
Utility Evaluation of Tools for Collaborative Development and Maintenance of
Ontologies

Alexander Norta, Roman Yangarber
Department of Computer Science,

P.O. Box 68 (Gustaf Ḧallströmin katu 2b),
FI-00014 University of Helsinki, Finland

firstname.lastname@cs.helsinki.fi

Lauri Carlson
Department of Linguistics,

Siltavuorenpenger 20,
I-00014 University of Helsinki, Finland

firstname.lastname@helsinki.fi

Abstract—Ontologies lend themselves for resolving ambi-
guities in a wide range of applications, including mashups
from diverse third-party information sources, and human- and
machine-readable specifications of electronic business services
(eBS). While tool support exists for the development and
maintenance of ontologies, the question remains unanswered
what is the degree of utility of these tools in the context
of ambiguity resolution, e.g., while discovering eBS. In this
paper, we fill the gap by performing an ontology-tool evaluation
that allows a comparison of their utility. Based on a carefully
selected set of requirements and criteria, we conduct a survey
involving leading ontology-tool providers. One of the principal
requirements is the collaborative ontology development and
maintenance. The paper provides a detailed analysis of survey
results.

Keywords-tool evaluation; collaborative ontology develop-
ment; maintenance

I. I NTRODUCTION

Resolving ambiguities in the informal, human-readable
description and the formal, machine-readable specification
is of primary importance in a wide range of state-of-the-
art applications. Our particular focus is electronic business
services (eBS), which is relevant for organizations that set up
business-to-business (B2B) collaborations in an anonymized,
electronic environment. Such B2B-collaboration is complex
and it is challenging to ensure that consensus exists about
the meaning of terminology between eBS-providers and
consumers. For example, an eBS-provider advertises pipes
for plumbing while a potential eBS-consumer looks for ser-
vices about pipes for smoking. In an anonymized, electronic
service-brokering environment, ontologies help to resolve
such ambiguities.

For re-organizing their B2B-collaboration, many organi-
zations introduce service-oriented architectures (SOA) [17]
that Web-enable their legacy systems. Subsequently, these
legacy systems become orchestratable and choreographable
to support electronic B2B-collaboration. As parts of SOA,
notable examples of XML-based industry standards for
service orchestration are BPEL [10] and WS-CDL [11] for
service choreography. UDDI [5] is instrumental to describe
services for facilitating the discovery in broker systems and

service-level agreements (SLA) for the quality of service
specification may be expressed in WSLA1. For ontology
specifications, WSDL-S [1], OWL-S [14], RDF [4] are some
examples of available standards.

To manage the communication demands during the setup
phase between potential eBS consumers and providers, in-
telligent broker systems should exist in between as mid-
dleware. To mention several examples, in [15], a service
broker for business grids presents a backward compatible
and lightweight approach that uses semantic annotations in
service descriptions. A quality of service (QoS) ontology
in [18] in combination with a ranking algorithm, can be used
in a broker to facilitate automatic and dynamic discovery and
selection of eBS. A service-broker concept in [13], bridges
the integration gap between telephone companies and the IT
world. Depending on the location of a mobile device, an au-
tomatic service assignment occurs for mashup creations. We
define a mashup as a Web page or application that combines
data or functionality from two or more external sources to
create a new service. Service brokers function in [12] as an
open and distributed environment of geographic information
Web services that are searchable with the help of ontology-
based metadata. In such broker examples, ontologies are
essential for resolving ambiguities in service discovery and
with tool support, ontology development and maintenance
must be made effective and efficient. Semantic-Web trends
in [7], cover application domains, tools, systems, languages
and techniques for ontologies. The trends show that many
ontology tools exist and an earlier industry-driven study
evaluates2 them in detail. In [9], a scientific evaluation of
methodologies, tools and languages for building ontologies
was conducted before the current emergence of service-
oriented computing or cloud computing. On the other hand,
the ontology-tool evaluation of this paper is based on an
ongoing research project, ContentFactory3 (CF)that includes

1http://www.research.ibm.com/wsla/
2XML.com; Ontology Tools Survey, Revisited; 2004,

http://www.xml.com/pub/a/2004/07/14/onto.html
3ContentFactory, funded by Tekes (Finnish Funding Agency for Tech-

nology and Innovation), http://www.verkko-ope.net/cf/

alos the construction of an ontology-enabled electronic
business-service brokerage (eBSB) as part of a cloud-
computing ecosystem.

For the purpose of eBS brokering, we assume the develop-
ment and maintenance of required ontologies for resolving
ambiguity issues, requires a collaborative effort of experts
from various domains. For example, new terms that enter
an ontology may require several terminology experts and a
technology expert integrates the resulting term definitionin
the hierarchy of related ontology concepts and properties.
Note, we assume the repositories forming the hierarchy
emerge in a bottom-up way that are harmoized into a
hierarchy. Thus, a tool for such ontology development and
maintenance must offer collaborative functionality. To the
best of our knowledge, no survey exists that focuses on the
utility of tools for collaboratively developing ontologies for
the purpose of brokering eBS. In this paper we fill the gap
by carefully extracting focused requirements to perform a
targeted evaluation. The evaluation is useful for ontology
developers to assess whether a specific tool should be used
for certain applications. To do so, the set of requirements
and their associated weights may be adjusted in order to
quickly establish the respective utility.

The structure of the paper that simultaneously reveals the
evaluation method we apply, is as follows. Section II demar-
cates the domain context that ontology tools must support
for this study. Taking into account the application-context
features, Section III shows a set of extracted functional and
non-functional requirements that ontology-development and
maintenance tools should adhere to. The requirement hierar-
chy hasutility as root and the leaves are broken down to an
operationalized level for the evaluation. Section IV presents
the evaluation that starts with a triage of tools, which provide
functionality for collaborative ontology development and
that are actively maintained. In this paper, we define triage
as a categorization of a tool-subset based on the adherance
to a criteria for the purpose of more detailed evaluation.
Finally, Section V concludes the paper and presents future
work.

II. T HE TOOL-APPLICATION CONTEXT

For the CF-research project, we develop an ontology-
enabled eBSB that can not be fully presented in this paper
because of page limitations. Instead, we refer to [16] for
further details. Briefly, eBSB allows service consumers and
providers to register their service requests and service offers
respectively together with assigned personnel responsible for
managing the services.

The services exist in the eBSB in a human-readable
and also in a complementary machine-readable format like
XML-based WS-* languages. In both description represen-
tations exist terminology that is potentially ambiguous for
parties who want to perform B2B-collaboration. A certain
application context for the eBSB exists, e.g., a specific

supply chain around an original equipment manufacturer,
geographic region, service domain, and so on, triggers the
establishment of one or several dedicated ontology libraries
for resolving such ambiguities. A description of specific
ontology-library features follows in the sequel.

The eBSB is an anonymized, electronic platform and it
is a challenge for users to estimate the trustworthiness of
service offers and requests, their issuing organizations and
service-assigned personnel. Hence, the eBSB automatically
pulls in related third-party information from blogs, wikis,
news, specific company registries in the Web, and so on,
for a mashup to allow a targeted and speedy estimation of
trustworthiness.

The pulled in third-party information from the Web for the
mashup may contain a lot of irrelevant content. The earlier
established ontology library for the collaboration context
serves for an automated ontological pruning, ranking and
aggregation of information in the mashup. Consequently, the
eBSB-user decides to either provide for a service request or
consume a service offer.

A. Specific Features of Ontology Management

Based on a lifecycle of ontology development and main-
tenance in Figure 1, we explain the specific features of
ontology management in the framework of the eBSB. The
lifecycle starts with a user who searches for service offer-
s/requests. The human-readable service description shows
automatically extracted terminology that is the basis for
dynamically setting up an ontology pyramid. The machine-
readable service specification may be another source of such
terminology, e.g., properties of message specifications.

The first step to choose the root for the ontology pyra-
mid that contains the highest-level concepts for the service
context. Next, ontology libraries with refining concepts and
properties form the full ontology pyramid. Attached meta
ontologies visualized as sheet icons, allow a classification of
the ontology root and refining libraries for speedy discovery.
Note that the arcs of Figure 1, indicate it is possible to first
establish in a bottom-up way the ontology libraries locally
that trigger later the introduction of a pyramid root to cater
for ontology-engineering flexibility.

After assembling the ontology pyramid, the eBSB is able
to resolve ambiguities in service descriptions that contain
specific keywords, i.e., for keywords in the service descrip-
tion ontological concepts and properties serve as clarifica-
tion. The completeness check means the individual keywords
must be present in the existing libraries. If all keywords
are already part of ontology libraries, the pyramid is ready
and requires no further changes. Otherwise, terminologists
engage in a discussion for establishing a term definition that
is translatable into an ontology update.

Based on the the application context, we deduce the a set
of requirements for the ontology-tool evaluation.

Keywords
Build/modify/choose

hierarchy root

Build/modify/choose

ontology libraries

Assemble

ontology

hierarchy

Check

completeness

Specify

New terminology

Perform

update

WS-*

WS-BPEL

UDDI

WSDL

WS-Policy

TEXT

User

Terminologist

Terminologist

Terminologist

Terminologist

Figure 1. Lifecycle of ontology development and maintenance.

III. D EDUCED REQUIREMENTS FORONTOLOGY-TOOL

EVALUATIONS

The ontology-tool evaluation, considers an exhaustive
set of functional and non-functional requirements ex-
tracted from the ContentFactory-project needs [16] and also
from [3] software-engineering literature. The first cover
desirable behaviors of ontology tools while the latter specify
criteria to judge the operation of an ontology tool, rather
than specific behaviors. Other terms for non-functional
requirements are quality attributes and quality of service
requirements.

The depiction of the evaluation-requirements hierarchy in
Figure 2 showsutility as the root. The leave requirements
have annotations with categorizers of whichr stands for
triage,m for must have,n for need to have andi for nice to
have. The depiction shows with an arrow thatperformance

references toverification and evaluation, i.e., function-
ality for correctness-checking ontologies, should not take
longer than several seconds to produce results. Below, we
explain the requirements. Their specific definitions for the
context of this evaluation represent a tradeoff with the
objective allowing an evaluation of all tools. Hence, too strict
requirement defintions may result in a bias for one tool and
disadvantage others.

A. Functional Requirements Specification

For the set of functional requirements below, it is
important to understand how ontology tools play a role
in clarifying ambiguities in that lifecycle. Thus, the
ontology tool must support the development of ontology
hierarchies with a top level either entirely or partly
versioned and attached lower-level ontologies. The libraries
of the ontology hierarchy may be formulated in differing
XML-based specification languages, e.g., OWL variations,
RDF, and linked in ontologies either from local or external

libraries. Terminology definitions created by deliberations of
terminology experts may span several human languages and
form the basis for building ontology libraries collaboratively.

a. Collaborative ontology development: The multi
human-language terminology is part of a collaboratively
refined ontology hierarchy and created with a consensus by
domain experts. Hence, proposal and voting functionality
must be provided for users that slip into specific roles
with competencies and permissions, e.g., permitting the
initiation of terminology voting. Out of this requirement
scope are automated voting initiation, automated ontology
creation and specific workflows for ontology development
and maintenance.

b. Maintaining collaboratively refined hierarchies of
ontologies:It is important to change on the fly the libraries
that make up the ontology hierarchy, i.e., refined subsets of
the ontology hierarchy must be exchangeable with alterna-
tive ontology refinements.

c. Ontology development in different human lan-
guages: In the CF project, we consider ontologies for
terminologies represented in human languages different than
English, e.g., French, Chinese, and so on. Hence, the tool
must support the development and maintenance of ontolo-
gies in other languages than just English.

d. Multi ontology-language support: Although ontology
libraries may be formulated in different machine-readable
languages, integrate the libraries into the same ontology hi-
erarchy needs to be possible. The languages we consider are
OWL-DL, OWL-FULL, OWL-LITE, RDF. The CF-project
focus for ontologies is OWL-DL as it allows representations
in 1st order logics together with restrictions.

e. Verification support: The ontology hierarchy needs to
be verifiable in its partial libraries and also in its entirety.
Verification properties are, i.e., the syntactic correctness for

Figure 2. Hierarchy of evaluation requirements.

the description logics of, for example, an OWL instantia-
tion; and ontological consistency in which an ontology is
extended to a canonical model using tableau algorithms [2].
An example for consistency violation would be somebody
in an ontology who is married multiple times concurrently.
Note that we do not narrow down to one particular for-
malism. Instead, the ontology tool needs to demonstrate
adjustment flexibility towards verification based on arbitrary
formalisms.

f. Visual abstractions for facilitating ontology devel-
opment and maintenance:It is nice to provide intuitively
comprehensible visual abstractions for ontologies that also
allow laymen to engage in development and maintenance.
Given the nature of ontologies, a class-hierarchy view as a
tree is a minimum requirement. Additionally, it is nice to
have graph representations with separate visibility options,
e.g., zooming, cropping, filtering, choosing specific proper-
ties. The graph view should be editable.

g. Natural-language support: Terminology in ontology
libraries may comprise synonyms or representations in dif-
ferent human languages. Hence, it is nice for users to support
the management of such term similarities, lexical referencing
of ontology elements, searching, filtering, and so on.

h. Automated information extraction: The tool should
be able to automatically extract information from unstruc-
tured text that is useful for the development and maintenance
of ontology libraries. Hence, functionality for such knowl-
edge acquisition is nice to have available.

B. Non-Functional Requirements Specification

For the ontology-tool evaluation, the division of non-
functional requirements distinguishes from [3] between re-
quirements that are observable via execution and those that
are not. In the first case, the requirements are performance,
security, availability, functionality, and usability. Inthe latter
case, the requirements are modifiability, integrability, porta-
bility. Finally, we consider requirements for the ontology-
tool architecture, namely feasibility, scalability, applicability,
completeness. First, we specify ontology-tool requirements
that are notdiscernible at runtime.

i. Modifiability: Ontology tools must be able to adopt
new functionality quickly to remain relevant for rapidly
changing application domains. The ontology tool must al-
low for rapid internal functionality adjustment triggeredby
changes that occur in the real-world application context.

j. Integrability: For an ontology tool, it must be possible
to also comprise components that may be from third parties
separately developed and integrated at a later stage.

k. Portability: Ontology tools need to run on
heterogeneous system infrastructure, i.e., hardware,
software, or a combination of both. Hence, the architecture
level encapsulates platform-specific considerations that
enables portability by giving the application software an
abstract interface to its environment.

Next, we specify the system requirements for ontology tools

discernible during runtime.

l. Interoperability: The ontology tool must be loosely
coupled with a collection of services that are part of a
larger service-oriented application architecture. Hence, the
ontology tool must be Web-addressable and use XML-based
languages for exchanging information with other loosely
coupled services.

m. Performance: The computational and communica-
tional load in collaborative ontology development and main-
tenance needs to be manageable by tools within acceptable
time phases. Service discovery in the context of emerging
SOC, is a constantly changing domain. Hence, the execution
of any tool functionality always needs to remain below a
minute. That time limitation includes specifically ontology
verification.

n. Security: Refers to the ability of resisting unauthorized
attempts of usage of ontology libraries while only permitting
authorized ones. For example, an authentication server needs
to reside between collaborating parties. Monitors need to
be used for inspecting and logging network events. The
communication of a system needs to be placed behind a
firewall, and so on.

o. Usability: Refers to a tool being easy to use for collabo-
ratively developing and maintaining multi-lingual ontologies
in differing languages. We split usability into the following
three requirements [6] that are relevant for ontology tools.
Error avoidancemeans that functionality needs to be in
place for preventing and anticipating common errors that oc-
cur during ontology development and maintenance. Closely
related is the issue oferror handling, which is satisfied when
a tool helps a user to recover from errors.Learnabilityrefers
to how quickly users can learn using the tool.

p. Flexibility: It is nice if ontology tools are so versatile
that they support the execution of diverse activities, the
participation of diverse partners, and the exchange of diverse
data. Thus, this requirement addresses the unpredictable
conceptual and technological heterogeneity of the ontology-
tool application context.

Additionally, we considerrequirements on architecture.
The requirement of
q. feasibility means that it needs to be possible with a tool
to collaboratively develop and maintain ontologies within
acceptable time and cost limits, i.e., costs for hardware, time
to learn the tool, and so on.r. Scalability refers to the ability
of a tool to combine more than two collaborating parties into
ontology development and maintenance.s. Applicability
states that as described in Figure 1, a tool is instrumental for
guiding the collaborative development and maintenance of
ontologies.t. Completenessmeans an ontology tool needs
to comprise the components required in accordance with
Section III-A for satisfactorily developing and maintaining
ontologies collaboratively.

IV. EVALUATION OF ONTOLOGY-TOOLS

Below, we first show how the utility of a tool is computed,
followed by a description of the tools that remained after
the initial triage check. Next, tables show functional and
non-functional evaluation results. We stress that the utility
equation suits the needs of the CF-project. In other appli-
cation contexts, the utility computing may us different sets
of requirements with their own requirement definitions and
different weights.

ut
= θTT

t
+ θM

∑

i

M t
i + θN

∑

j

N t
j + θC

∑

k

Ct
k (1)

For computing the utilityu of a tool t, we consider
Equation 1 in which the classes of requirementsT,M,N

and C (triage, “must”, “need” and “nice”, respectively)
receive scores on the scale{3 | 2 | 1 | 0}. I.e., 3 means
an ontology tool has a strong focus on a requirement, 2
means there largely exists support, 1 means a requirement
is somewhat supported and 0 means a requirement is not
applicable for a respective tool evaluation. Note that after
the triage we only consider tools for the evaluation that do
support collaboration, for which free versions of their tools
are in maintenance. We do not consider tools that are purely
commercial and can therefore not be freely used in publicly
funded research projects. Consequently, all other tools are
not considered in this paper.

The respective weights (θ’s) for the requirements—the
triageT , the must requirementM , needN , and niceC—
can be set in many ways, our main concern being that
θT > θM > θN > θC . Therefore, in our evaluation, we
fixed them at 4, 3, 2 and 1, respectively. The overall utility
of a tool results from summing up all values.

A. Tool Triage Results

For the detailed evaluation, the triage result presented
below comprise actively maintained, freely downloadable
tools with collaborative ontology development capabilities

• NeOn: The NeOn toolkit4 is a state-of-the-art, open-
source, multi-platform ontology-engineering environ-
ment that aims to provide comprehensive support for
all activities in the ontology engineering life-cycle. The
toolkit is based on the Eclipse platform and provides
an extensive set of plug-ins covering all aspects of
ontology engineering, including relational database in-
tegration, modularization, visualization, alignment, and
project management.

• Protégé: As a free, open-source ontology editor and
knowledge-based framework, Protégé5 allows the col-
laborative development of ontologies. Protégé ontolo-
gies can be exported into a variety of formats including
RDF(S), OWL, and XML Schema.

4http://neon-toolkit.org/
5http://protege.stanford.edu/

• CmapTools Ontology Editor: Concept maps [8] are
an effective way of representing the understanding of
a person’s domain of knowledge. CmapTools6 is a
software environment developed at the Institute for
Human and Machine Cognition (IHMC) that empowers
users, individually or collaboratively, to represent their
knowledge using concept maps, to share them with
peers and colleagues, and to publish them. Additional
CmapTool extensions support roundtrip translation for
ontology7 representations.

• TopBraid Composer: For developing Semantic Web on-
tologies and building semantic applications, TopBraid
Composer8 is an enterprise-class modeling environ-
ment. Fully compliant with W3C standards, TopBraid
Composer offers comprehensive support for develop-
ing, managing and testing configurations of knowledge
models and their instance knowledge bases. TopBraid
Composer incorporates a flexible and extensible frame-
work with a published API for developing semantic
client/server or browser-based solutions that can inte-
grate disparate applications and data sources. Note, for
the evaluation we consider the free edition with only
a subset of functionality that the commercial editions
offer.

• HOZO: The development environment, named HOZO9

for building ontologies comprises of Ontology Edi-
tor, Onto-Studio and Ontology Server. Ontology Edi-
tor provides users with a graphical interface, through
which they can browse and modify ontologies. This
system manages properties between concepts in the is-
a hierarchy. Onto-Studio helps users design ontologies
from technical documents. Ontology Server manages
the built ontologies and models.

• OntoBroker: The OntoBroker10 is a comprehensive and
scalable semantic Web-middleware. It is an inference
machine for the processing of ontologies that supports
all W3C Semantic Web recommendations: OWL, RDF,
RDFS, SPARQL and, in addition, the industry standard
F-Logic. Note that OntoBroker serves as a foundation
for the development of NeOn and thus, we omit this
tool in the detailed evaluation as covers it.

In the complementary survey document11 for this evaluation,
two tables list all the ontology tools with collaborative
capabilities we considered for the triage. The last column
of these tables gives reasons for not adopting a particular
tool.

6http://www.ihmc.us
7http://coe.ihmc.us/groups/coe/
8http://www.topquadrant.com/products/TBComposer.html
9http://www.hozo.jp/
10http://www.ontoprise.de/
11http://www.cs.helsinki.fi/u/anorta/publications/

OntologyToolEvaluationStatements.pdf

B. Functional Requirements Evaluation

The evaluation results stem from a survey we requested
tool representatives to fill in. Note, grey colored cells with
numbers in Table I and Table II indicate we performed the
evaluation ourselves to the best of our knowledge. While
in both cases of our own evaluation, we integrate feedback
from ontology-tool representatives, it is important to stress
that the results in grey colored cells and the justification
remarks contained in the complementary survey document
(referenced in the footnote) represent our own evaluation
experience from working with the tools and also studying
available white papers.

After the first set of evaluation results were generated,
tool-representatives cross-checked each other’s evaluation
scores. We hope to have succeeded in integrating all cross-
checking inputs in the final tables depicted below. With
respect to functional requirements, the evaluation results
in Table I indicate that the best scoring tools are NeOn
and Protege, followed by CmapTools Ontology Editor in
third position. The remaining tools also pass the triage(a)
requirement.

Table I
HIERARCHY OF EVALUATION REQUIREMENTS.

In Table I, NeOn scores reveal a strong focus in all
functional requirements with the exception of multi-ontology
language support. The given reason is the focus on OWL2
that results in a slightly less complete coverage of earlier
ontology languages.

Protégé, does not fully cover three functional requirements
completely. Firstly, there is no explicit support for maintain-
ing collaboratively refined hierarchies of ontologies. Protégé
also does not fully support natural-language and automated
information-extraction functionality. However, differently to
NeOn, there is full coverage of multi-ontology language
support.

CmapTools Ontology Editor (COE) fully supports the col-
laborative development of ontology hierarchies that involve
different human languages. With the use of concept maps
for the user interface in ontology development, COE is a
suitable option for laymen who are not technical ontology
experts. COE does not support with a strong focus multi-
ontology language support, verification and natural-language

support. There is no support at all for automated information
extraction.

TopBraid Composer supports the triage and all func-
tional must requirements fully with the exception of multi
ontology-language support. Full support requires additional
open-source components. However, the tool somewhat sup-
ports verification support, visual abstractions, and natural-
language support while automated information extraction is
not applicable.

With respect to the triage requirement, HOZO satisfies
it somewhat while the tool only fully supports ontology
development in different human languages out of the must
requirements. Further strengths of HOZO are visual abstrac-
tions and natural-language support.

C. Non-Functional Requirements Evaluation

The second set of evaluation results for non-functional
requirements depicted in Table II, also sums up the summed
up evaluation results at the bottom of the table. NeOn
scores well in Table II but not perfectly in all requirements.
According to the tool developers, NeOn pays attention to
convenient plugin management but does not have a Web
version of its tool. For the same requirement, Protégé does
not provide interoperability support, no Web version exists
of the tool and no information is given to which extent
the architecture supports loose coupling. COE, on the other
hand, provides access to and integration with a larger SOA
architecture.

Table II
HIERARCHY OF EVALUATION REQUIREMENTS.

NeOn and COE provide partial security support while
Protégé has a strong security focus. The flexibility require-
ment is not fully supported by NeOn although the tool
offers some update notification for new plugins. Protégé
relies on being open-source and covers flexibility with third-
party components. Finally, NeOn with its plugin archi-
tecture offers essential components by default and counts
on additional plugin components that allows the tool to
evolve for specific application contexts. Based on the longer
existence of the tool, Protégé and COE claim an empirically

proven strong focus for completeness based on its record of
project applications. For the remaining evaluation results, we
refer readers to the justification comments12 in the survey
document.

The evaluation shows the free edition of TopBraid Com-
poser scores well in the runtime section of non-functional
requirements and covers the architectural requirements with
the exception of applicability that is somewhat satisfied. For
the free edition, weakest scores are in the block for non-
runtime requirements. HOZO, on the other hand, scores in
all non-functional requirements, although it has nowhere a
strong focus. Just as COE, HOZO does not have a strong
focus on any non-functional must requirements that matter
for the CF-project context.

V. CONCLUSION AND FUTURE WORK

This paper presents a tool evaluation for the development
and maintenance of ontology hierarchies that may involve
different human and ontological languages. The evaluation
context is an evolving system for business-service brokerage
that uses ontologies to resolve ambiguities in the human-
and machine-readable specifications of electronic business
services. On the other hand, such ambiguities need to be
resolved for service-related information that is pulled in
from the Web cloud and displayed as a mashup so that
users develop trust in their service choices. Based on the
application context, a hierarchy of functional and non-
functional evaluation requirements refines the utility notion
for ontology tools.

A triage reduces the set of investigated ontology tools
based on their ability to develop and maintain hierarchies of
ontologies collaboratively. These tools must be availablefor
evaluation and still actively maintained by an existing orga-
nization. The result of this triage leaves over the tools NeOn,
Protégé, CmapTools Ontology Editor, OntoBroker, HOZO,
the free version of TopBraid Composer. Since OntoBroker
is the foundation for NeOn, the first tool may be omitted for
the detailed evaluation. Tables for the functional and non-
functional requirements show the evaluation results and the
overall utility.

Representatives evaluate their own tools NeOn, Cmap-
Tools Ontology Editor and HOZO. The evaluation of Protégé
and TopBraid Composer was carried out by the paper authors
and corrected based on feedback from a representative.
Evaluating the tools by representatives may be considered
a weakness of the evaluation. However, the final results are
cross-checked by all representatives from whom tools are
part of the detailed evaluation.

With respect to overall utility, the study suggests that
NeOn is slightly ahead of Protégé and CmapTools Ontology
Editor. Note that all tools in this detailed evaluation are

12http://www.cs.helsinki.fi/u/anorta/publications/
OntologyToolEvaluationStatements.pdf

excellent in their own right and the ranking of tools emerges
from the specific needs of the application context. The
ranking may change in other application contexts that lead
to different requirement definitions and weights. All tools
share OWL-DL as a ”lingua franca” and can be used in
combination for the development and maintenance of ontolo-
gies. That way the respective strengths and weaknesses of
ontology tools complement each other. For example, in the
context of the ContentFactory project, CmapTool Ontology
Editor allows laymen without ontology knowledge to take
advantage of the intuitive user interface that applies concept
maps. When translated to OWL-DL, NeOn proposes itself as
the ontology tool with the highest degree of utility. However,
the evaluation suggests that Protégé is a better choice for
ontology work that must pay attention to security. HOZO
offers multi-perspective ontology visualizations and Asian
language support. TopBraid Composer offers a limited sub-
set of functionality of its free edition that we considered for
the detailed evaluation, compared to the pay-editions. The
latter edition offers higher utility with more functionality.

In the future, we will study how to take advantage
of the pre-existing tool functionality so that we minimize
new implementation efforts in the ContentFactory project.
Based on ongoing experiences from ContentFactory system
refinements, functional and non-functional gaps in existing
ontology tools become apparent during their application.
That way we hope to provide inspiration to the ontology-tool
developers for initiating research and development projects
for future extensions.

ACKNOWLEDGMENT

This research is conducted in the ContentFactory research
project and funded by the Finnish Funding Agency for
Technology and Innovation (Tekes). We thank Martin Dzbor
from NeOn, Tom Eskridge from COE, Kouji Kozaki from
HOZO, for filling in the survey and discussing the results.
We thank TopBraid Composer and Protégé for providing
valuable feedback to our evaluation.

REFERENCES

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt,
A. Sheth, and K. Verma.Web Service Semantics - WSDL-S.
http://www.w3.org/Submission/WSDL-S/, 2005.

[2] F. Baader, I. Horrocks, and U. Sattler, editors.Chapter
3 Description Logics. In Frank van Harmelen, Vladimir
Lifschitz, and Bruce Porter, editors, Handbook of Knowledge
Representation. Elsevier, 2007.

[3] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. Addison-Wesley, 1998.

[4] D. Beckett and B. McBride.RDF/XML Syntax Specification
(Revised). http://www.w3.org/TR/rdf-syntax-grammar/, 2004.

[5] T. Bellwood, L. Clment, and D. Ehnebuske et al.UDDI Ver-
sion 3.0, Published Specification. http://uddi.org/pubs/uddi-
v3.00-published-20020719.htm, 2003.

[6] P.O. Bengtsson. Architecture-Level Modifiability Analysis.
PhD thesis, Department of Software Engineering and Com-
puter Science, Blekinge Institute of Technology, Sweden,
2002.

[7] Jorge Cardoso. The semantic web vision: Where are we?
IEEE Intelligent Systems, 22(5):84–88, 2007.

[8] A.J. Cãnas, G. Hill, R. Carff, N. Suri, J. Lott, T. Eskridge,
G. Gómez, M. Arroyo, and R. Carvajal. Constructing process
views for service outsourcing. In A.J. Cañas, J.D. Novak, and
F.M. Gonźalez, editors,In: Concept Maps: Theory, Methodol-
ogy, Technology, Proceedings of the First International Con-
ference on Concept Mapping, pages 125–133. Universidad
Pública de Navarra: Pamplona, Spain, 2004.

[9] Oscar Corcho, Mariano Fernández-López, and Asunción
Gómez-Pérez. Methodologies, tools and languages for build-
ing ontologies: where is their meeting point?Data Knowl.
Eng., 46(1):41–64, 2003.

[10] D. Jordan, J. Evdemon, A. Alves, and
A. Arkin. Business Process Execution Lan-
guage for Web-Services 2.0. http://www.oasis-
open.org/committees/download.php/10347/wsbpel-
specification-draft-120204.htm, 2007.

[11] D. Jordan, J. Evdemon, A. Alves, and A. Arkin.Web
Services Choreography Description Language 1.0.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/,
2007.

[12] E. Klien, M. Lutz, and W. Kuhn. Ontology-based discovery
of geographic information services?an application in disaster
management.Computers, Environment and Urban Systems,
30(1).

[13] Salvatore Loreto, Tomas Mecklin, Miljenko Opsenica, and
Heidi Maria Rissanen. Service broker architecture: location
business case and mashups.Communications Magazine,
47(4):97–103, 2009.

[14] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
and S. McIlraith.OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, 2004.

[15] Henar Muñoz Frutos. Towards a semantic service brokerfor
business grid. InESWC 2009 Heraklion: Proceedings of the
6th European Semantic Web Conference on The Semantic
Web, pages 939–943, Berlin, Heidelberg, 2009. Springer-
Verlag.

[16] A. Norta. A HUB ARCHITECTURE FOR SERVICE
ECOSYSTEMS: Towards Business-to-Business Automation
with an Ontology-Enabled Collaboration Platform. InProc.
of 6. International Conference on Web Information Systems
and Technology (WEBIST) 2010, volume 2, pages 240–243.
INSTICC, 2010.

[17] M.P. Papazoglou and P.M.A Ribbers.e-Business: organiza-
tional and technical foundations. John Wiley & Sons, Ltd.,
2006.

[18] Vuong Xuan Tran, Hidekazu Tsuji, and Ryosuke Masuda. A
new QoS ontology and its QoS-based ranking algorithm for
Web services. Simulation Modelling Practice and Theory,
17(8):1378–1398, 2009.

