A Framework for Service Outsourcing using Process Views

Rik Eshuis Alex Norta
Eindhoven University of Technology, Department of Computer Science,
Faculty of Technology and Management, P.O. Box 68 (Gustaf Alstromin katu 2b),
Department of Information Systems, FI-00014 University of Helsinki, Finland
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands anorta@cs.helsinki.fi

h.eshuis@tue.nl

Abstract—Service outsourcing is a business paradigm in
which an organization has a part of its business process
performed by a service provider. Process views are pivotalot Yy R V R
support this way of working. A process view shields secret [profe
or irrelevant details from a private business process, thus
allowing an organization to reveal only public, relevant pats

Conceptual Process Conceptual Process

map
of its private business process to partner organizations. fe h 4

paper introduces a conceptual framework to support service
outsourcing using process views. The framework gives rules
that can be used to construct a process view from a conceptual
process and vice versa. Based on these rules, the framework
defines several projection relations that can exist betweeoon-
ceptual processes of consumers and providers and their press
views. Finally, the framework gives a set of configuration
options that specify which combinations of projection reldions
are useful for service consumers and service providers. The so depending on existing technology. Conceptual processes

Internal Process Internal Process

Service consumer Service provider

Figure 1. A three-level specification framework for servagsourcing.

framework is applied in a BPEL-based case study. are mapped to internal processes for enactment, see [25] for
Keywords-Cross-organizational; process trees; matching; details. Both conceptual level and internal level procgesse
B2B; process visibility are private to each organization. The external level costai
a shared process view, which is fuelled by the conceptual
|. INTRODUCTION process of the provider, and used by the consumer to monitor

The way companies collaborate with each other experilhe progress and interact with its own local, inhouse praces

ences significant changes. With the emergence of servicd-N€ external process view is a projection of the conceptual
oriented computing (SOC), companies embrace the vision deV€! model, in which business internals at the conceptual
using web services for engaging dynamically and flexibly inlevel can be shielded from the environment. This paper
business-to-business (B2B) collaboration. Web serviggs [focuses on process models at the conceptual and external
are an important vehicle for enabling organizations to colevel.

operate with each other and ways of inter-organizationally While the distinction between conceptual and external
linking business processes [13], [14] with orchestrationprocesses is generally recognized as useful [5], [11], in
languages have been investigated, opening up the way tHe context of service outsourcing, concrete guidelings fo
service outsourcing. constructing process views and relating them to underlying

Service outsourcing is a business paradigm in which &onceptual process are missing. A few approaches tackle
service-consumer organization has a business-process p#te generic problem of constructing process views from
performed by a service-provider organization. Outsourcegonceptual processes [9], [19] or the reverse direction [2]
services need to expose details of the private providebut these approaches only consider one part of the problem,
process in a process view [9], [11]. Service consumers cagnd are not specific to service outsourcing. Instead, they
use the process view to monitor and control the progress d#nly support one kind of projection relation whereas servic
service execution [12] at the provider. outsourcing requires multiple.

Figure 1 shows a specification framework for service This paper fills the gap by defining a framework that
outsourcing proposed by Grefen et al. [11]. At the concepuses projection rules for constructing a process view from
tual level, business processes are specified independemt fr a conceptual process. The rules ensure that the process
technology, so no infrastructure and collaboration det@ie view and its underlying process are consistent with each
specified there. The internal level is infrastructure dfieci other. Based on these projection rules, we define extreme

Consumer process SEQ: sequence))
EXOR: external exclusive choice

IXOR: internal exclusive choice

cG..check GSM gG..get GSM

dP..deliver priority wP..wrap up parcel
sR..schedule route

projection relations that may exist between a conceptual
process and a process view. Some of these projection
relations have been identified in a Petri-net setting [25]
before, but not in the context of abstraction and extension
rules for process views. Moreover, we also show that in
the context of outsourcing, only specific combinations of

WE..wrap up envelope
dT..determine transportation
dRo..determine route

projection relations for consumer and provider make sense. e o over parce!
We refer to related work [18], [25] for a mapping to the (@ dE..deliver express
internal level. Provider process X

The remainder of this paper is structured as follows. As
preliminaries, Section Il gives a running example of sexvic
outsourcing. Section Il introduces a formal definition of
process trees. Section IV defines projection rules on psoces
trees that can be used for constructing a process view.
The rules can also be used to extend an process view
into a conceptual process. Based on the projection rules,
Section V identifies several useful projection relationat th
exist between a conceptual process and a process view.
Section VI defines Conﬁguration OptionS for an OUtSOUrCing Figure 2. Consumer-process view and provider processes.
collaboration. Section VIl presents a case study showing
how the definitions and rules are applied in a BPEL setting.

Section VIII presents related work. Finally, Section IX
concludes this paper.

Provider process Y

Conceptual Level

(b) (c)

the activity is done at the provider-side. Both processasessh
some activities and ordering constraints with the consumer
Il. OVERVIEW process, for examplgG, but have some extra activities, that

For the service-outsourcing approach of this paper, wére not always obse_rvab_le. The questior_l arise_s whether the
focus on block-structured process models [17], or strectur CONSUMET-ProCesS VIEW 1S actgally satisfied or |m|_3Iemented
process models for short. Many existing process descri py these two conceptual provider process. We will answer

tion languages, including industry standard BPEL [10] anaﬂ"s_(west'_On in the next S(_actlons.

OWL-S [22], are structured into blocks. Each block has _Fnally, it must be mentioned that the consumer-process
a unique entry and a unique exit point, and blocks are/iew of F'g!”e 2(a)_ IS chated on the ext_ernal level of
properly nested. If a structured process model is seqtlentiaa collaboration configuration while the prowd_er processes
its structure is similar to that of a structured program.are located on the conceptual level (see Flgur.e 1)._The
Block-structured process models have the advantage th§PNceptual consumer process (not shown here) is typically
they do not contain structural errors such as deadlocks [17 artltlonec_zl in two parts that interact with each other. Ohe_o
for example, the block-structure forbids that an OR-split i 1€ Parts is outsourced through the consumer-process view,
immediately followed by an AND-join. Note that there exist while the other part interacts W't_h the prqwder Processes
approaches for converting an unstructured process modgl‘_rm_Jgh th.e CONSUMer-process view. Section _/” discusses
into a structured one [17], [27]. Extending the approachth,'s issue in more detail. In the remamder of this paper, we
to unstructured, error-free process models is part of éutur Will use the example processes of Figure 2 to explain the
work. main concepts and rules of the outsourcing framework.

We introduce the problem of service outsourcing using
process views by means of an example, adapted from [31]. In
the next section, processes are formalized. Figure 2(aysho As explained in the introduction, we consider structured
an example consumer-process view of a telecom compangrocesses, of which examples are presented in Figure 2.
In the process, a GSM is delivered to a client. The bold linedVe formalize structured processes as trees, of which the
nodes are invokable nodes: the corresponding activitkes li leaves specify the execution of basic activities and irgtern
0gG (get GSM) need to be initiated by the environment. All nodes specify ordering constraints on their child node® Th
the other nodes in Figure 2(a) are observable but not iediat following ordering types are considered. sequencenode
by the environment. The prefig: for activities is used to specifies sequential execution of children nodes. &
indicate that the activities are consumer-side activities node specifies concurrent execution. Aor node specifies
The consumer process can be completely outsourced. lone of its child nodes is executed. There are two kinds
Figure 2(b) and (c), two conceptual provider processes aref xor: an internal xor, where the choice is made by the
shown. The prefixepx: andpy: for an activity indicates that system, and aaxternalxor, where the choice is made by the

Ill. PROCESSTREES

environment of the system. This distinction between irdern Additionally, it is required that is ancestor of every node
and external choice is also made in other languages, notablg N. These constraints ensure that nodes are structured in a
CSP [29] and YAWL [1]. Finally, a while node specifies tree with rootr. Leaves of the tree atBASIC nodes while
structured loops. internal nodes have typeFEQ, AND, EXOR, IXOR, and

To cater for outsourcing, we employ a framework- LOOP.
distinguishing feature, namely observable and invokable An internal node may have only one child. In that case, if
activities [7], [28]. Observable activities are initiatethd the internal node is not AOOP node, the internal node
executed by the service provider, but can be monitored bgan be safely removed by letting its chitdoecome a child
the service consumer. Invokable activities are initiatgethe ~ of the parent ofi. We will use this transformation in the
service consumer (or requester) but executed by the servieaquel when constructing process views.
provider. Thus, a service consumer can exert more control
over an invokable activity than over an observable activity
The sets of observable and invokable activities are disjoin [N this section, we define three projection rules for con-
At the external level, each activity is either observable orstructing an external-level process view from a process at
invokable. At the conceptual level, an activity may also the conceptual level. The projection rules are useful fahbo
be not observable and not invokable, i.e., the collabogatin Provider and consumer side processes. The three rules are:

IV. PROJECTIONRULES

counterpart does not perceive the enactment effects. « Hiding: a set of nodes that are executed at the con-
We now present a formal definition for process ceptual level are not shown in the process view at the
trees [8], [9]. A process treeP is a tuple external level.
(A, N, child, type, rank, label) where: « Omitting: a set of nodes that do not need to be executed
« A is the set of basic activities. As subsets &f we at the conceptual level are not shown in the process
consider disjoint set¢n, Ob, so In N Ob = 0, where view at the external level.
In is the set of invokable activities, ar@b is the set « Aggregation: a set of nodes that are executed at the
of observable activities, conceptual level are aggregated into a single node in
o N is the set of nodes, the process view at the external level.
e child C N x N is a relation such thatr,y) € child At the end of the section, we explain how the rules can
if z is a child ofy, be used for constructing conceptual processes from externa

e type : N — {BASIC,SEQ,AND,EXOR,IXOR, process views.
LOOP} is a function that assigns to each node its type We now explain and define the three rules. Each rule takes
of which aBASIC node has no children,8£Q node as input a process tre and a setS of nodes, and returns
specifies a sequential behavior, 4 D node parallel an abstracted process tré¥ in which the input nodes are
behavior, af X OR and EX OR node exclusive behav- hidden, omitted, or aggregated into a new activity. For the
ior, where the specific branch to be executed is decidethst rule, the new aggregate activity is an additional input
internally for / XOR and externally folEXOR nodes, In the descriptions, we use the concept of observable and

and aLOOP node specifies iterative behavior, invokable nodes, which are nodes of which the activities are
« rank : N — N is a partial function that is used to labeled as observable or invokable, respectively.
indicate the ordering of children o £Q nodes. We Rule 1 (Hiding): A set of nodes is hidden in the view
require that two different nodes with the same parenif the nodes and their corresponding activities are not show
have different ranks. in the process view, but still executed at the conceptuallev
« label : N — Ais a function labeling a basic node with This way, execution details from the conceptual process can
a basic activity. be hidden at the external level. If a single node is hidden,

We require that the start activities under@X OR node are this coincides with projection inheritance [2]. Followitige
invokable. That is, the selection which branch of & OR rules of projection inheritance, a hidden node can either be
is to be executed externally by invoking the correspondingshown at the external level as an internahction or be
start activity of the branch. completely omitted.

For a noden, let children(n) = {z|(z,n) € child}. However, hiding is only allowed if the sef of omitted
By children* and children™, we denote the reflexive- nodes only contains observable nodes. An invokable node
transitive closure and the irreflexive-transitive closwrie cannot be hidden, since the corresponding activity, which i
children, respectively. Ifn € children*(n'), we say that executed at the conceptual level, cannot be invoked if it is
n is a descendant of’ and thatn’ is an ancestor of:. hidden. Moreover, sef must form a complete branch of
In particular, each node is ancestor and descendant of a SEQ node or anAN D node or aLOOP node, that is,
itself, son € children*(n), but n & children*(n). We there is a node: € S such thatn is ancestor of all nodes
require that thehild relation leads to a tree, so each nodein S, so S is a subtree with rook, and the parent of is
has one parent, except one nodewhich has no parent. aSEQ, AND, or LOOP node. IfS is a complete branch

of an EXOR or IXOR node, then hiding is not allowed,
since the branch cannot be omitted at the external level.
Let P be a process tre@A, N, child, type, rank, label).

P’, because after omitting nodes, still two nodes sharing the
same parent have different ranks.
The omitting rule can be applied to Figure 2(b). By

If S C N is the set of nodes to be hidden from processomitting nodep:wE, node EXOR has one child only. As

tree P, then the resulting process tréd® is defined as
(A, N, child, type, rank, label’) where :

e A/={y|IxeN\S:(z,y) € label’ }

o label’ =label ® {(n,7) | n € S}

To illustrate the definition, consider Figure 2(c). Node
p:cG can be hidden; it's label then becomesHowever,
nodep:DP cannot be hidden, since its parent isBKOR

node. This means the provider decides internally whether

p:dP or one if its sibling nodes is entered. ThysdP is
always executable, and cannot be omittedpiiP were
hidden, sop:dP is not shown in the process view, then the
process view would not offer the appropriate status to th
consumer ifp:dP is active at the conceptual level, since the
7 action hides the business activity actually being execute
Rule 2 (Omitting): A set of nodes is omitted in the

process view if the nodes and their corresponding actiitie
are not shown in the process view and not executed at the

conceptual level. If a single node is omitted, this coinside

with protocol inheritance [2]. There is no restriction on N and leta
the set of omitted nodes, that is, omitted nodes can bg.’ new

observable, invokable, or neither observable nor invakabl
However, omitting is only allowed if the sét of omitted
nodes forms a complete X OR branch, or more precisely,
if there is a noder such thatS is a subtree with root,
s0 S = children*(n), andn has anEXOR parent. In all

e

explained in Section Ill, theBEXOR can be eliminated too,
and thusp:wP becomes child oSEQ1.

Rule 3 (Aggregation):If nodes are aggregated, they
are still executed at the conceptual level, but not expyicit
shown in the process view at the external level. Instead, a
new nodenq,, With a new activitya,,., is shown. However,
this is only allowed if each of the aggregated nodes is
observable, so not invokable.

For the purpose of this paper, a set of noflés an aggre-
gate if they form a subtree, so they share a common ancestor
n of which all descendants are 8, so S = children*(n).

For example, in Figure 2(b) s¢ SEQ3,p:dT,p:DRo} is an
aggregate, sincBEQ3 is common ancestor to all nodes in

c}he set, and all descendants ®iEQ3 are in the set. For a

more complex definition, that allows an aggregate to have
multiple common ancestors, which share the same parent
that is not in the aggregate, we refer to [9].
Let agg be an aggregate with common ancestoffor
process tred = (A, N, child, type, rank, label), SOagg C
be the new basic activity that replaces
the activities corresponding to the nodesdigy. Then the
process tree under aggregatiBhis constructed by replacing
agg with a new nodenq,, ¢ N that does not get any
children in the process view’ and gets labet,,.,,. Node
Nagg IS attached to the parehtof n.

Formally, P’ (A, N', child', type’, rank’, label)

other cases, omitting the nodes results in a process trée wit, e

deadlocks. For example, if in Figure 2(b) no8EQ3 and

its children are omitted, the conceptual process deadlocks

sincelXOR requiresSEQ3 is completed before it can start.
Note that if n has anIXOR parent, omitting is not
allowed. For example, if from Figure 2(b) nogedR is

omitted, then the provider-process view does not contain
this node, but the provider conceptual process still does,

and therefore may decide to execute itnlhas anEXOR

parent, this is not true, since there the consumer, not th‘la‘h.e

provider process, decides which choice is made

Let P be a process tre@A, N, child, type, rank, label).
If S C N is the set of nodes to be omitted from
process treeP, then the resulting process treB’ =
(A", N, child , type’,rank’, label’) is defined as:

e A/={y|3IxeN:(x,y) €label’ }

e NN=N\S
e child = childN (N’ x N')
o type’ = type N (N’ X

(BASIC,SEQ, AND, EXOR,IXOR, LOOP})
rank’ = rank N (N’ x N)
o label’ = label N (N’ x A)

e A={y|FzeN:(x,y) €label’ } U{anew}
o N'=N\aggU {nag}
o child = (childN (N’ x N")) U{(nagq,1)}
o type' type N (N’
{BASIC,SEQ,AND,EXOR,IXOR, LOOP})
U{(nagq, BASIC)}
o rank’ = (rank N (N’ x N)) U {(nqgq, rank(n))}
label” = (label N (N’ x A)) U {(nagg, Gnew)}
aggregation rule can be applied to Figure 2(b): node
SEQ3 and its children can be aggregated into nqdeR
(which becomeg:sR at the consumer side in Figure 2(a)).
Example: Now that we have explained and illustrated
the abstraction rules, we revisit the example processes in
Figure 2. Let Figure 2(a) specify the process view and let
Figure 2(b) and (c) be provider processes. Then Figure 2(a)
is a correct view of Figure 2(b), but not of Figure 2(c).
For the latter, no hiding or omitting rule can be applied to
the nodep:dP, which has no counterpart in the consumer-
process view.
Extending process viewsFhe projection rules are not
only useful for constructing external process views from

X

Note that therank numbers does not need to be updatedconceptual processes, but also for deriving a conceptual

so the rank of the nodes that are fhstays the same for

process from a process view. The conceptual process can be

created in a process editor by adding or inserting actitie invokable nodes, omitting is not used. Black-box projattio
and control flow to the process view. If this extension iscan be seen as a special case of glass-box projection.
equivalent to applying the thee projection rules in a certai Gray-box projectionis established if the process view is
order, the derivation is allowed. For example, this allowsobtained through hiding and omitting from the conceptual
the derivation of Figure 2(b) from Figure 2(a) since theprocess. The process view can contain both observable
extensions can be omitted and aggregated. and invokable activities. However, aggregation is not used
Norta [25] identifies gray box by only applying hiding as
abstraction operator.

Open-box projectioris achieved if the process view is

In the previous section, we defined general rules thabbtained through hiding, omitting, and aggregation from
can be used to transform a conceptual process to a procegg conceptual process. The process view can contain both
view and vice versa. In this section, we look at possibleobservable and invokable activities. Thus, the consumer ca
projection relations that may exist between a process viewnfluence the progress at the provider side.
and a conceptual process. Each projection relation iszeshli Finally, to use awhite-box projectionthe process view
using a combination of the projection rules. Table | lists th s identical to the conceptual process. Thus, none of the
extreme projection relations we consider. Black box, glasibstraction rules is applied, and the consumer has a direct
box, and open box have been identified in a web servic&iew on the conceptual process of the provider. A white box
outsourcing setting by Grefen et al. [12] while Norta [25] can be seen as a special case of an open box.
has identified gray-box and white-box projection in a Petri- Revisiting the processes in Figure 2, we have that the
net setting. All the other possible projection relations ar consumer-process view in Figure 2(a) is white box related to
hybrid forms of these extreme relations. In the remaindethe conceptual consumer process if that process is idéntica
of this section, we explain the projection relations listed to Figure 2(a). Next, Figure 2(a) is related by an open-

V. PROJECTIONRELATIONS BETWEENPROCESSVIEW
AND CONCEPTUAL PROCESS

Table I. box projection to Figure 2(b), since both omitting and
__ e aggregation rules are applied. Both provio_ler processes in
[Projection Refation [Omitling | Hiding [Aggregation] __and conceptual p Figure 2(b) and (c) cannot be related to Figure 2(a) using
process view is single . . .
Black box X x [obsenable acihity, black-box or glass-box projections, since both processes
[conceptual process has . .
o invokable actities contain at least one invokable node.
process view has only multiple . . .
Glass box X X [dseneb sotites, In summary, the projection relations support a collabo-
[conceptual process has
i e ration scenario in which collaborating parties can expose
[process view has multiple - . . .
Gray box . X invokable and obsenvable acthities. in flexible ways only so many details of their conceptual
i oosencil actss processes as they deem necessary. However, as we show
open e § § § 2;‘2,“3?,2;‘;“{,";?;?;3;‘;‘?'"Wka”'e in the next section, not every combination of projection
e relations for consumer and provider-side is suitable for
White box B e oy Pe achieving external level harmonization between consumer

and provider.
Table |
EXTREME PROJECTION RELATIONS BETWEEN CONCEPTUAL PROCESS

AND EXTERNAL PROCESS VIEW V1. COLLABORATION CONFIGURATION FOR

OUTSOURCING

While the previous section identified some extreme pro-
Black-box projectionoccurs if the external process tree jection relations that can exist between a conceptual geoce

contains only a single node with a single observable agtivit @"d an external process view, we now turn to the concrete
Thus, the nodes in the conceptual process are aggregated %itiing Of service outsourcing between a service consumer
hidden into this single node in the process view. Invokablg?Nd @ service provider. We first list the possible configorati
nodes cannot be hidden or aggregated, so the conceptlférl’t'ons that define .how the conceptual processes of the
process does not contain any invokable nodes. MoreovefOnsumer and provider and the shared process view can
since the external process tree cannot contain BAjOR ~ 'elate to each other.
node with invokable nodes as descendants, omitting is not ' . .
used. A. Configuration Options

Glass-box projectiornis realized if the process view only This section presents the possible configuration options
contains observable activities; the consumer cannot mvokfor a collaboration between a service consumer and a
any of the provider activities. A glass box view can beservice provider. The options are visualized in Figure 3. As
obtained through hiding and aggregation from the concepexplained in the introduction, we abstract from the intérna
tual process. Since the process view does not contain argvel of the three-level model of Figure 1.

SERVICE CONSUMER SERVICE PROVIDER

external level

ways, it must be ensured before enactment that a collabo-
ration configuration is correct and deadlock free. For this

Process View

, (b,b) . purpose, collapsing the consumer and provider processes is
s g' ((9;’?)')) g'r R useful. Also, collapsing is useful to show how the actual
(olw,grio/w) L outsourcing can take place during enactment.

Service Consumer

Consumer Process

Provider Process

ISEQ3.

g0..get order 9G..get GSM
cC..check credit wP..wrap up parcel

cN..configure network hP. han_d over parcel
B..send bill dR..deliver regular

dE..deliver express

conceptual level conceptual level

Figure 3. A collaboration configuration.

Collapsed Configuration

The conceptual levels of Figure 3 show on the left and right

side the consumer and provider process, respectively. For
both parties, the useful projection relations are depioteat

the projection arrow. In the middle of Figure 3, the tuples

with projection combinations represent the meaningful op-

tions for establishing process views on the external level.
We now explain and motivate these combinations.

If the service consumer performs a black-box projection, o I
the service provider only may use a black-box projectioh. Al
other projections result in processes having more than one
activity, and thus the resulting process view of the provide
does not equal the consumer-process view. Likewise, if

the service consumer performs a glass-box projection, the

service provider can only use a glass-box projection, sinc&19Ure 4 shows the application of an existing collapsing
that is the only projection relation resulting in an extérna Method [25] to the example processes in Figure 2(a) and

process view with only observable activities. If a service(P): for which the collaboration configuration is white-box
consumer performs an open-box or white-box projection,proje_cnon for the consumer and gray-box pro_Ject|0n for the_
the service provider may respond with either a gray-boxPrOV'der' The outsourced consumer process is embedded in

open-box, or white-box projection. Since the consumewvie & larger consumer process, which is shown on the top left

may contain invokable activities, black-box and glass-box°f Figure 4. The subtree belo@COPE' is the conceptual
projections are not applicable consumer process that is outsourced; it is identical to Fig-

Finally, a Service consumer cannot use a gray-box projecl-”e 2(a). Note that consumer activit invokes outsourced

tion. To see why, suppose the outsourced conceptual proce@gtivny gG while cN invokeswP. The provider process

of the service consumer contains an invokable node that i8" the boFtom left is identical to Figure 2(!0)' On the ”g.ht
omitted in the consumer-process view. Since the invokabl and of Figure 4, the collapsed collaboration configuration

node is not in the process view, the provider process ar depicted in Wh'(.:h th? cogsu.rrr\]erhscope_(;ﬁ the overall
the conceptual level does not need to have a correspondiﬁ:g?nsumer process Is replaced with the provider process.

invokable node. However, since the original node at the _The resulting collapsed conflgu_ratlon on the right side of
Figure 4 needs to be evaluated with tool support for correct-

consumer-side is invokable, that node can be invoked b) o
gr:less issues, e.g., deadlocks or lack of synchronizatiahelf

some other internal processes of the consumer that intera)) . o .
éesultlng process tree is represented in BPEL, it is paessibl

with the process that is being outsourced. But then th . ies if g to olace/t i
provider process cannot replace the outsourced consum& ve.r|fy properties 1, €.g., a mapping to place/transiio
nets is performed [20].

rocess. Therefore, if the conceptual process of the coeisum . . .
P P b Since the collapsing method requires that the conceptual-

contains an invokable node, only open-box and white-bo _ . .
y op)fevel processes of all collaborating domains are disclosed

projection are applicable. the replacement must be performed by an independent

trusted third party. Otherwise, it is likely that businessrets

are disclosed, which might result in a loss of competitive
Since an established collaboration configuration is disadvantages. Alternatively, the collapsing can be guaeahte

tributed on several levels, the deployment requires specido be correct if the projection options identified in Sec-

attention. Given that internal business process contem fr tion VI-A are followed. Then deadlocks cannot occur, since

different parties is projected to the external level ineliffint for example invokable nodes of the consumer are guaranteed

[
o
<
a
o
o
3
<
B
)
]
x
' Collaps

wE..wrap up envelope sR..schedule route
dT..determine transportation ¢G-.check GSM

dRo..determine route P..deliver priority
dS..deliver special

Figure 4. A collapsed collaboration configuration.

B. Enactment Deployment

to be preserved at the provider side. parts into the finished water tank. That node of Line 34 is
Finally, it must be stressed that BPEL currently does notlso linked with the invoke node for preparing the payment
cater for constructs that can link the respected processdbat is located in Line 21. Finally, after all tasks in the
on the different levels of a collaboration configurationr Fo flow are completed, payment takes place. In Figure 5(b),
that it would be necessary to have extra language constructse projected process view is listed and both the conceptual
available that link the various processes so that the emaattm and external processes are visualized as process trees.
progress is monitorable in a flexible way. For example, a In Figure 6, the corresponding provider process is de-
service consumer may find it uneconomical to monitor thepicted that is located on the conceptual level. The BPEL
enactment progress of every basic activity. Such a sitnatioprocess contains a similar structure as the process view
could also be undesirable for the service provider, who does Figure 5(b). However, additionally inserted nodes are
not want to be monitored extensively during enactment. Irdepicted as dashed boxes in the process tree. Since these
Figure 4, links are used for starting and terminating thenodes only exist within the domain of the service consumer,
provider process. However, if the collaborating partieeag the service provider can not be aware of them during
cross-platform linking constructs should also be avaélabl enactment time, although the perceived process behavior
to observe the enactment progress of only specific basiconforms to the specifications of the external level. Lilssyi
activities contained in a process tree. In [25], [26] suchthe service provider is not aware of the nodes in Figure 5(a)
monitorability constructs are explained in further detail that are located outside of the scope demarcation. Again,
dashed boxes depict in the corresponding process tree.
VII. CAsE Stuby Realizing service outsourcing as put forward in this paper,

To show the feasibility of the approach, we next discusg€duires new setup and enactment application systems with
a case study about inter-organizational business proce§@mponents that populate the three-level framework of Fig-
collaboration from the IST CrossWdrkroject. An example Uré 1 with required functionality. Due to page limitationew
of a BPEL process is depicted in Figure 5(a), which is arefgr to [25] forgserwce_-outsogrcmg reference grclmrmz
conceptual-level process of a service consumer. In Figure iﬁn implementation of '[.hIS architecture was car_ned out _dur-
several details are abstracted from, e.g., the full dediniti N9 the CrossWork project. In [23], [24] further informatio
of partner-links, variables, and so on. Instead, the foimss | @bout the implemented proof-of-concept prototype and the
on the structural business-process behavior. CrossWork project can be found.
The process behavioral definition of the example in Fig-
ure 5(a) starts with a sequence node in Line 14 that lists the] o]
ordering of a watertank as first task. Then a flow construct " the area of inter-organizational business-process col-
has two parallel branches embedded in sequences. The fifgPoration, related work exists. We focus on the two most
branch starts with an invoke node for preparing the water'€lated sub-areas: process views and visibility patterns.
tank specification in Line 18, which is linked to another o process Views

invoke node in Line 27 to indicate that the latter node is
invokable The importance of process views for service outsourcing

The distinction between invokable and observable is noFas already been recognized in Previous papers [6], [12],
made in current BPEL, since BPEL does not fully support:30)- However, these approaches typically focus on how
service outsourcing [12]. For that purpose, we use a sligh‘:El process-view can be sqpported at run-time and do not
extension to standard BPEL in Line 5 of Figure 5(a). Nodesaddres_S how a process vView can actually k_’e constructed.
that are either invokable or observable specify that with ac_hebb' et al. [6] also conspler _the con_structlon of process
status attribute, e.g., in Line 27 the receive node has th iews, but use only one projection relation. The framework

status invokable. In [12], suitable extension suggestfons efined in this paper i?’ most_closely related to the vyork of
BPEL are contained. Grefen et al. [12], which defines several of the projection

In Line 27, the invoke node is embedded in a SCopegptions identified in Section V, but the framework can also

that demarcates the part of the conceptual-level process th € C;:?]mbined withhthe othe;r. p(;:lp:: rs. . b

is sourced from a collaborating counterpart, which is an on;tri::tzzp([azr]s [zave[gs]tu[1'(;] [f;\]’ Q;gﬁezzrvfg; C:: q €
approach in line with proposed business-process Seplarati(ﬁ\leske [2] defin,e hO,W Io’cal r'ocess.es can be derived from
and collaboration methods [16], [25]. After configuring the P

production resources, a flow construct embeds two paralleef global PrOCESS VIEW. The pergctlon relqtlons they idgnti
nodes for producing the tank body and the pump enginecorrespond to hiding and omitting. Bobrik et al. [4] study
After that, a node in Line 34 starts the assembly of a”the construction of personalized role-based process views
’ Eshuis and Grefen [9] and Liu and Shen [19] focus on how

1CrossWork: Cross-Organizational Workflow Formation anédment, a process view can be derived from a conceptual process.

IST no. 507590. http:/iwww.crosswork.info Aggregation is used as a key abstraction principle in both

VIIl. RELATED WORK

01: <bpws:process exitOnStandardFault="yes" name="serviceConsumer" e

02: xmins:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"] 2= 9 1

03: <bpws:extensions> / ‘ \

04: <bpws:extension I oW FlOW R
05: xmins:esrc="http://www.cs.helsinki.fi/u/anorta/research/eSourcing/" ;qu—‘ ;F—Of 4 L P? _
06: mustUnderstand="yes"/>

07: </bpws:extensions> —

08: <bpws:links> LS QL SCOPE

09: <bpws: link name="start-sourcing"/>

10: <bpws: link name="end-sourcing"/>

11: </bpws:links>

12: <bpws:partnerLinks>...</bpws:partnerLinks>
13: <bpws:variables>...</bpws:variables>

14: <bpws:sequence name="SEQ">

15: <bpws:receive createlnstance="yes" name="orderWaterpump"/>
16: <bpws:flow name="FLOW">
17: <bpws:sequence name="SEQ1">
18: <bpws:invoke name="prepareSpecification">
19: <bpws:source linkname="start-sourcing/> Conceptual Level ExtemnallCevel
20: </bpws:invoke>
21: <bpws:invoke name="preparePayment"> 01: <bpws:process exitOnStandardFault="yes" name="serviceConsumer"
22: <bpws:source linkname="end-sourcing/> 02: xmins:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
23: </bpws:invoke> 03: <bpws:extensions>
24: </bpws:sequence> 04: <bpws:extension
25: <escr:scope isolated="no" name="OUTSOURCE"> 05: xmlins:esrc="http://www.cs.helsinki.fi/u/anorta/research/eSourcing/"
26: <bpws:sequence name="SEQ2"> 06: mustUnderstand="yes"/>
27: <esrc:receive name="c:configureResources" status="invokable"/> | 07: </bpws:extensions>
28: <esrc:target linkname="start-sourcing/> 08: <bpws:partnerLinks>...</bpws:partnerLinks>
29: </esrc:receive> 09: <bpws:variables>...</bpws:variables>
30: <bpws:flow name="FLOW1"> 10: <bpws:sequence name="SEQ2">
31: <esrc:invoke name="c:produceTank" status="observable"/> 11: <esrc:receive name="c:configureResources" status="invokable"/>
32: <esrc:invoke name="c:producePump" status="observable"/> 12: <esrc:target linkname="start-sourcing/>
33: </bpws:flow> 13: </esrc:receive>
34: <esrc:receive name="c:assembleWatertank" status="invokable"/> | 14: <bpws:flow name="FLOW1">
35: <esrc:target linkname="start-sourcing/> 15: <esrc:invoke name="c:produceTank" status="observable"/>
36: </esrc:receive> 16: <esrc:invoke name="c:producePump" status="observable"/>
37: </bpws:sequence> 17: </bpws:flow>
38: </escr:scope> 18: <esrc:receive name="c:assembleWatertank" status="invokable"/>
39: </bpws:flow> 19: <esrc:source linkname="start-sourcing/>
40: <bpws:invoke name="payBill"/> 20: </esrc:receive>
41: </bpws:sequence> 21: </bpws:sequence>
42: </bpws:process> 22: </bpws:process>
(a) (b)

Figure 5. The conceptual and external processes of theceetensumer.

01: <bpws:process exitOnStandardFault="yes" name="serviceProvider"
02: xmins:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/abstract”
03: <bpws:extensions>

04: <bpws:extension SEQ2 e ceoNdey
05: xmins:esrc="http://www.cs.helsinki.fi/u/anorta/research/eSourcing/"

06: mustUnderstand="yes"/>

07: </bpws:extensions>

08: <bpws:partnerLinks>...</bpws:partnerLinks> A .

09: <bpws:variables>...</bpws:variables> I p‘CR l |FLOW1| I paW l

10: <bpws:sequence name="SEQ2">

11: <esrc:invoke name="p:configureResources" status="invokable"/>

12: <bpws:flow name="FLOW1"> _ _ _ _

13: <bpws:sequence name="SEQ3"> 1ISEQ3 | ISEQ4

14: <esrc:invoke name="p:produceTank" status="observable"/> - - - ==

15: <bpws:invoke name="checkTank"/>

16: </bpws:sequence>

17: <bpws:sequence name="SEQ4"> _

18: <esrc:invoke name="p:producePump" status="observable"/>) m ElOW 2D "
19: <bpws:flow name="FLOW2"> - ET —‘ TLOWZ_I L QE ,‘
20: <bpws:invoke name="checkEngine"/>

21: <bpws:invoke name="checkValve"/>

22: </bpws:flow> e =
23: <bpws:invoke name="assemblePump"/> Conceptual Level L 9\/7 7‘ L QE 7‘
24: </bpws:sequence>

25: </bpws:flow>

26: <esrc:invoke name="p:assembleWatertank" status="invokable"/>

27: </bpws:sequence>
28: </bpws:process>

Figure 6. The conceptual processes of the service provider.

approaches, while Eshuis and Grefen also use a form dfistency resembles hiding, whereas invokability consiste
hiding. None of these process-view approaches focus oresembles omitting. They do not consider aggregation.,Also
service outsourcing, and consequently none identify proje they do not consider different projection options and dslla
tion options and meaningful configurations for partners inoration configurations.

an outsourcing collaboration.
Next, the BPEL standard [10] distinguishes between ab-

Preuner and Schrefl [28] define an approach for combiningtract and executable processes where abstract processes
several process-based services into a compound proces®arrespond to process views. However, no concrete guide-
They define two consistency relations between the composdihes are offered for relating abstract and executable pro-
process view and the underlying processes: observabilitgesses. Khalaf et al. [15] discuss abstract patterns suc for
consistency and invokability consistency. Observabditp- relating an abstract process to an executable process. The

patterns related to the framework in our paper are exporf its business process to a service provider. To support
(creating an abstract process from executable process) awditsourcing, the distinction between observable and invok
import (creating an executable process from an abstracble activities is vital. The framework distinguishes betw
process). The three projection rules in Section 4 can alprocess views and conceptual processes. It defines several
be used in combination with the export and import patternrules to construct process views from conceptual processes
Martens [21] proposes a Petri net-based approach to chea@nd vice versa. The key abstraction principles used in the
the consistency of an abstract and an executable BPEtules are hiding, omitting and aggregation.
process. Konig et al. [18] and Zhao et al. [32] define Next, based on the abstraction rules, the framework
several syntactic guidelines for transforming an abstractiefines several extreme projection relations that can exist
BPEL process into an executable one. The rules emplopetween a process view and conceptual process. These
some kind of hiding and omitting. None of these papersprojection relations also give insight into the possiblpety
distinguishes between different projection relationsaode of a process view. We have shown that existing approaches
consider aggregation. for process views from literature mostly focus on only one of
Finally, there is theoretical work on the problem of these projection relations. We believe the projectiortiais
compatibility checking of Petri-net based services [20]. | and especially the projection rules are key to realize any
principle, this work could be used to check the compatibilit concrete outsourincing relation in practice, but more ysisl
of a consumer and a provider process. However, there anysing case studies is needed to assess whether the framework
combination of services that does not deadlock is correclis complete.
which is not suitable for outsourcing. The requirements for We also identified collaboration configurations for a ser-
outsourcing are much more strict, since a process view musjice consumer and service provider. In particular, we have
mirror the provider process. Thus, even though a consumeghown that not every combination of projection relations
process and provider process are compatible, they may nedr provider and consumer-side processes is meaningful. Fo
be in an outsourcing relation, since for example the pravideevaluation and verification purpose of collaboration config
can remove some observable activity that the consumajrations, a collapsing method is proposed that establishes
needs to monitor. a process tree in which the consumer scope of the main
process is replaced by the provider process. Since it is
important that the collaborating counterparts retain rthei
In [25], [26], so-called contractual-visibility patter@se puysiness secrets, such a collapsing method needs to be
identified and specified for inter-organizational busiresscarried out by a trusted third party.
process collaboration, whi(_:h also assume that a partiione open issues for future work research focus mainly on sup-
conceptual-level process, i.e., a sphere, is projectechto gyorting applications for setting up and enacting collatiora
external collaboration level. However, differently to the configurations. As process description language, we will
process-view patterns described in Section V, the expirat consider BPEL. However, BPEL needs to be extended with
of contractual-visibility patterns are Petri-net basedt #ie aqditional language constructs to allow a service consumer
latter patterns, inblack-box visibility, only the interfaces g start and stop the enactment of provider processes and it
of a sphere are projected to the external leWhite-box st also be possible for a service consumer to remotely
visibility means that all nodes of a sphere are projected tpserve the enactment progress of the provider process. For
the process of the external level. Finallyay-boxvisibility 5 gistributed setup and enactment of a collaboration config-
results in the interfaces and a subset of the nodes and arcs @fytion, it is necessary to develop a reference architectur
the conceptual-level sphere being projected to the externgqr supporting application systems. Another topic for fetu

level. o - research is applying process matching to ontology language
The main difference between contractual-visibility and|jxe owL-S.

process-view patterns is that the latter also incorpotate t
accessibility of projected nodes i.e., invokable or observ
able. The contractual-visibility patterns only focus ore th

relationship between the sets of nodes in the processes of We thank Lea Kutvonen and the reviewers for their
the conceptual and external level and accessibility isi@le valuable feedback and advice that helped to improve the
with separate so-called monitorability patterns [25]. E&n paper.
all process-view patterns can be realized with combiniig th
contractual-visibilities with monitorability patterns.

B. Related Process-Visibility Patterns

Acknowledgements

REFERENCES
IX. CONCLUSION
. [1] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet
We have proposed a conceptual framework for service "~ another workflow languagdnformation Systems0(4):245—
outsourcing, in which a service consumer outsources parts 275, 2005.

[2] W.M.P. van der Aalst and M. Weske.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

to interorganizational workflows. IfProc. of the 13th Int.
Conference on Advanced Information Systems Engineering

(CAISE’01) Lecture Notes in Computer Science 2068, pages[18

140-156. Springer, 2001.

G. Alonso, F. Casati, H. Kuno, and V. MachirajuWeb
Services: Concepts, Architectures and ApplicatidgBsringer-
Verlag Berlin Heidelberg, 2004.

R. Bobrik, M. Reichert, and T. Bauer. View-based proces
visualization. InProc. Business Process Management (BPM)
2007, volume 4714 ofLecture Notes in Computer Science
pages 88-95. Springer, 2007.

C. Bussler. The Application of Workflow Technology in Se-
mantic B2B IntegrationDistributed and Parallel Databases
12:163-191, 2002.

I. Chebbi, S. Dustdar, and S. Tata. The view-based agproa
to dynamic inter-organizational workflow cooperatiobata
Knowl. Eng, 56(2):139-173, 2006.

(22]

J. Ebert and G. Engels. Observable or invocable behaviou
- you have to choose! Technical report 94-38, Leiden
University, 1994.

(23]

R. Eshuis and P. Grefen. Structural matching of bpel
processes. IFECOWS ’'07: Proc. of the Fifth European

Conference on Web Servicgsages 171-180, Washington,

DC, USA, 2007. IEEE Computer Society.

R. Eshuis and P. Grefen. Constructing customized psoces
views. Data and Knowledge Engineering4(2):419-438,
2008.

A. Alves et al. Web services business process execution
language version 2.0 (OASIS standard), 2007.

P. Grefen, H. Ludwig, and S. Angelov. A Three-Level
Framework for Process and Data Management of Complex

E-ServiceslInternational Journal of Cooperative Information [27]

Systems12(4):487-531, 2003,

P. Grefen, H. Ludwig, A. Dan, and S. Angelov. An analysis
web services support for dynamic business process outsourc
ing. Information and Software Technolqgy8(11):1115—
1134, 2006.

J.Y. Jung, H. Kim, and S.H. Kang. Standards-based ap
proaches to b2b workflow integrationComput. Ind. Eng.
51(2):321-334, 2006.

[30

R. Khalaf. From rosettanet pips to bpel processes: &ehr
level approach for business protocol®ata Knowl. Eng.
61(1):23-38, 2007.

(31]

R. Khalaf, A. Keller, and F. Leymann. Business processe
for web services: Principles and applicatiorlM Systems
Journal 45(2):425-446, 2006.

(32]

R. Khalaf and F. Leymann. E role-based decomposition of
business processes using bpel. IGWS '06: Proc. of the
IEEE International Conference on Web Servigeages 770—
780, Washington, DC, USA, 2006. IEEE Computer Society.

$l19]

(20]

(21]

(24]

(25]

(26]

[29]

The P2P approach[17] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Busslem O

structured workflow modelling. IfProc. CAISE '00 pages
431-445. Springer, 2000.

D. Kdnig, N. Lohmann, S. Moser, C. Stahl, and K. Wolf.
Extending the compatibility notion for abstract WS-BPEL
processes. INNVWW '08: Proc. of the 17th international
conference on World Wide Wepages 785-794, New York,
NY, USA, 2008. ACM.

D.-R. Liu and M. Shen. Workflow modeling for virtual
processes: an order-preserving process-view approéah.
Syst 28(6):505-532, 2003.

N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. An-
alyzing interacting ws-bpel processes using flexible model
generation.Data Knowl. Eng. 64(1):38-54, 2008.

A. Martens. Consistency between executable and atvgira-
cesses. IProc. of Intl. IEEE Conference on e-Technology, e-
Commerce, and e-Services (EEE'OBEE Computer Society
Press, mar 2005.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDertno
and S. Mcllraith.OWL-S: Semantic Markup for Web Services
http://www.w3.org/Submission/OWL-S/, 2004.

N. Mehandjiev and P. Grefen. Crosswork: Internet-base
support for process-oriented instant virtual enterprisEEE
Internet Computing2010. to appear.

N. Mehandjiev and P. Grefen, editorsDynamic Business
Process Formation for Instant Virtual EnterpriseSpringer,
2010.

A. Norta. Exploring Dynamic Inter-Organizational Business
Process Collaboration PhD thesis, Technology University
Eindhoven, Department of Information Systems, 2007.

Alex Norta and Paul Grefen. Discovering Patterns fdetn
Organizational Business Collaboratidnternational Journal
of Cooperative Information Systenk6(3/4):507-544, 2007.

C. Ouyang, M. Dumas, A.H.M. ter Hofstede, and W.M.P. van
der Aalst. Pattern-based translation of BPMN process nsodel
to BPEL web servicednternational Journal of Web Services
Research’5(1):42—-62, 2007.

G. Preuner and M. Schrefl. Requester-centered coniposit
business processes from internal and external servizetsa
Knowl. Eng 52(1):121-155, 2005.

W. A. RoscoeTheory and Practice of Concurrenciprentice-
Hall, 1998.

K.A. Schulz and M.E. Orlowska. Facilitating cross-
organisational workflows with a workflow view approach.
Data Knowl. Eng. 51(1):109-147, 2004.

J. Vonk and P.W.P.J. Grefen. Cross-organizationaisation
support for e-services in virtual enterprisd3istributed and
Parallel Databases14(2):137-172, 2003.

X. Zhao, C. Liu, W. Sadig, M. Kowalkiewicz, and

S. Yongchareon. Ws-bpel business process abstraction and
concretisation. InProc. DASFAA 2009 volume 5463 of
Lecture Notes in Computer Sciengages 555-569. Springer,
2009.

