aggregated.

V. PROJECTIONRELATIONS BETWEENPROCESSV IEW

AND CONCEPTUAL PROCESS

In the previous section, we defined general rules that
can be used to transform a conceptual process to a process
view and vice versa. In this section, we look at possible
projection relations that may exist between a process view
and a conceptual process. Each projection relation is realized
using a combination of the projection rules. Table I lists the
extreme projection relations we consider. Black box, glass
box, and open box have been identified in a web service
outsourcing setting by Grefen et al. [12] while Norta [25]
has identified gray-box and white-box projection in a Petri-
net setting. All the other possible projection relations are
hybrid forms of these extreme relations. In the remainder
of this section, we explain the projection relations listedin
Table I.

Table I
EXTREME PROJECTION RELATIONS BETWEEN CONCEPTUAL PROCESS

AND EXTERNAL PROCESS VIEW.

Black-box projectionoccurs if the external process tree
contains only a single node with a single observable activity.
Thus, the nodes in the conceptual process are aggregated or
hidden into this single node in the process view. Invokable
nodes cannot be hidden or aggregated, so the conceptual
process does not contain any invokable nodes. Moreover,
since the external process tree cannot contain anyEXOR

node with invokable nodes as descendants, omitting is not
used.

Glass-box projectionis realized if the process view only
contains observable activities; the consumer cannot invoke
any of the provider activities. A glass box view can be
obtained through hiding and aggregation from the concep-
tual process. Since the process view does not contain any

invokable nodes, omitting is not used. Black-box projection
can be seen as a special case of glass-box projection.

Gray-box projectionis established if the process view is
obtained through hiding and omitting from the conceptual
process. The process view can contain both observable
and invokable activities. However, aggregation is not used.
Norta [25] identifies gray box by only applying hiding as
abstraction operator.

Open-box projectionis achieved if the process view is
obtained through hiding, omitting, and aggregation from
the conceptual process. The process view can contain both
observable and invokable activities. Thus, the consumer can
influence the progress at the provider side.

Finally, to use awhite-box projection, the process view
is identical to the conceptual process. Thus, none of the
abstraction rules is applied, and the consumer has a direct
view on the conceptual process of the provider. A white box
can be seen as a special case of an open box.

Revisiting the processes in Figure 2, we have that the
consumer-process view in Figure 2(a) is white box related to
the conceptual consumer process if that process is identical
to Figure 2(a). Next, Figure 2(a) is related by an open-
box projection to Figure 2(b), since both omitting and
aggregation rules are applied. Both provider processes in
Figure 2(b) and (c) cannot be related to Figure 2(a) using
black-box or glass-box projections, since both processes
contain at least one invokable node.

In summary, the projection relations support a collabo-
ration scenario in which collaborating parties can expose
in flexible ways only so many details of their conceptual
processes as they deem necessary. However, as we show
in the next section, not every combination of projection
relations for consumer and provider-side is suitable for
achieving external level harmonization between consumer
and provider.

VI. COLLABORATION CONFIGURATION FOR

OUTSOURCING

While the previous section identified some extreme pro-
jection relations that can exist between a conceptual process
and an external process view, we now turn to the concrete
setting of service outsourcing between a service consumer
and a service provider. We first list the possible configuration
options that define how the conceptual processes of the
consumer and provider and the shared process view can
relate to each other.

A. Configuration Options

This section presents the possible configuration options
for a collaboration between a service consumer and a
service provider. The options are visualized in Figure 3. As
explained in the introduction, we abstract from the internal
level of the three-level model of Figure 1.



Figure 3. A collaboration configuration.

The conceptual levels of Figure 3 show on the left and right
side the consumer and provider process, respectively. For
both parties, the useful projection relations are depictednear
the projection arrow. In the middle of Figure 3, the tuples
with projection combinations represent the meaningful op-
tions for establishing process views on the external level.
We now explain and motivate these combinations.

If the service consumer performs a black-box projection,
the service provider only may use a black-box projection. All
other projections result in processes having more than one
activity, and thus the resulting process view of the provider
does not equal the consumer-process view. Likewise, if
the service consumer performs a glass-box projection, the
service provider can only use a glass-box projection, since
that is the only projection relation resulting in an external
process view with only observable activities. If a service
consumer performs an open-box or white-box projection,
the service provider may respond with either a gray-box,
open-box, or white-box projection. Since the consumer-view
may contain invokable activities, black-box and glass-box
projections are not applicable

Finally, a service consumer cannot use a gray-box projec-
tion. To see why, suppose the outsourced conceptual process
of the service consumer contains an invokable node that is
omitted in the consumer-process view. Since the invokable
node is not in the process view, the provider process at
the conceptual level does not need to have a corresponding
invokable node. However, since the original node at the
consumer-side is invokable, that node can be invoked by
some other internal processes of the consumer that interacts
with the process that is being outsourced. But then the
provider process cannot replace the outsourced consumer
process. Therefore, if the conceptual process of the consumer
contains an invokable node, only open-box and white-box
projection are applicable.

B. Enactment Deployment

Since an established collaboration configuration is dis-
tributed on several levels, the deployment requires special
attention. Given that internal business process content from
different parties is projected to the external level in different

ways, it must be ensured before enactment that a collabo-
ration configuration is correct and deadlock free. For this
purpose, collapsing the consumer and provider processes is
useful. Also, collapsing is useful to show how the actual
outsourcing can take place during enactment.

Figure 4. A collapsed collaboration configuration.

Figure 4 shows the application of an existing collapsing
method [25] to the example processes in Figure 2(a) and
(b), for which the collaboration configuration is white-box
projection for the consumer and gray-box projection for the
provider. The outsourced consumer process is embedded in
a larger consumer process, which is shown on the top left
of Figure 4. The subtree belowSCOPE is the conceptual
consumer process that is outsourced; it is identical to Fig-
ure 2(a). Note that consumer activitycC invokes outsourced
activity gG while cN invokes wP. The provider process
on the bottom left is identical to Figure 2(b). On the right
hand of Figure 4, the collapsed collaboration configuration
is depicted in which the consumer scope of the overall
consumer process is replaced with the provider process.

The resulting collapsed configuration on the right side of
Figure 4 needs to be evaluated with tool support for correct-
ness issues, e.g., deadlocks or lack of synchronization. Ifthe
resulting process tree is represented in BPEL, it is possible
to verify properties if, e.g., a mapping to place/transition-
nets is performed [20].

Since the collapsing method requires that the conceptual-
level processes of all collaborating domains are disclosed,
the replacement must be performed by an independent
trusted third party. Otherwise, it is likely that business secrets
are disclosed, which might result in a loss of competitive
advantages. Alternatively, the collapsing can be guaranteed
to be correct if the projection options identified in Sec-
tion VI-A are followed. Then deadlocks cannot occur, since
for example invokable nodes of the consumer are guaranteed



to be preserved at the provider side.
Finally, it must be stressed that BPEL currently does not

cater for constructs that can link the respected processes
on the different levels of a collaboration configuration. For
that it would be necessary to have extra language constructs
available that link the various processes so that the enactment
progress is monitorable in a flexible way. For example, a
service consumer may find it uneconomical to monitor the
enactment progress of every basic activity. Such a situation
could also be undesirable for the service provider, who does
not want to be monitored extensively during enactment. In
Figure 4, links are used for starting and terminating the
provider process. However, if the collaborating parties agree,
cross-platform linking constructs should also be available
to observe the enactment progress of only specific basic
activities contained in a process tree. In [25], [26] such
monitorability constructs are explained in further detail.

VII. C ASE STUDY

To show the feasibility of the approach, we next discuss
a case study about inter-organizational business process
collaboration from the IST CrossWork1 project. An example
of a BPEL process is depicted in Figure 5(a), which is a
conceptual-level process of a service consumer. In Figure 5,
several details are abstracted from, e.g., the full definitions
of partner-links, variables, and so on. Instead, the focus lies
on the structural business-process behavior.
The process behavioral definition of the example in Fig-
ure 5(a) starts with a sequence node in Line 14 that lists the
ordering of a watertank as first task. Then a flow construct
has two parallel branches embedded in sequences. The first
branch starts with an invoke node for preparing the water-
tank specification in Line 18, which is linked to another
invoke node in Line 27 to indicate that the latter node is
invokable.

The distinction between invokable and observable is not
made in current BPEL, since BPEL does not fully support
service outsourcing [12]. For that purpose, we use a slight
extension to standard BPEL in Line 5 of Figure 5(a). Nodes
that are either invokable or observable specify that with a
status attribute, e.g., in Line 27 the receive node has the
status invokable. In [12], suitable extension suggestionsfor
BPEL are contained.

In Line 27, the invoke node is embedded in a scope
that demarcates the part of the conceptual-level process that
is sourced from a collaborating counterpart, which is an
approach in line with proposed business-process separation
and collaboration methods [16], [25]. After configuring the
production resources, a flow construct embeds two parallel
nodes for producing the tank body and the pump engine.
After that, a node in Line 34 starts the assembly of all

1CrossWork: Cross-Organizational Workflow Formation and Enactment,
IST no. 507590. http://www.crosswork.info

parts into the finished water tank. That node of Line 34 is
also linked with the invoke node for preparing the payment
that is located in Line 21. Finally, after all tasks in the
flow are completed, payment takes place. In Figure 5(b),
the projected process view is listed and both the conceptual
and external processes are visualized as process trees.

In Figure 6, the corresponding provider process is de-
picted that is located on the conceptual level. The BPEL
process contains a similar structure as the process view
in Figure 5(b). However, additionally inserted nodes are
depicted as dashed boxes in the process tree. Since these
nodes only exist within the domain of the service consumer,
the service provider can not be aware of them during
enactment time, although the perceived process behavior
conforms to the specifications of the external level. Likewise,
the service provider is not aware of the nodes in Figure 5(a)
that are located outside of the scope demarcation. Again,
dashed boxes depict in the corresponding process tree.

Realizing service outsourcing as put forward in this paper,
requires new setup and enactment application systems with
components that populate the three-level framework of Fig-
ure 1 with required functionality. Due to page limitation, we
refer to [25] for a service-outsourcing reference architecture.
An implementation of this architecture was carried out dur-
ing the CrossWork project. In [23], [24] further information
about the implemented proof-of-concept prototype and the
CrossWork project can be found.

VIII. R ELATED WORK

In the area of inter-organizational business-process col-
laboration, related work exists. We focus on the two most
related sub-areas: process views and visibility patterns.

A. Process Views

The importance of process views for service outsourcing
has already been recognized in previous papers [6], [12],
[30]. However, these approaches typically focus on how
a process-view can be supported at run-time and do not
address how a process view can actually be constructed.
Chebbi et al. [6] also consider the construction of process
views, but use only one projection relation. The framework
defined in this paper is most closely related to the work of
Grefen et al. [12], which defines several of the projection
options identified in Section V, but the framework can also
be combined with the other papers.

Other papers have studied how process views can be
constructed [2], [4], [9], [11], [19]. Van der Aalst and
Weske [2] define how local processes can be derived from
a global process view. The projection relations they identify
correspond to hiding and omitting. Bobrik et al. [4] study
the construction of personalized role-based process views.
Eshuis and Grefen [9] and Liu and Shen [19] focus on how
a process view can be derived from a conceptual process.
Aggregation is used as a key abstraction principle in both



Figure 5. The conceptual and external processes of the service consumer.

Figure 6. The conceptual processes of the service provider.

approaches, while Eshuis and Grefen also use a form of
hiding. None of these process-view approaches focus on
service outsourcing, and consequently none identify projec-
tion options and meaningful configurations for partners in
an outsourcing collaboration.

Preuner and Schrefl [28] define an approach for combining
several process-based services into a compound process.
They define two consistency relations between the composed
process view and the underlying processes: observability
consistency and invokability consistency. Observabilitycon-

sistency resembles hiding, whereas invokability consistency
resembles omitting. They do not consider aggregation. Also,
they do not consider different projection options and collab-
oration configurations.

Next, the BPEL standard [10] distinguishes between ab-
stract and executable processes where abstract processes
correspond to process views. However, no concrete guide-
lines are offered for relating abstract and executable pro-
cesses. Khalaf et al. [15] discuss abstract patterns suc for
relating an abstract process to an executable process. The



patterns related to the framework in our paper are export
(creating an abstract process from executable process) and
import (creating an executable process from an abstract
process). The three projection rules in Section 4 can all
be used in combination with the export and import pattern.
Martens [21] proposes a Petri net-based approach to check
the consistency of an abstract and an executable BPEL
process. König et al. [18] and Zhao et al. [32] define
several syntactic guidelines for transforming an abstract
BPEL process into an executable one. The rules employ
some kind of hiding and omitting. None of these papers
distinguishes between different projection relations andnone
consider aggregation.

Finally, there is theoretical work on the problem of
compatibility checking of Petri-net based services [20]. In
principle, this work could be used to check the compatibility
of a consumer and a provider process. However, there any
combination of services that does not deadlock is correct,
which is not suitable for outsourcing. The requirements for
outsourcing are much more strict, since a process view must
mirror the provider process. Thus, even though a consumer
process and provider process are compatible, they may not
be in an outsourcing relation, since for example the provider
can remove some observable activity that the consumer
needs to monitor.

B. Related Process-Visibility Patterns

In [25], [26], so-called contractual-visibility patternsare
identified and specified for inter-organizational business-
process collaboration, which also assume that a partitioned
conceptual-level process, i.e., a sphere, is projected to an
external collaboration level. However, differently to the
process-view patterns described in Section V, the exploration
of contractual-visibility patterns are Petri-net based. For the
latter patterns, inblack-box visibility, only the interfaces
of a sphere are projected to the external level.White-box
visibility means that all nodes of a sphere are projected to
the process of the external level. Finally,gray-boxvisibility
results in the interfaces and a subset of the nodes and arcs of
the conceptual-level sphere being projected to the external
level.

The main difference between contractual-visibility and
process-view patterns is that the latter also incorporate the
accessibility of projected nodes i.e., invokable or observ-
able. The contractual-visibility patterns only focus on the
relationship between the sets of nodes in the processes of
the conceptual and external level and accessibility is covered
with separate so-called monitorability patterns [25]. Hence,
all process-view patterns can be realized with combining the
contractual-visibilities with monitorability patterns.

IX. CONCLUSION

We have proposed a conceptual framework for service
outsourcing, in which a service consumer outsources parts

of its business process to a service provider. To support
outsourcing, the distinction between observable and invok-
able activities is vital. The framework distinguishes between
process views and conceptual processes. It defines several
rules to construct process views from conceptual processes
and vice versa. The key abstraction principles used in the
rules are hiding, omitting and aggregation.

Next, based on the abstraction rules, the framework
defines several extreme projection relations that can exist
between a process view and conceptual process. These
projection relations also give insight into the possible types
of a process view. We have shown that existing approaches
for process views from literature mostly focus on only one of
these projection relations. We believe the projection relations
and especially the projection rules are key to realize any
concrete outsourincing relation in practice, but more analysis
using case studies is needed to assess whether the framework
is complete.

We also identified collaboration configurations for a ser-
vice consumer and service provider. In particular, we have
shown that not every combination of projection relations
for provider and consumer-side processes is meaningful. For
evaluation and verification purpose of collaboration config-
urations, a collapsing method is proposed that establishes
a process tree in which the consumer scope of the main
process is replaced by the provider process. Since it is
important that the collaborating counterparts retain their
business secrets, such a collapsing method needs to be
carried out by a trusted third party.

Open issues for future work research focus mainly on sup-
porting applications for setting up and enacting collaboration
configurations. As process description language, we will
consider BPEL. However, BPEL needs to be extended with
additional language constructs to allow a service consumer
to start and stop the enactment of provider processes and it
must also be possible for a service consumer to remotely
observe the enactment progress of the provider process. For
a distributed setup and enactment of a collaboration config-
uration, it is necessary to develop a reference architecture
for supporting application systems. Another topic for future
research is applying process matching to ontology languages
like OWL-S.
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