
Department of Computer Science

Series of Publications A

Report A-2012-4

The effect of reputation on trust decisions
in inter-enterprise collaborations

Sini Ruohomaa

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XIV, University of Helsinki Main Building, on 4 May 2012 at
noon.

University of Helsinki

Finland

Supervisor
Lea Kutvonen

Pre-examiners
Ehud Gudes
Patrick Hung

Opponent
Audun Jøsang

Custos
Jussi Kangasharju

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2012 Sini Ruohomaa
ISSN 1238-8645
ISBN 978-952-10-7911-5 (paperback)
ISBN 978-952-10-7912-2 (PDF)
Computing Reviews (1998) Classification: C.2.4, H.5.3, K.4.4, K.6.5
Helsinki 2012
Unigrafia

The effect of reputation on trust decisions
in inter-enterprise collaborations

Sini Ruohomaa

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
sini.ruohomaa@cs.helsinki.fi, http://cinco.cs.helsinki.fi/

PhD Thesis, Series of Publications A, Report A-2012-4
Helsinki, April 2012, x + 214 + 44 pages
ISSN 1238-8645
ISBN 978-952-10-7911-5 (paperback)
ISBN 978-952-10-7912-2 (PDF)

Abstract

Inter-enterprise collaboration has become essential for the success of enter-
prises. Competition between supply chains and networks of enterprises
brings with it a need to participate in multiple collaborations simulta-
neously. We propose to increase the automation of the involved routine
processes where possible, which in turn reduces the cost and effort of col-
laboration establishment and management.

All inter-enterprise collaboration builds on trust. Relying on autonomous
partner enterprises for a joint venture creates uncertainty and risks, which
must be balanced by a willingness to collaborate despite the loss of control.
Trust decisions are first made on establishing the collaboration, to ensure
an acceptable balance between the risks of the commitment and its benefits
to the participant. In addition, measures are taken during the collaboration
in order to keep this balance.

We define a trust management architecture where autonomous actors make
automated, local trust decisions based on private policy. The decision-
making process considers identified risks to assets as well as incentives,
and learns from both first-hand and globally shared experience on the be-
haviour of business peers. While trust decisions help protect enterprise
assets locally, a feedback loop through shared experiences also provides so-
cial pressure to respect contracts in the entire ecosystem. Trust decisions
can be adjusted to different and changing business situations through pol-

iii

iv

icy configurations. Policy-defined routine decisions are automated, while
other cases are passed to a human user. The trust management system is a
part of the Pilarcos collaboration management middleware, which provides
collaboration management services, including partner discovery and inter-
operability checking, contract negotiation, breach detection and recovery.

The trust management architecture encompasses four contributions: First,
we define an information model for multidimensional trust decisions. Sec-
ond, we define the algorithm and process for making trust decisions pri-
vately at specific points of the collaboration, based on a combination of
private and shared information. Third, we define aggregation algorithms
for reputation, which enables the system to learn from past experiences
that are shared between the ecosystem members through reputation sys-
tems. Fourth, we specify methods for adjusting trust decisions to different
and changing business situations. To evaluate the architecture, we have
implemented it as the TuBE (Trust Based on Evidence) trust management
system, and analyze its properties, such as adjustability to different busi-
ness situations and attack resistance.

The results of this work can be utilized by the service provider enterprises,
through increased computational support for collaboration management, by
operators in designing the infrastructure services, and to standardize best
practices and create new collaboration patterns within business domains.

Computing Reviews (1998) Categories and Subject
Descriptors:
C.2.4 Computer-Communication Networks: Distributed Systems
H.5.3 Information Interfaces and Presentation: Group and Organisation

Interfaces
K.4.4 Management of Computing and Information Systems: Electronic

Commerce
K.6.5 Management of Computing and Information Systems: Security and

Protection

General Terms:
trust management, trust decisions, reputation, inter-enterprise
collaboration

Additional Key Words and Phrases:
enterprise assets in open service ecosystems, risk, reputation credibility

Acknowledgements

I have learned from my colleague Laila Daniel that a good acknowledge-
ments section utterly demolishes the illusion of a PhD thesis being a solo
effort. Most notably, it is thanks to a whole society of people not pursuing
research careers that some more or less kooky individuals in it, such as
myself, can dedicate their efforts to years of searching for something that
may or may not be a pot of gold at the end of the rainbow. Or, as a wise
person once put it, going out to explore the thin ice because it is not so
dangerous if we are the ones to fall in. Risk-taking, in terms of potential
for unexpected or non-profitable results, is an integral part of research.

All in all, if we have seen a little further, it is by being hauled on top a
veritable human pyramid of joint effort. Instead of giants, I just see people
and more people.

Of my fellow searchers, I first thank my supervisor Lea Kutvonen, who
has been the primary factor in turning my cost-benefit assessment of an
academic career towards the positive, despite my access to numerous third-
party experience reports indicating that research is not a rational choice
of profession. Whatever my scientific career ends up amounting to, it will
be because Lea helped me retain my sanity the first years while I was
urgently growing a confidence as a researcher. In addition, she is the kind
of visionary who finds the most splendid questions to ask, ones that endure
extensive poking and prodding over years and years from different angles,
but towards a single goal that we can all agree on in the group. Good
questions make the rest of the research effort infinitely more rewarding.

I want to praise the present and past members of our Collaborative
and Interoperable Computing research group (CINCO), who are a set of
experts on quite different areas brought together by a common goal. It
is extremely satisfying to learn new things through working with people
holding so many different flavours of knowledge. I have worked most closely
with Lea Viljanen, who started the dig for trust management solutions with
me by applying a security perspective to the problem, and Janne Metso,
who extended my point of view to the Pilarcos system and with whom I

v

vi

have had many fascinating discussions about monitoring and the handling
of collaboration contracts. I wish to also thank Puneet Kaur, who joined
us last year, for sharing my fascination with trust management and helping
me envision a next generation of researchers I might support on their way.

Of my mentors, I particularly wish to thank Tiina Niklander, the spe-
cialization line go-to person and the instructor who tipped me in the right
direction back when I was writing my Bachelor thesis. I also thank Jussi
Kangasharju and Kaisa Nyberg for their support through the Helsinki Doc-
toral Programme in Computer Science, HeCSE, and Patrik Floréen for his
good questions.

I thank my pre-examiners, Ehud Gudes and Patrik K. Hung, for their
encouraging feedback and helpful comments. I also wish to thank Audun
Jøsang, my assigned opponent, whose lifetime contributions in the field of
computational trust and reputation management have influenced me to the
extent of even making me study things that I did not really want to know
about.

I have had the pleasure of meeting and exchanging thoughts with many
extraordinary people on the way, too many to exhaustively list. Nearly
every conference trip has given me a sleuth of new ideas and connections
with brilliant people, particularly in the iTrust / IFIP Trust Management
conference series.

Back home, the students and staff at the Department of Computer
Science make it an invigorating place to work in. The energy for renewal
generated by more than a hundred new faces coming in to the department
every year is mind-blowing, and the community built by the active student
organization TKO-äly allows us all to benefit from it.

I extend special thanks to my mother, whose support with the primary
things in personal life has allowed me to pursue secondary matters, like
career advancement, with a peace of mind. I can only wish that every
working parent had sponsors like mine. I also thank my husband, Mikko,
both for improving the world for us both while I am busy elsewhere, and
for thoroughly grokking me. My son has contributed some colour to this
book by doodling pictures of slow loris and their worm-rich staple on the
drafts; alas, they did not make it to the final version.

I wish to toast this book to unusual ways of thinking.

Helsinki, 2 April 2012
Sini Ruohomaa

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Automating trust decisions for inter-enterprise collaborations 4

1.3 Main contributions . 6

1.4 Research history . 7

1.5 Thesis structure . 12

2 Trust management for inter-enterprise collaboration 15

2.1 Collaboration in open business networks 16

2.2 Automating trust management between enterprises 23

2.2.1 Computational trust in an open market 23

2.2.2 Automating trust decisions 26

2.2.3 Trust management in collaboration phases 28

2.2.4 Architecture goals 31

2.3 Related work on trust-aware inter-enterprise collaboration
management . 33

2.3.1 TrustCoM . 33

2.3.2 CONOISE . 35

2.4 Chapter summary . 36

3 The dimensions of a trust decision 39

3.1 The trust information model 39

3.1.1 Assets guarded by trust decisions 40

3.1.2 Risk . 44

3.1.3 Risk tolerance . 45

3.1.4 Reputation . 46

3.1.5 Importance . 47

3.1.6 Adjusting to business fluctuations through context . 48

3.2 Making multi-dimensional trust decisions 49

3.3 Related work on modelling trust decisions 55

vii

viii Contents

3.3.1 SECURE — a risk-aware trust model 55

3.3.2 Policy languages for trust management 57

3.4 Chapter summary . 62

4 From reputation to trust decisions 65

4.1 Learning from reputation information 65

4.1.1 Storing direct observations as local reputation 66

4.1.2 Gathering outsider opinions into external reputation 68

4.1.3 Evaluating the credibility of reputation sources . . . 69

4.1.4 From subjective reputation to verifiable experiences 72

4.1.5 Tracking behavioural changes with reputation epochs 76

4.2 Adjusting to business situations through policy 82

4.2.1 Trust decision policy 83

4.2.2 Reputation update policy 87

4.3 Related work on reputation management 90

4.4 Interoperability between reputation systems 94

4.5 Chapter summary . 103

5 The TuBE system architecture 105

5.1 Core system and simulation setup 105

5.2 The system architecture and interfacing 111

5.3 Configuring the TuBE system 116

5.4 Chapter summary . 119

6 Evaluation and experimentation 121

6.1 Evaluation criteria . 122

6.1.1 Conceptual usability of decision making 122

6.1.2 Support of autonomy 123

6.1.3 Adjustability for different business situations 125

6.1.4 Implementation of social control 127

6.1.5 Scalability and feasibility 130

6.1.6 Attack resistance . 136

6.2 Experiment 1: Comparison of decision policies 141

6.2.1 Decision policies . 141

6.2.2 Experience streams 145

6.2.3 Policy performance in the face of attacks 147

6.2.4 Analysis . 157

6.3 Experiment 2: Comparison of reputation update policies . . 159

6.3.1 Reputation update policies 160

6.3.2 Experience streams 164

6.3.3 Policy performance in the face of attacks 166

Contents ix

6.3.4 Analysis . 173
6.4 Related work on simulation experiments 178

6.4.1 Reputation systems in electronic marketplaces . . . 179
6.4.2 Competitive agents in the ART testbed 183

6.5 Towards a benchmark for trust management systems 185
6.6 Chapter summary . 188

7 Conclusion 189
7.1 Results . 190
7.2 Future work . 192

References 195

Appendices

I Glossary

II Trust Management Survey

III Reputation Management Survey

x Contents

Chapter 1

Introduction

This dissertation proposes a trust management system for inter-enterprise
collaborations in the open service market. In this chapter, we motivate the
work, describe the problem statement, summarize our main contributions
and review the research history behind the dissertation.

1.1 Motivation

The importance of inter-enterprise collaboration has been strongly increas-
ing in the past years, and the need for supporting solutions continues to rise.
Enterprises enter into collaborations providing mutual benefit, and seek a
minimum of complication and overhead cost in setting up and managing
these shared projects.

The current trend is for enterprises to focus on their core competence,
aiming for a competitive edge through excelling in a few strategically chosen
functions rather than spreading resources too thinly over a broad market.
On the other hand, composite services are still needed: end users and
customers are attracted by the convenience of e.g. holiday packages that
include transportation, accommodation and value-added activities on the
location. Process chains, such as the production of paper from wood, are
also a typical field of collaboration between multiple specialists sharing a
goal.

In the human-driven, centralized approach1, a collaboration would be
formed through one dominant actor building a set of partners for itself over

1Represented in e.g. the FP7 work programme [Eur07], roadmaps for Enterprise Inter-
operability [LCDP06], Service-Oriented Computing [PTD+06, Huh06] and digital busi-
ness ecosystems [NDA+07] research, as well as specific projects such as NESSI [FAB+06],
Athena [The05] and CrossWork [MG10].

1

2 1 Introduction

the course of years. The collaboration would then form around this hub
actor. For example, in the case of holiday packages, a travel agency might
provide one of the services itself and have subcontractors for the rest. In the
forest industry, the forestry company owning the factory could centralize
all operations through pairwise contracts with the forest owners, loggers
and transport companies. These hub actors are difficult to replace, and all
other actors must perform systems integration to be able to work with the
largest actor, unless they are networked broadly enough to remain partially
independent of it.

Small actors can remain independent when the service ecosystem and
its supporting infrastructure is built to make setting up and operating col-
laborations simple, so that interoperability requires relatively small invest-
ments for each business network joined. In this setting, business networks
of small to medium enterprises are free to compete against large enterprises,
and gain more influence in negotiations than they could by themselves. On
the other hand, large companies can organize work within themselves and
with external partners more efficiently as well. All this contributes towards
a more open market.

As inter-enterprise collaboration moves towards these open systems,
participants remain autonomous in collaborations rather than becoming
centrally controlled, and they retain their private agendas. As enterprises
join and participate in multiple business networks, joining and managing
the collaborations must be made efficient.

Efficient collaboration management requires a globally accessible infras-
tructure that provides automation support for any routine processes. These
new facilities must support the setup and management of business networks
in a way that reflects the collaborators’ business needs, providing for discov-
ery and selection of business partners and services, contracting, monitoring
the success of a collaboration, and policy enforcement. Automating these
routine processes demands that information used in them is made accessible
to automation tools: it must be structured through models, and protected
with policy.

However, these basic services alone are not sufficient to form a valid,
scalable ecosystem of services and collaborations. As the service ecosys-
tem grows in size, the unavoidable presence of uncooperative, misbehaving
actors will quickly begin to deteriorate it, eventually making collaboration
impossible. A form of social control — pressure to follow shared norms —
is needed to keep the market alive [FF03, RZFK00].

All inter-enterprise collaboration builds on trust between the actors.
Relying on an autonomous partner enterprise for a joint venture removes

1.1 Motivation 3

some control over the outcome, which in turn creates risks. These risks
must be balanced by an expectation of a greater benefit. As the future
is unknown, the expectations must build on the past: experiences on the
past behaviour of business peers create a perception of their intentions and
norms, which then provide a basis for predicting their future behaviour.
Sharing these experiences globally through reputation systems provides the
social control that traditionally has been represented by e.g. accreditors
such as the Better Business Bureau [Bet10] and Trustmark [Tru10], credit
ratings such as Standard and Poors [Sta10], blacklists such as those pro-
vided by the National Consumer Agency of Ireland [Nat10], stock market
fluctuations and word-of-mouth. In all contractually regulated collabora-
tions, legal recourse remains a final, costly and slow but effective option;
however, social pressure allows the market to thrive with considerably less
centralized control.

Trust decisions are first made on whether to join a collaboration, weigh-
ing whether the risks and benefits of the commitment are in balance from
the point of view of the actor making the decision. In addition, measures
must be taken during the collaboration to ensure that this balance is kept.
The behaviour of a partner is continuously monitored both locally and
through globally shared experiences. If malicious or incorrect behaviour
is observed, or the collaboration otherwise takes a less beneficial turn, the
enterprise can decide to take action to remove the misbehaving peer, or to
withdraw from the collaboration itself.

All actors must build their own estimations out of incomplete informa-
tion, evaluate the credibility of the information locally, and detect when
there simply is not enough information to make a well-based decision. We
should only aim to automate decisions in routine cases: unpredictable sit-
uations where information is insufficient or the stakes too high must be
delegated to human administration to evaluate. Identifying these situa-
tions requires a measure of the quality of the available information as well
as a notion of the scale of risk involved.

In order to support the development of dynamic inter-enterprise collab-
orations and respond to this need for introducing a computational equiva-
lent of trust into the open service market, we propose a trust management
architecture. It should have the following properties:

• an information model for trust decisions, including ways to express
experiences, risks and risk acceptance, incentives and a changing con-
text around the decision,

• algorithms and specified points for making trust decisions privately
within each enterprise based on the available information, and a way

4 1 Introduction

to distinguish between automatic routine decisions and cases requir-
ing human intervention,

• aggregation algorithms for experience information, received both lo-
cally and globally through reputation systems, to ensure that the
trust decisions adjust to new experience, and

• support for adjusting the decisions to different business situations.

This kind of trust management system will protect local enterprise as-
sets from risky collaborations. Even more importantly, through its use of
shared experience information, it will allow the entire service ecosystem
to scale up in size through providing social control and deterring misbe-
haviour.

1.2 Automating trust decisions for inter-enterprise
collaborations

In the open service market, collaborating service providers rely on other
collaborators to fulfil their part of a contract. In this environment, tradi-
tional security measures like access control and firewalls, directed towards
protecting enterprise resources from unauthorized use, are no longer suf-
ficient [RJ96]. A degree of distrust is needed even towards partners who
have been trusted with authorization.

Current approaches to automating trust decisions can be divided into
two groups: policy-based systems, which validate and combine certificates
of trustworthiness from a low number of central sources (e.g. Policy-
Maker [BFL96], KeyNote [BFK98], REFEREE [CFL+97], KAoS [UBJ04],
Ponder [DDLS01] and WS-Trust [OAS07]), and purely reputation-based
systems, which use for example probabilistic methods to combine trust-
worthiness information from a high number of less reliable or knowledge-
able sources (e.g. Beta [JI02], Travos [TPJL06], Regret [SS02], Eigen-
Trust [KSGM03] and UniTEC [KR03]).

The strength of the policy-based approach lies in being able to use
the same trustworthiness information in multiple situations. In contrast,
purely reputation-based systems tend to incorporate decision policy into the
model for acquiring experiences, which limits the usability of the collected
information.

The strength of reputation-based systems is in the efficient distribution,
evaluation and updating of trustworthiness information. In policy-based

1.2 Automating trust decisions for inter-enterprise collaborations 5

systems, the updating process of certificates forming the core of trustwor-
thiness information is left unaddressed — certificates are typically manually
issued and revoked.

We propose to combine the strengths of these two approaches within
a novel trust management architecture, TuBE (Trust Based on Evidence).
The proposed architecture manages and uses up-to-date reputation infor-
mation as a basis for risk estimation, and extends the policy-based approach
to combine the information with local business rules and valuations to de-
termine what kinds of risks are tolerable.

TuBE provides the means for autonomous actors to make automated,
local trust decisions that evaluate the risks and incentives of a collabo-
ration. Decisions are made when joining a collaboration and during its
operation, when there is a need to commit additional resources. The de-
cisions are based on private policies, using experience information that is
shared through reputation systems and locally evaluated for credibility.

Our work connects the fields of inter-enterprise collaboration manage-
ment, policy-based decision systems and reputation management into the
folds of a single architecture, which gives the solutions from each field ac-
cess to much-needed support from each other. Following this philosophy,
we analyze related work from four contexts in this dissertation, with differ-
ent connections to our work: inter-enterprise collaboration incorporating a
basic level of trust-awareness; trust management models to support trust
decision policies from the perspective of risks and incentives; reputation
management models for computationally analyzing flows of reputation in-
formation and transforming it into a format to support risk analysis; and
policy analysis through simulation and game theory, which aim to provide
a better understanding of the effects and suitability of trust management
policies to different environments and situations.

TuBE ties into all of these four domains, and must address impor-
tant questions that have been studied in each of them separately, such as:
Where do experiences come from? How are they converted into the format
accepted by the reputation management system? Where does the trust
decision system gain its risk and incentive information? Does the system
only support a single decision context, and is it sufficient for that context?
How widely does the reputation system need to be used in order for the
experiences shared in it to be sufficient to support the decisions? How does
trust management relate to other enterprise policies? The architecture also
clarifies the relationship between trust, reputation and risk, which has been
previously found problematic [MMH02, JP04, RK05].

The TuBE trust management system is a part of the Pilarcos collabora-

6 1 Introduction

tion management infrastructure [KMR05, KRM07], which provides services
for partner discovery, interoperability checking, and contract negotiation,
as well as runtime breach detection and recovery. The surrounding Pi-
larcos infrastructure services provide the trust management system with
important input on local policies and attributes of the collaboration being
considered, as well as a monitoring interface for gathering local information
about the behaviour of the business peers. The Pilarcos infrastructure ser-
vices provide support for technical and semantic interoperability between
services, but do not fully address the question of pragmatic interoperability:
whether two services in fact want to collaborate. TuBE focuses on this ques-
tion from the point of view of trust. The remaining aspects of pragmatic
interoperability tie into choosing collaborations that match enterprise strat-
egy and investment, and avoidance of contracts that would contradict local
policies; these are covered elsewhere in the architecture [KRM08, RK10].

1.3 Main contributions

More concretely, the contributions of this thesis are fourfold:

1. We define an information model for multi-dimensional trust decisions,
which is necessary for automating routine decisions. The model of-
fers support for dynamic trust decision policies that consider both
the risks and incentives of inter-enterprise collaboration in the open
service market.

2. We define the algorithms for making trust decisions privately within
an enterprise, based on a combination of private and shared informa-
tion. These algorithms are designed to not depend on all enterprises
using the same tools, as enforcing homogeny is not plausible in open
service ecosystems.

3. We define the aggregation algorithms for receiving experience infor-
mation locally and through reputation systems, and for interpreting
and evaluating the credibility of the shared reputation information
locally. These reputation flows allow the architecture to learn from
experience.

4. We specify points in the architecture where the basic behaviour of the
system can be controlled through private policies and metapolicies,
and study the behaviour of central example policies to illustrate the
flexibility of the system, and to contribute to the understanding the

1.4 Research history 7

effects of different policies. Together, these policies and metapolicies
allow trust decisions to adjust to different business situations.

We propose a system for automating trust-based decision-making for
inter-enterprise collaborations in routine cases, and automatically identify-
ing non-routine situations where human intervention is needed instead. It
can be easily adjusted to different and changing business situations, so it
can serve enterprises from different business domains, and can support trust
decisions both in open service ecosystems as well as in more closed environ-
ments, such as virtual breeding environments of already-known strategic
business partners.

The TuBE architecture is designed to be modular, forming a framework
into which more specialized solutions can be plugged. The core trust de-
cision algorithms are designed to be computationally simple enough that
automated decision-making can be performed in real time. Should perfor-
mance not be an issue, we do not limit how complex the decision policies
themselves can be made. This allows plugging in more complex and mathe-
matically powerful approaches, such as risk evaluation based on probability
distributions (e.g. Beta [JI02]) or possibility theory [CW+08]. Similarly,
TuBE is designed to be able to take in reputation information from multiple
different sources, as we consider it probable that different business domains
will not converge into using a single reputation system.

TuBE is also designed to be adjustable, but not at the expense of config-
urability: for simple decision contexts, the system can be set up to operate
on a small set of default policies, while it can be adjusted to more elabo-
rate environments either manually, or through semi-automatically refining
higher-level policies and models into TuBE rules. As a design choice, poli-
cies for integrating new information from sources of varying quality are kept
separate from decision policies using the information; this ensures that the
same information can be used in very different contexts of decision-making.
This flexibility of the architecture ensures that TuBE can be used both by
small and large enterprises for trust management in the open service ecosys-
tem.

1.4 Research history

The research reported in this thesis has been done as a part of the CINCO
research group, which has been developing the Pilarcos infrastructure ser-
vices [KRRM08]. The trust management system work began in the TuBE
(Trust Based on Evidence) project in 2004, which was funded by Tekes,
Nixu and Stonesoft. As a part of the EU InterOP Network of Excellence,

8 1 Introduction

we have focused on studying interoperability issues in trust, policies and
other non-functional aspects of collaboration [INT05, INT07b, INT07a].
Two workshops on Interoperability solutions to Trust, Security, Policies
and QoS for Enhanced Enterprise Systems (IS-TSPQ) were organized as a
part of the dissemination activities [KLMR07].

My research work can be divided into four interleaved phases: survey-
ing the field and identifying central trust management concepts, defining
the trust information model and algorithms, designing and implementing
the TuBE architecture and its connections to Pilarcos, and evaluating the
architecture, including simulation experiments on a research prototype of
the trust management system.

My survey work has aimed to study the related research fields, to iden-
tify existing solutions and other useful results and to build a model of trust
to use in the TuBE project. The central publications from this phase have
been two surveys, in addition to which I have disseminated results from
this phase in Finland and near areas [RK06, Ruo06]. The survey work rep-
resents an important phase in the research leading up to this thesis; these
articles are thus included in the appendix to be evaluated as a part of the
contribution. In contrast, the related work analysis in the following chap-
ters has been done with a narrower scope, specifically chosen to illustrate
the concepts and goals discussed in the thesis.

Ruohomaa, S. and Kutvonen, L., Trust management survey. Proceed-
ings of the iTrust 3rd International Conference on Trust Management, Roc-
quencourt, France, volume 3477 of Lecture Notes in Computer Science.
Springer-Verlag, May 2005, pages 77–92.

• The article provides a general overview of the state of the art in
trust management. I studied the literature based on a framework for
comparing the state of the art, and conducted the analysis.

• The iTrust conference was a key cross-disciplinary conference on trust
and trust management within Europe. In 2007, it formed the basis
of the IFIP Working Group 11.11 and its IFIPTM conference.

Ruohomaa, S., Kutvonen, L. and Koutrouli, E., Reputation manage-
ment survey. Proceedings of the 2nd International Conference on Avail-
ability, Reliability and Security (ARES 2007), Vienna, Austria, April 2007,
IEEE Computer Society, pages 103–111.

• The article analyzes 11 reputation systems from the point of view of
information credibility analysis. This survey was joint work with the

1.4 Research history 9

University of Athens; my contribution focused on the framework for
analysis and expertise on a subset of the systems compared.

Sini Ruohomaa and Lea Kutvonen. Making multi-dimensional trust
decisions on inter-enterprise collaborations. Proceedings of the Third Inter-
national Conference on Availability, Security and Reliability (ARES 2008),
pages 873-880, Barcelona, Spain, March 2008. IEEE Computer Society.

• The article presents the information model and algorithms for com-
putational trust decisions, as well as managing and updating trust
information. I refined the preliminary trust model from the TuBE
project into the more detailed model presented in the article.

Sini Ruohomaa, Lea Viljanen, and Lea Kutvonen. Guarding enterprise
collaborations with trust decisions - the TuBE approach. Interoperability
for Enterprise Software and Applications. Proceedings of the Workshops
and the Doctoral Symposium of the Second IFAC/IFIP I-ESA International
Conference: EI2N, WSI, IS-TSPQ 2006, pages 237-248. ISTE Ltd.

• The article presents the TuBE system architecture and its interfaces
to the Pilarcos middleware. The basic architecture was joint work
that began with the TuBE project; I refined the architecture further,
and held the main responsibility in interfacing the trust management
component to the Pilarcos infrastructure.

• The publication forum was the aforementioned IS-TSPQ workshop,
a part of the dissemination activities of the InterOP Network of Ex-
cellence.

Lea Kutvonen, Janne Metso, and Sini Ruohomaa. From trading to
eCommunity population: Responding to social and contractual challenges.
Proceedings of the 10th IEEE International EDOC Conference (EDOC
2006), pages 199-210, Hong Kong, October 2006. IEEE. Best paper award.

• The article presents challenges and solutions in setting up an inter-
enterprise collaboration. My contribution focused on analyzing the
trust management aspects of finding and selecting collaboration part-
ners. One of the conclusions in the paper was that the population
process must be based on public information when the populator
is an external third-party service, in order to not force all initia-
tor organizations to reveal more sensitive information on e.g. their
partner preferences. More general trust-related requirements, such

10 1 Introduction

as required certification of competence for a particular task, can be
pushed into the parameters given to the populator if they have been
left optional in the collaboration model.

• EDOC is a key conference for inter-enterprise collaboration, with con-
sistently low acceptance rates.

Lea Kutvonen, Janne Metso, and Sini Ruohomaa. From trading to
eCommunity management: Responding to social and contractual chal-
lenges. Information Systems Frontiers (ISF) — Special Issue on Enterprise
Services Computing: Evolution and Challenges, 9(2-3):181-194, July 2007.

• The journal article following the EDOC article shifts the focus of
the work towards the new infrastructure services needed in differ-
ent phases of the collaboration, as well as operational time issues
in collaboration management. My contribution focused on the trust
management infrastructure.

Lea Kutvonen, Toni Ruokolainen, Sini Ruohomaa, and Janne Metso.
Service-oriented middleware for managing inter-enterprise collaborations.
Global Implications of Modern Enterprise Information Systems: Technolo-
gies and Applications, Advances in Enterprise Information Systems (AEIS),
pages 209-241. IGI Global, December 2008.

• The book chapter analyzes the operating environment in a broader
perspective, providing an overview of the entire existing Pilarcos in-
frastructure, including its trust management services. My contribu-
tion involved the presentation of the trust management infrastructure.

Lea Kutvonen, Sini Ruohomaa, and Janne Metso. Automating deci-
sions for inter-enterprise collaboration management. Pervasive Collabora-
tive Networks. IFIP TC 5 WG 5.5 Ninth Working Conference on Virtual
Enterprises, pages 127-134, Poznan, Poland, September 2008. Springer.

• The article focuses on metapolicies needed to support decision-making
on three different levels: first, whether a collaboration is relevant in
relation to the business strategy of the enterprise, second, whether it
is valid, i.e. in accordance with for example the local privacy policy
and legislation, and third, whether it is worth the risk. My contri-
bution covered trust decisions, which appear on the third level; the
decision-making environment influences the requirements for the trust
management system as well as the decision context information that
can be expected to be available.

1.4 Research history 11

Sini Ruohomaa, Lea Kutvonen. Trust and distrust in adaptive inter-
enterprise collaboration management. Journal of Theoretical and Applied
Electronic Commerce Research — Special Issue on Trust and Trust Man-
agement, August 2010.

• The article analyzes the role of different policies in trust management,
and provides an overview of the information model and algorithms for
making trust decisions that can be adjusted to different and chang-
ing business situations. It also evaluates the cost of implementing
the proposed trust management as well as the broader policy-driven
decision-making system. My contribution covers the trust manage-
ment focus point of the article.

Sini Ruohomaa, Aleksi Hankalahti, Lea Kutvonen. Detecting and re-
acting to changes in reputation flows. Proceedings of the Fifth IFIP WG
11.11 International Conference on Trust Management, June 2011.

• The article introduces reputation epochs, which are used to capture
changes in behaviour. It evaluates the cost of implementing them and
presents simulations of example epoch change policies to demonstrate
their effects on decision-making. Reputation epochs are my original
concept.

• A key conference in trust management, the IFIPTM conference con-
tinues the aforementioned cross-disciplinary iTrust conference series.

Sini Ruohomaa, Puneet Kaur, Lea Kutvonen. From subjective reputa-
tion to verifiable experiences — augmenting peer-control mechanisms for
open service ecosystems. Proceedings of the Sixth IFIP WG 11.11 Interna-
tional Conference on Trust Management, May 2012. To appear.

• The article introduces an objective form of reputation, where expe-
riences are based on contract-defined outcomes and verified by third
party witnesses. It evaluates the costs and benefits of such a scheme.
Separate aspects of the approach can be found in related work, e.g.
the idea of defining objective experiences in contracts is compara-
ble to sharing evaluation information based on industry-adopted key
indicators, while this combination is my original concept.

• The IFIPTM conference is a key conference in trust management.

12 1 Introduction

1.5 Thesis structure

The rest of the thesis is organized as follows:

Chapter 2 sets the trust management architecture in its application
area of inter-enterprise collaboration. It defines the central concepts for,
and specifies the requirements of trust management in open business net-
works, formulating the research problem. The chapter also sets the goals of
the architecture, which form the basis for evaluating the proposed system.
Related work on trust-aware inter-enterprise collaboration management is
presented in this chapter, in order to compare the goals and chosen points
of focus for existing similar proposals to those in Pilarcos and TuBE.

Chapter 3 focuses on automated trust management. It defines the trust
information model and algorithms for trust decisions. It motivates the need
for the different elements of a trust decision, then specifies how they are
modelled in the trust management system. Related work presented in this
chapter includes comparing TuBE with another risk-aware trust model, and
evaluating how well the available policy languages for trust management
can support the expression of the relevant policies in TuBE.

Chapter 4 focuses on reputation management, opening the third and
final core area of research contained in this thesis. It defines the aggre-
gation algorithms for receiving, interpreting, evaluating the credibility of,
and consuming experience information through reputation systems. It also
specifies the different points of policy configuration to direct the trust deci-
sion and reputation aggregation processes; these policies form the basis of
making the system adjustable to different business situations. Related work
on reputation management is presented in this chapter. First we study the
common and differing elements in systems within the most significant class
of reputation models, after which the interoperability between TuBE and
different reputation systems is discussed.

Chapter 5 describes the TuBE trust management system architecture
and prototype implementation. It first discusses the core system for trust
decisions and incorporating new experiences, then extends the discussion
to the overall architecture, with connections to external systems such as
the Pilarcos monitor, reputation networks and configuration tools. The
chapter finishes with an analysis of the configuration capabilities and input
needs of TuBE.

Chapter 6 evaluates the TuBE trust management architecture through
criteria presented in Chapter 2: conceptual usability of trust decision mak-
ing, support for autonomy, adjustability for different business situations,
implementation of social control, scalability and feasibility, and attack re-
sistance. Related to this, it also presents the results of two simulations, with

1.5 Thesis structure 13

analysis of the behaviour of different policies for reputation-based trust de-
cisions, and their robustness against attacks. Related work on simulation
experiments for electronic commerce and reputation systems is presented in
this chapter to demonstrate the state of the art in evaluating reputation-
based systems, after which the overall feasibility of developing a general
benchmark for trust management systems is discussed.

Chapter 7 concludes the thesis, summarizing the impact of the contri-
butions made and discussing future work.

A glossary of Pilarcos and TuBE terminology, a trust management sur-
vey and a reputation management survey are included in the appendix.

14 1 Introduction

Chapter 2

Trust management for
inter-enterprise collaboration

Introducing reputation-based trust management into inter-enterprise col-
laborations allows service providers to flexibly discover new partners, and
react to changes in the behaviour of previously known partners. The au-
tomation of routine decisions on joining and continuing in collaborations
makes it feasible to ensure both that the estimated benefits of entering a
collaboration outweigh the risks, and that this balance is kept throughout
the collaboration itself. In addition, collecting reputation information on
collaboration participants creates a social pressure to follow contracts, as
good reputation will improve the chances of a service provider being chosen
into collaborations.

This chapter sets trust management in its application area of inter-
enterprise collaboration. It presents the research problem and outlines the
requirements of the trust management solution. In the first section, we de-
scribe the operational environment of inter-enterprise collaboration, which
forms the context for trust management processes. In the second section,
we define the trust management architecture, specify how trust manage-
ment processes connect to different phases of the collaboration, both in
its establishment and operation. We also set the goals for the trust man-
agement system, including flexibility and attack resistance, which provide
the basis for evaluating the system in later chapters. The third section
discusses related work in inter-enterprise collaboration management, con-
trasting relevant existing proposals to our work.

15

16 2 Trust management for inter-enterprise collaboration

2.1 Collaboration in open business networks

An inter-enterprise collaboration involves a group of enterprises in a con-
tractually regulated, cooperative project. Collaboration allows the enter-
prises to focus their resources on a few key fields of expertise, while contin-
uing to provide broader services for customers. It also enables small and
medium enterprises to compete in fields dominated by large corporations
by joining together to gain more influence than they would have separately.
The enterprises maintain their independence during the collaboration, and
make local decisions based on the enterprise policy.

Connecting different information and communication systems across
organizational borders gives rise to interoperability issues, ranging from
technical problems to business-level disagreements. The service-oriented
architecture [Pap03, M+06] aims to promote technical interoperability by
exposing the different systems as service interfaces, which hide the internal
implementation [BHM+04]. Disagreements, on the other hand, must be
handled through policy management and enforcement mechanisms.

Each enterprise provides a service to other members of the collaboration,
according to a negotiated contract. The services involved are primarily
regulated by local policy set by the enterprise, however. The regulation
mechanism is independent from the core technical service application.

In a collaboration, services offered by different enterprises are connected
to fulfil a more complex goal, such as a supply chain to refine raw materials
into end products, or providing a value-added service. Each member of a
collaboration has a particular role to fulfil, and does so through offering
the service or services expected of the role. A logistics company could
for example fulfil the role of a transporter by providing a service to order
and pay for a transport, and possibly an additional interface to provide
information on how much time the delivery is estimated to take.

The enterprises providing the services needed for a collaboration are
located from the open service market; in other words, new service providers
can enter the market simply by offering their service in it, and new types of
services and collaborations can be added to expand and evolve the market.
The market is also not centrally controlled by any single party, and service
providers participating in a collaboration remain autonomous.

The services are loosely coupled: only the interfaces to access the ser-
vices are exposed, while their internals are kept private. This division has
multiple benefits. First, service providers do not need to repeat costly in-
tegration projects between each other to get new business networks into
operation. It also makes it simpler to exchange one service for another if
needed, without necessarily having to disband the entire business network.

22 2 Trust management for inter-enterprise collaboration

to terms of service by different service providers. Not all information is
published in service offers, as for example the pricing or specific protocols
demanded by the service provider may depend on who it is proposing to
collaborate with. Some service providers may refuse to participate in the
business network outright. Even the initiator itself may disagree with some
proposals produced in the population process; as the populator can be a
third party service, it is not trusted with sensitive details such as which
service providers are not acceptable as partners, or which ones are charged
extra [KMR07]. If a proposed member refuses to participate in the col-
laboration or no mutually acceptable terms of service can be found, the
initiator must select another business network proposal for negotiation.

In the operation phase, the collaboration has been fully set up and is
ready to run. The business network model sets rules for what format the
service invocations are to be made in, but it does not necessarily define a
strict workflow as such. The operational phase of the collaboration may be
a brief handful of transactions, or it can go on for months or years. During
it, partners may leave or be removed from the collaboration due to failing
to follow the negotiated eContract; if this is the case, the collaboration
returns to the population and negotiation phases to try to discover and
initiate a new partner to fill in for the missing one. Depending on the
type of collaboration, this kind of reorganization is coordinated either by
the business network initiator or another service chosen in the population
phase to fulfill the role of coordinator.

Although the service offers have been statically checked for interoper-
ability during the population phase, it is not a given that they actually
conform to the defined behaviour during the operation of the business net-
work. They may send service requests that do not follow the service type,
fail to send required messages on time or send them in incorrect order.
In a dynamic, complex environment of autonomous services, the possible
causes for such contract and business network model violations are numer-
ous: for example, the service may be temporarily overwhelmed by requests,
the provider may be malicious or the service may have been hacked by an
external attacker, the service software may be buggy, or the contract and
the provider’s local policy may be in conflict.

These kinds of contract and business network model violations are mon-
itored for by each service provider independently, and a misbehaving par-
ticipant can either be required to provide compensation for violations or be
removed from the collaboration altogether.

Once the operational phase completes, either through successfully com-
pleting the tasks set for the collaboration, through having operated for a

2.2 Automating trust management between enterprises 23

given time, or by running into an incorrigible state of error, it moves to the
termination phase.

The termination phase ends the collaboration. When termination fol-
lows the operational phase, it involves controlledly bringing down the col-
laboration: for example, agreeing on post-collaboration responsibilities and
releasing resources reserved for the network.

The collaboration may also be ended before it has begun: First, in
the population phase, if suitable partners are not found, the collaboration
ends prematurely. Similarly, in the negotiation phase, the business network
proposals built by the populator may turn out to have members unwilling
to collaborate with each other, or having too strict requirements on the
eContract terms beyond the demands they were willing to express in the
public service offer.

In all cases, the termination phase produces feedback to the service
market, the infrastructure services and supporting metainformation: expe-
rience on how the collaboration went, the applicability and popularity of
specific service types and collaboration models, or a need for new kinds of
models.

2.2 Automating trust management between en-
terprises

All inter-enterprise collaboration builds on trust: the autonomy of the part-
ners creates risks and uncertainty which can only be accepted when the
participants have sufficient trust for each other. In this section, we de-
fine the central concepts and architecture for trust management, relate its
processes to different phases of the collaboration presented in the previous
section, and specify the goals of the architecture used as the basis of its
evaluation in Chapter 6.

2.2.1 Computational trust in an open market

We define trust as the extent to which an actor is willing to participate in
a given action with a given partner, considering the risks and incentives
involved. The definition underlines the calculative nature of computational
trust: some risks can be mitigated, while others cannot, and a trust decision
determines whether the risks are tolerable for the given commitment. There
are many alternative definitions for trust [RK05]; our definition is close to
McKnight and Chervany’s concept of trusting intentions [MC96].

A trustor is the actor making a trust decision, while the target actor

24 2 Trust management for inter-enterprise collaboration

of the decision is called a trustee. In both cases, the actors are business
services. While trust as an emotional state or relationship takes place
between human users, and to a degree groups of people in enterprises, we
cannot attach computational trust directly to them. In inter-enterprise
collaboration, the identities that we can reliably connect experiences to are
bound to business services, and the service providers behind them can only
be reached indirectly through the services. A given service may be offered
by a coalition of multiple organizations, and a sufficiently large organization
can provide hundreds of services across different domains; the services may
behave inconsistently simply due to not being centrally controlled within
the enterprise.

Trust management is the activity of upkeeping and processing infor-
mation which trust decisions are based on. Specifically, we do not include
the more general concept of managing business relationships in our defi-
nition. Trust management interacts closely with risk management in an
enterprise. Whereas risk management aims to identify and mitigate risks,
trust management brings together the estimated risks with organizational
policy in a given decision context. A trust decision considers the incentives
that push for a positive decision despite the risks. The risks estimated in
a trust decision are ones that either cannot be mitigated or are not always
worth the cost of mitigating: in other words, they are risks that must be
tolerated in order to collaborate.

We can identify three prevalent approaches to inter-enterprise trust
management in related work: strategic networks, certification, and experi-
ence-based approaches. Approaches based on strategic networks are di-
rect descendants of the traditional method of building trust over the years
between human representatives of enterprises. They rely on forming a
single domain of trust, a closed virtual breeding environment, from pre-
viously known partners. Before a service provider is allowed into this
environment, it must be manually evaluated for trustworthiness, but af-
ter being allowed into the virtual breeding environment it is fully trusted
and can enter into collaborations with other members. TrustCoM [W+06],
ECOLEAD [RGAN06] and CrossWork [MG10] are examples of this type
of approach; we return to the first two systems in Section 2.3, while Cross-
Work represents the extreme case of no explicit trust management: the set
of strategic partners is fixed and fully trusted.

Certification-based approaches also depend on manual trustworthiness
evaluation, but rather than depending on a single trust domain, each service
provider evaluates for itself whether it accepts a given set of certified creden-
tials. The credentials can indicate for example membership in a consortium

2.2 Automating trust management between enterprises 25

or a local group of businesses, and they are exchanged in two-way negotia-
tions between the service providers. The certification-based approach has
emerged as an extension to traditional access control, and is mostly rep-
resented by policy languages; WS-TRUST [OAS07], PolicyMaker [BFL96]
and TrustBuilder [WSJ00] represent this approach. Section 3.3.2 discusses
policy languages in more length.

In experience-based approaches, trustors evaluate the trustworthiness
of other providers based on previous experiences with them, and update
their view based on new experiences. The generation of experiences can
be automated and incorporated into the trust management system, which
is a distinctly new trend in inter-enterprise collaboration. The roots of
experience-based approaches are in electronic markets; CONOISE [JI02],
SECURE [C+03] and Regret [SS02] are examples of the experience-based
approach. We will present CONOISE in more length in Section 2.3.2, SE-
CURE in Section 3.3.1, and return to other related approaches in Sec-
tion 4.3.

Trust management in strategic networks is centralized and static: an
ultimately trusted party must keep track of the members of the breeding
environment, and any changes in memberships require manual intervention.
Certification-based trust management is also static, as issuing and revoking
certificates is done outside the system, but management can be distributed
through delegation. Experience-based trust management is dynamic and
distributed, and it provides support for trust decisions throughout the dif-
ferent phases of the collaboration.

Before we discuss the factors influencing a trust decision further, we
must define the setting in which trust decisions are made. The context in
which computational trust is used determines what kind of trust model is
needed.

We make a set of background assumptions on the nature of typical
collaborations supported by interoperability middleware. Given the com-
petition in an open market, and the relative ease of setting up flexible
collaborations, we consider the typical business relationships behind the
business networks to be relatively short-term, rather than relying on years
of natural trust building. The business value involved in the collaboration
varies, but single collaborations are typically not sufficiently important to
prove critical to an enterprise. All this means that collaboration decisions
can afford to be somewhat opportunistic: optimistic collaboration with
partners that have not been known for a long time brings new business,
but it also comes with new risks.

An opportunistic market solicits enterprises to stretch contracts and

26 2 Trust management for inter-enterprise collaboration

look for loopholes. For example, while a contract is likely to have a legally
binding compensation clause to discourage not delivering bought goods, it
may not have much of a punishment defined for a late delivery or cutting
corners with the quality of the goods.

The central approach to operating in a world like this involves enter-
ing into collaborations with some care, evaluating the risks involved, and
learning from mistakes. Enterprises will have some incentive to share their
experiences, because this helps keep malicious partners from altogether ru-
ining the market [RZFK00, JHF03], but they may also omit information
or spread false information if it suits their goals. Due to its flexibility, the
experience-based approach to trust management is the best solution for
this type of environment.

There is no centralized control or monitoring that all collaborators can
rely on, hence all enterprises must be prepared to make local decisions on
whether to collaborate, based on information they have gathered themselves
and from the network. The enterprises are also free to decide that they will
not follow a contract when it is not in their best interests; compensation
clauses are defined to set the price for violating an agreement.

2.2.2 Automating trust decisions

Trust decisions evaluate and weigh the estimated risks and benefits of col-
laborating. The estimations are based on experiences: collaborators who do
not respect agreements are likely to not respect them in the future either,
and should therefore not be chosen again if better options are available.
As trust decisions are made locally, based on local information and enter-
prise policy, different actors may arrive at different conclusions on the same
trustee. In addition, the action which is being decided on has a strong ef-
fect on the outcome of the decision; some actions require more resources or
involve more inherent risk than others.

Our goal is to automate routine decisions where the balance of risks
and benefits is clear. We do not aim to automate all trust decisions, but
instead leave borderline cases and decisions involving very high stakes to
human management.

The main problem in automating trust decisions for inter-enterprise col-
laboration is that the information to support them is currently not available
in a form that can be automatically processed. Conceptual work has been
made [RK05, JIB07] and some general models have been proposed, but
there are no trust decision systems in actual use between enterprises. We
will discuss existing trust-aware inter-enterprise collaboration management
research in Section 2.3, and return to trust models in more detail in Sec-
tion 3.3.

2.2 Automating trust management between enterprises 27

A good trust decision depends on a good risk estimation. Risk estima-
tions are predictions, setting probabilities for different kinds of outcomes
from a collaboration. These probabilities are estimated based on informa-
tion about past events, experience from earlier collaborations. This infor-
mation can be first-hand experiences, shared experiences, or a combination
of the two. A central source of such experience is a reputation system.

We define reputation as the perception an actor creates through past
actions about its intentions and norms [MMH02]. A reputation system col-
lects, processes and distributes reputation information, such as concrete
experiences or more general statements about an actor or its trustworthi-
ness [RKK07]. It is implemented by a reputation network, which encom-
passes a reputation system and a network of actors sharing their experiences
within it.

A reputation system brings a new role into a trust decision besides
the trustor and the trustee: that of a recommender, a source of external
reputation information. The external reputation information is passed as
recommendations, which, despite the name, can be either positive or neg-
ative. Experience-based recommendations can be direct, coming from the
actor who has entered into a collaboration with the trustee in the past and
transacted with it, or they can be indirect, in which case the recommenda-
tion passes through middle-men before reaching the trustor. The roles of
actors in a reputation system are depicted in Figure 2.6.

Figure 2.6: To decide whether to perform a transaction with the trustee,
the trustor collects experiences on earlier transactions, including its own.

Trust decisions are a part of the policy setup enforced by the monitors
we presented in Section 2.1. The monitors apply both local and shared
policies; the latter are represented in the eContract. If the local policy and
eContract disagree, local policy is followed.

Similarly, trust decisions are based on a combination of local and shared

2.2 Automating trust management between enterprises 29

In the modelling phase, domain experts produce business network mod-
els and enterprises define service offers. The business network models in
particular are a natural target for annotations: they can be augmented
with information to support decision-making, such as explicitly expressing
the cost of not following a contract at a given point, or providing a formula
for the scale of risk inherent in a specific transaction.

The business network model provides a framework for the shared policy
that is eventually refined in the negotiation phase and stored in an eCon-
tract; the domain expert is also in a good position to estimate, for example,
how the financial risk involved in buying goods depends on the price of the
item bought. While this information might not be trusted or found useful
by all users of the business network model, having it readily available in a
repository allows it to be used to enhance trust decisions without having
to perform the modelling separately within each enterprise.

No explicit trust decisions are made in the modelling phase; the enter-
prise does need to determine how specific it wishes to be in its service offers,
but we find that these kinds of evaluations are not routine or straightfor-
ward enough to lend themselves well to automation.

In the population phase, the business network initiator may wish to
make a trust decision on which of the produced proposals it wishes to
present for negotiation. In terms of trust as a willingness, the decision
measures which proposal has the best balance of risks and benefits, based
on the proposed participants [KMR07]. The population process combines a
set of service models into a joint policy framework, but it does not produce
new information for trust decisions as such.

In the negotiation phase, the policy framework set in the business net-
work model is refined, and for example the compensation required of part-
ners who choose to not follow the contract becomes fixed. The threat of
compensation provides one of the incentives to participate in an action, and
avoiding compensation should be taken into account as one of the certain
benefits of a positive trust decision.

During the negotiation phase, all potential participants will make a trust
decision on whether they are willing to join the proposed collaboration. The
decision may also affect the special conditions which the service provider
may set for joining, and it may be repeated at the end of the negotiations.

The negotiation phase is a first point of where the members of the
collaboration can observe each others’ behaviour. A service provider may
publish a service offer solely for the purpose of being invited into negotia-
tions with its competitors and to study what their actual, non-public terms
of service are. If it has no intention to follow through with the collabora-

2.2 Automating trust management between enterprises 31

end of a collaboration may also be more valuable for sharing in a reputation
system than very detailed transaction experiences; it is also less likely to
inadvertently leak information about the internal processes of the service
provider.

2.2.4 Architecture goals

In the earlier sections, we have defined a trust management extension to
the service ecosystem architecture. We expect the enhanced architecture
to have the following properties:

• an information model for multi-dimensional trust decisions,

• the algorithms and specific points for making the trust decisions pri-
vately within each enterprise,

• the aggregation algorithms for receiving, interpreting, evaluating the
credibility of and consuming experience information through reputa-
tion systems to ensure that the architecture learns from experience,
and

• support for adjusting to different business situations within the en-
terprise through private policies and metapolicies.

The information model and decision-making algorithms are presented
in Chapter 3, while reputation aggregation and policy configuration points
are discussed in Chapter 4. We demonstrate the implementability of the
architecture with a research prototype presented in Chapter 5.

In Chapter 6, we evaluate the architecture based on six criteria, which
arise from the needs of the application area of inter-enterprise collaboration:

• the conceptual usability of trust aspects in decision making,

• support for autonomy,

• adjustability for different business situations,

• implementation of social control,

• scalability and feasibility, and

• attack resistance.

32 2 Trust management for inter-enterprise collaboration

The criterion for providing conceptually usable decision making tools
underlines the necessity for using concepts that are consistent with the do-
main where policies are set: for defining decision policies on business ser-
vices, business-level concepts are considerably better suited than implemen-
tation-specific technical concepts. The trust management system should
map business-level concepts to implementable technical concepts in a way
that provides sufficient expressive power to define effective trust manage-
ment policies.

Supporting autonomy encompasses the need to allow services to make
their own decisions, to be allowed to control their own information and to
minimize the need for submitting them all to centralized monitoring or rule
enforcement.

Adjustability for different business situations connects to the architec-
tural requirement for providing ways to adjust the trust decisions. We
analyze whether these ways provide sufficient support for the system to
evolve gracefully as the needs of the organization change.

Implementing social control in the open service ecosystem entails that
in the absence of a central authority to enforce rules, contract violations
and other misbehaviour can be sanctioned in a distributed way. In or-
der for this to work, the sanctioning system must operate on two levels:
punishing regular, i.e. first-order misbehaviour as well as sanctioning any
unfair punishments (including lack of deserved punishment) to first-order
misbehaviour, on the second level. This combination allows the community
represented by the open service ecosystem to remain operational even as it
grows in size.

The criterion for scalability and feasibility of a system encompasses the
requirement that the costs and benefits of implementing such a system must
be in balance. Costs can be divided into two categories: computational
costs encompass how heavy the system is to operate in terms of algorithmic
complexity, messaging and storage, while administrative costs comprise the
necessary human labour to set up and operate the system.

The attack resistance criterion reflects a balancing between two goals.
On one hand, the trust management system should be resistant to and able
to punish different forms of misbehaviour, including coordinated attacks.
On the other hand, the system should remain usable and not be so strict
that it would start to severely inhibit business in comparison to human
decision-making.

When selecting our criteria, we found many matching criteria in related
work, as well as some that were even opposed. For example Dingledine et al.
have specified some desirable properties for a reputation system [DFM00];

2.3 Related work on inter-enterprise collaboration management 33

their focus is on reputation systems only, and as a result the criteria are
somewhat low-level, such as distinguishing between a complete lack of ex-
periences and negative experiences recording bad behaviour. They present
several criteria related to usability, scalability and feasibility and attack re-
sistance. The list also includes a criterion in direct conflict with our goals,
stating that no one should be able to learn how a given actor rated another
actor except the rater himself. While the requirement aims to protect ac-
tors from retribution for reporting misbehaviour, it also removes all basis for
credibility analysis or ensuring honesty in ratings. It becomes apparent that
when comparing criteria for different reputation systems, it is important to
distinguish between the goal of providing a channel to anonymously alert
investigative authorities of e.g. rule violations, subjective recommender
systems for endorsing past business partners, and systems aiming to create
social control through distributed monitoring and objective criteria.

2.3 Related work on trust-aware inter-enterprise
collaboration management

In this section, we contrast comparable systems for inter-enterprise col-
laboration management to our work. As the thesis focuses on the trust
management facilities, we will focus on work similar to the combination
of Pilarcos and TuBE here; examples of comparisons to Pilarcos without
TuBE can be found in our earlier work [KRRM08]. We present two exam-
ples of trust-aware collaboration management work that are similar to our
efforts, and form a pair of representative samples of the state of the art:
TrustCoM and CONOISE. The different approaches represented by these
two examples are then contrasted to our proposal. TrustCoM is an Inte-
grated Project in the European Commission Sixth Framework Programme,
while CONOISE is a British collaboration.

ECOLEAD, also an Integrated Project in the Sixth Framework Pro-
gramme, discusses aspects of inter-organizational trust at length [MAH+06,
MA07], while its aim is in providing a set of tools for virtual breeding en-
vironments rather than an automated management architecture. We will
therefore not discuss ECOLEAD further here.

2.3.1 TrustCoM

The TrustCoM project aims to build a framework for trust, security and
contract management for collaborations that are implemented as dynamic
virtual organizations. The TrustCoM framework includes a virtual breed-

34 2 Trust management for inter-enterprise collaboration

ing environment, service discovery and negotiation support, and trust and
reputation management [W+06].

The TrustCoM trust management service is primarily certification-based,
as opposed to the experience-based approach chosen in this thesis. In Trust-
CoM, security tokens are issued to actors entitled to access the service. The
tokens act, in essence, as certificates of trustworthiness. More specifically,
the tokens represent attributes that indicate trustworthiness, such as mem-
bership in a trusted group of a partner organization [LS+05]. This kind
of separation of concerns between certification issuing and interpretation
builds on attribute certification; see for example SPKI/SDSI [Ell04, Ell99]
and comparison to identity certificates [Kar03].

Each actor may hold numerous security tokens. To support the ac-
tors’ ability to control access to information about themselves, TrustCoM
contains a trust negotiation component, which in essence helps the actor
determine the tokens necessary for accessing the service. This makes it pos-
sible to only disclose the needed tokens, rather than all of them. Privacy-
preserving trust negotiation strategies are an important research field in
their own right; the problem has been explored by e.g. Winsborough et al.
and Winslett [WSJ00, Win03].

Contrasting to Pilarcos and TuBE, we expect that security tokens will
be a useful method for determining which actors are allowed to make ser-
vice requests. Our experience-based approach assumes that a basic au-
thorization service is in place, and focuses on protecting the system from
authorized actors as well as determining who becomes authorized through
a collaboration contract in the first place.

The TrustCoM reputation service is used in the context of finding suit-
able partners for a collaboration [LS+05]. For example, potential partners
with a reputation below a specified value will not be applicable. Experi-
ences are gathered at the end of each step in a business process, and stored
centrally by a trusted third party. A downside of relying on a trusted third
party is that all participants must be able to trust it to remain impartial;
on the other hand, if such a party can be found, it makes access to the
reputation information very simple.

In TrustCoM, experiences do not affect ongoing collaborations. In com-
parison to our trust management system, the cycle of reaction to new ex-
periences is prolonged from relevant transactions to entire collaborations,
which may consist of hundreds of transactions. This tradeoff between low
decision-making overhead and fast reaction is less drastic if we assume that
all collaborations are very short, although this also indicates greater over-
all overhead in setting up the collaborations. In TuBE, we allow decision-

2.3 Related work on inter-enterprise collaboration management 35

making overhead to be lowered flexibly by making the set of relevant trans-
actions more sparse, but using transactions as our basic unit rather than
entire collaborations makes it more easy to add new checkpoints without
adding to the overhead of setting up a collaboration.

In summary, the services provided by TrustCoM have goals that overlap
partially with the Pilarcos collaboration management middleware in gen-
eral, and to a degree with the TuBE trust management system specifically.
TrustCoM does take advantage of reputation in partner selection similarly
to TuBE, but its overall trust management approach is certification-based,
while TuBE is experience-based. Defining a single set of trusted actors, like
TrustCoM does, imposes a scalability limit to the ecosystem: new members
must be found trustworthy before they can be introduced into the ecosys-
tem. Certificates are used to express membership in the service ecosystem,
while their issuance is outsourced. In contrast, Pilarcos and TuBE allow
unknown actors to enter into the ecosystem and their trustworthiness to be
evaluated through collaborations, as the system itself produces the experi-
ence information that determines which actors are likely good choices for
collaboration partners, and which actors should be avoided.

2.3.2 CONOISE

The CONOISE project aims to build infrastructure to support robust and
resilient collaboration formation and operation in dynamic, open and com-
petitive environments [NPC+04, PTJ+06]. The grid-enabled CONOISE
architecture includes service discovery and bidding support, quality of ser-
vice monitoring and assessment, a policing service for solving disputes and
references to experience-based trust services as future work. Jennings et
al. have later done considerable work on reputation management in multi-
agent systems, although it is not explicitly tied to the CONOISE architec-
ture as such [TPJL06, HJS06b, TCRJ08]. We will return to related work
on reputation models in Section 4.3.

In CONOISE, population and negotiation are done in a single process:
first, the initiator of the collaboration asks potential service providers for
bids for service provision; second, it assesses the quality and trustworthiness
of the received bids; and third, it receives an optimal combination of service
providers from the cleared set, generated by a population service. The
initiator is the central choreographer of the collaboration: it interacts with
the customer directly, and is responsible for ensuring that each member in
the collaboration provides the agreed service.

The main downside to a single-round population and negotiation is that
service providers must set their bids for participating in a collaboration

36 2 Trust management for inter-enterprise collaboration

without knowing the other participants. While this is not necessarily a
problem for centrally choreographed systems with a closed set of available
bidders, it causes problems with the Pilarcos assumption of an open market:
as service providers may have strong preferences on which other providers
to work with, there is a need for a separate negotiation round.

During the operation phase, a quality of service monitor in CONOISE
observes the traffic between service providers and the customer and reports
to the initiator. If the monitor detects a breach of contract or that the
quality of service drops below acceptable, it alerts the initiator, who then
begins a repopulation process to replace the service provider at fault. The
initiator stores this as experience on the service provider [PTJ+06]. For
sharing experiences, information about the observed quality of service is
combined with information about the expectations of the service providers
sharing their experience [NPC+04].

The CONOISE monitoring model is centralized: a single agent is able
to observe the entire collaboration. It fits with the model of an initiator-
centric collaboration. The more pointedly peer-to-peer collaboration model
of Pilarcos, due to maintaining the autonomy of the participants, makes
global monitoring unfeasible. Members of the collaboration can and do
share some state information in order to keep the collaboration running,
but by default, experiences are formed from local observations, and external
information must be separately evaluated for credibility. Quality of service
is a central target of monitoring for gathering experience information in
Pilarcos and TuBE as well.

The CONOISE view of sharing information both on observations and
expectations is compatible with the TuBE trust management system, which
models the fulfilment of expectations as a specific type of observation. We
will discuss fulfilment and objective effects further in the next section.

In terms of openness, CONOISE seems to follow the traditional grid
philosophy of a quite fixed set of service providers and available services.
Within this set, it supports evidence-based selection between the available
service providers, and reacts to misbehaviour during the collaboration.

2.4 Chapter summary

In this chapter, we have described the open service ecosystem, a service
market environment supported by a global infrastructure. The open service
ecosystem consists of repositories of public and private knowledge encoded
in metainformation, such as the service types, business network models and
other common vocabulary, service offers from service providers, and expe-

38 2 Trust management for inter-enterprise collaboration

Chapter 3

The dimensions of a trust decision

In order to provide flexible automation for trust management, we must
define an explicit mechanism for making trust decisions and for collecting
the experience information to support them. This chapter presents the
TuBE trust information model and algorithms for trust decisions. The first
section motivates the different elements of a trust decision, while the second
section presents the information model and how a decision is processed
from the data. The third section presents related work on modelling trust
and trust decisions, including a comparison with a risk-aware trust model
designed for pervasive environments, and studying how well the state of
the art in policy languages for trust management supports the needs TuBE
has for policy expression. To complete the trust management process with
automated learning from experience, Chapter 4 focuses on the feedback loop
provided by reputation information. It also discusses policy configurations
in more detail.

3.1 The trust information model

The goal of automating routine trust decisions requires a representation of
the information that affects the decision in a way that can be automatically
processed. In Section 2.2.4, we identified risks to assets and incentives, as
well as first-hand and globally shared experiences as information to take
into account when making the trust decision. In addition, the situation the
decision is made in must be somehow represented. These aspects must be
present in the trust information model. This provides a good match with
human and organizational trust decision-making [Kau11, MC96, MAH+06].

Trust decisions are made to protect assets. The TuBE trust information
model encompasses a definition for the assets protected by trust decisions,

39

3.1 The trust information model 41

clear and valuable role in one enterprise, but not be understood the same
way in another.

We have settled on a set of four standard assets: monetary, reputation,
control and fulfilment. The monetary asset represents money and other
artifacts in the enterprise that have a well-defined monetary value. The
reputation asset represents the trustor’s good reputation. The control as-
set is a joint representation for the trustor’s security, privacy and general
self-protection assets. The fulfilment asset represents the fulfilment of the
trustor’s expectations of the trustee’s participation in the action, such as
the quality of the service the trustee provides or its efficiency in fulfilling
its end of the agreement. The assets and their associations are depicted in
Figure 3.2.

ReputationMonetary

Control Fulfilment

Value of stock

Cost of service

Autonomy,
independence

Recompensation,
pricing

Partnership
building

Good/bad
publicity

Reputation rating in
the network

Credibility
in the network

Subjective
value of goods

Information and
physical security

Intellectual
property, privacy

Availability,
reliability,
quality of own service

Quality of received
service

Balanced load,
prompt response

Reality matching
with expectations

Avoidance of
ambiguity problems

Figure 3.2: The four standard assets.

The monetary asset forms the basis of decision-making in many situa-
tions, and it is also the simplest to measure. Even so, the monetary value
of an item or a concrete service is not always straightforward to determine.
The trustor can form a subjective value for a target by deciding how much
it would be ready to pay for it. For trust decisions, this measure is more
valuable than the actual current market value of such a target, and simpler
to determine. If, for example, the trustor is unaware or uninterested in a
particular feature of a device it wishes to buy, it is irrelevant to the deci-
sion whether the device carries such a feature or not or whether the feature
works, even though the selling price of the device might depend greatly on
it.

The reputation asset encompasses both the enterprise’s reputation rat-
ing in any particular reputation system, as well as the more abstract notion
of its public relations, positive appearance in the media, and the attitudes

42 3 The dimensions of a trust decision

of its partners and customers towards it. When approached this broadly,
a change for the reputation asset can never be measured as accurately as
a monetary loss or gain, but it allows the enterprise to represent the risk
of losing partners through a traditional drop in perceptions, even if for
some reason the actual calculated reputation does not change. For a well-
informed decision, the enterprise should generate both computational and
more general estimations of lost reputation for particular action outcomes
instead of simply monitoring a reputation network for changes which may
not be directly connected to particular actions to begin with. As an exam-
ple, a partner spreading misinformation about the trustor service threatens
this asset.

The control asset represents the general need for an enterprise to protect
itself from outside influences: to upkeep control over its security, privacy
and other aspects of its autonomy. The security of an enterprise involves
the physical safety of its people, equipment and goods, and less tangible
aspects such as the continuity, availability and reliability of its services and
the protection of its information and IT systems. The privacy of an en-
terprise encompasses its ability to control information concerning itself. It
encompasses more than simple confidentiality: even if information becomes
unconfidential when it is given to a partner, the partner can still violate
the enterprise’s privacy by passing the information on without permission
or by releasing false information of its own. A reputation system is a pri-
vacy tradeoff in itself, and it can cause further privacy threats if a trustee
is wont to release unfair or false experience information about its partners
after collaborations. This asset is also threatened when a partner provides
false reputation information to the trustor service through a reputation
system, in order to skew its view of other service providers; in contrast,
spreading misinformation about the trustor service threatens its reputation
directly. Finally, the enterprise may feel its autonomy is threatened by
some forms of collaboration, for example if an offered contract has severe
enough compensation clauses to force local decisions to follow the contract.

The fulfilment asset is tightly connected with a trustee. It describes
whether the trustee does its part of what was agreed, leaves something
relevant undone or does something it was not strictly expected to, in the
positive sense. Where the base item for the monetary asset is the wealth
of the organization, the base item for fulfilment is the general trend of
respected agreements, which is reflected on the success of the organization.
The asset has high value in evaluating the predictability of the trustee
over a range of highly different actions. Like more traditional assets, it
can be protected: leaving things undone can be avoided by putting effort

3.1 The trust information model 43

in negotiating a more tightly binding contract, or by selecting trustees
more carefully, with weight given on their earlier performance. Reliability,
quality of service or competence cannot fully be captured by the other
assets: for example, if large deals with a particular trustee always end in
less profit than was expected, but do not result in losses per se, the trustee
has a spotless reputation money-wise, even if it is not quite as attractive a
partner as a more reliable enterprise.

The fulfilment asset is a more explicit formulation of the broadly-accepted
idea that one of the main aspects of trustworthiness is doing what was
agreed upon. The eBay reputation system [eBa11], as well as any reputa-
tion system based on a simple model of cooperation or defection, measures
only the trustor’s subjective fulfilment of the deal. The fact that this out-
come measure was the first one to be adopted to reputation systems speaks
for its central nature. The first three assets, on the other hand, represent
the concrete effects to the business, which makes them central to any en-
terprise’s risk management, and an important factor in a trust decision as
a result. The fulfilment asset can help with controlling the load placed
on service providers with good reputation [RKK07]: once they either turn
down proposals or respond to them sluggishly due to high load, they will
cause worse experiences related to the fulfilment asset, and a trust decision
system can be adjusted to react to this kind of development quickly.

As assets are used to represent outcomes of actions, each asset is con-
nected with a five-step scale of the effect the outcome has on it. The middle
step represents no change, while the two steps on both sides represent minor
or considerable positive or negative effect, respectively. For the monetary
asset, it is clear that a small company will focus on smaller amounts of
money than a large one, and therefore the exact numbers to divide all real
values to these five groups will be decided within each organization. This
subjectivity is repeated over the other assets as well, albeit not quite as
pointedly; differences between actors, their values and expectations com-
plicate the semantics of all experience sharing, which must be taken into
consideration in reputation systems design and when using information pro-
vided by them. For the control asset, it may be that none of the positive
outcomes are ever used when storing experience, but they are retained for
symmetry.

The described set of standard assets can be extended either by defining
further, separate assets, or by refining the set of four. Sub-assets would
have clear enough semantics to be shared across organizations, while new,
separate assets are either more problematic or impossible to match.

44 3 The dimensions of a trust decision

3.1.2 Risk

The risk involved in a positive trust decision depends on the nature of the
action and a prediction of how the trustee is likely to respond to a positive
decision. A risk evaluation is an attempt to partially predict the costs and
benefits resulting from different possible outcomes, which are expressed
with the help of the asset model described earlier. The evaluation assigns
these effects simple probabilities based on the observed costs and benefits of
earlier transactions. An example risk evaluation is depicted in Figure 3.3.

Figure 3.3: An example risk evaluation.

Risk depends on an estimation of how the trustee behaves, and the
openings for costs or benefits created by the action. The former is built
from the reputation of the trustee in the trustor’s system, and is updated as
more experience is gained on the trustee. The latter depends on the type
of action and some of its parameters, which define the range of possible
outcomes for the action. For example, when arranging to buy a book costing
ten euros, it is possible to lose the money if the book is not delivered at
all, or the result is otherwise not considered worth the investment. It is,
however, rather unlikely to suffer losses higher than the ten euros invested
in the action. This would mean that even though a trustee’s reputation

3.1 The trust information model 45

may suggest they occasionally defect in a way that causes considerably
greater monetary losses than the price of a book, it would only be possible
for them to defect with a smaller loss within this particular action.

As risk builds on past information expressed as reputation, it must
also include a measure for the quantity and quality of the information
there exists about it. We measure the amount of information available, the
amount of expressed uncertainty in it, and the credibility of its sources;
these measures are discussed further in Section 3.2.

3.1.3 Risk tolerance

A trustor’s risk tolerance is determined by the situation calling for a trust
decision. While the risk involved depends on how the trustee usually acts
and what it will do in the future, risk tolerance does not depend on the
trustee’s behaviour. Risk tolerance encompasses both tolerance of certain
probabilities of various outcomes, and of the uncertainty in the informa-
tion. An example risk tolerance evaluation, applied to the risk evaluation
presented earlier, is depicted in Figure 3.4. In the example, one of the
constraints is not met: the probability of a slight negative effect for the
reputation asset is higher than the limit of 0.1 set for it.

Risk tolerance depends on the business importance of the action, and
local policy expressing the trustor’s general risk attitude. It is expressed
as a set of constraints for the risk evaluation; if the acceptance constraints
are met, the trust decision is positive. The constraints are asset-specific,
and can give upper or lower bounds either to probabilities of particular
outcomes or to the sum of probabilities of a set of outcomes. The bounds
can be absolute or relative, containing comparisons between probabilities:
the probability of a monetary gain can be required to be larger than the
probability of loss, for example.

Risk tolerance constraints can also give asset-specific bounds to the
uncertainty measures attached to the risk evaluation. These are particularly
useful in determining when a decision is not routine enough to be handled
automatically, and instead needs to be delegated to a human user.

A trustor’s risk attitude determines how risk-averse or risk-seeking the
trustor is. A risk-averse trustor will require that an action have high im-
portance to balance for the risk a positive decision would cause, while a
risk-seeking trustor can accept a higher risk in relation to the baseline set
by the action’s importance. A trustor’s risk attitude cannot be determined
out of context. Actors can have different risk attitudes for different assets
due to different relative valuations for them, and their attitude can change
over time or be affected by very complex notions of measured utility. Ex-

3.1 The trust information model 47

the past, and provides a basis for risk evaluation. This step requires us
to make the assumption typical to reputation systems: that trustees are,
in fact, generally sufficiently consistent in their behaviour for the past to
indicate anything about the future.

Reputation represents the current view of a trustor’s trustworthiness
formed from local experience and third party experience. The reputation
views building on these two very different sources are stored separately up
until the moment of a trust decision.

The reputation of a trustee is independent of the action being consid-
ered. Experiences are expressed based on their effects on different assets,
not what kind of action caused them: in this utilitarian approach, the
thought does not count — only the outcome matters. This approach al-
lows us to make decisions based on specific risks, while avoiding the problem
of having information become too sparse. We also do not include a separate
notion of competence in performing particular types of actions [Vil05b] in
our trust model: if an enterprise publishes a service offer that describes
the interface to access its service and then repeatedly fails to provide it, it
has either falsely claimed to be competent, or has refused to offer it. The
end effect to for example our monetary and fulfilment assets is not very
different either way.

Both external and local reputation views follow the same format. They
build on the asset model similarly to risk, and store the number of expe-
riences in different outcome types for each asset. A reputation view also
stores the number of cases where no outcome type could be determined
for the asset, which is a factor in determining the quality of the available
information. To accommodate the credibility analysis of external informa-
tion sources, reputation views also store the overall credibility value for the
reputation view, a real number between 0 to 1 used in adjusting the overall
uncertainty estimation. We will return to the relationship between local
and external reputation in Section 4.

3.1.5 Importance

The importance factor expresses the business value of the action, and the
cost of a negative trust decision. It represents the costs and benefits re-
lated to the action which do not depend on the behaviour of the trustee.
For example, a negative trust decision blocking an action may result in
compensation clauses being activated in the contract between the trustor
and trustee. This is simply another factor to consider in the decision: the
required compensation may still be small enough that blocking the action
is preferable to the risk that the trustee causes greater losses by defection.

3.2 Making multi-dimensional trust decisions 49

collaborations must be prepared to handle frequent, often temporary ad-
justments to what is otherwise a clear set of policies and valuations. In
order to retain clarity in modelling while catering for the messy reality, we
have opted to add a fifth element to trust decisions: context filters.

Context filters are not a value factor by themselves. Instead, they adjust
the four factors described above to temporary changes and special cases.
This kind of context is applied as modification filters whenever a factor is
evaluated for a trust decision. Each context filter works on a particular
factor, and when its triggering constraints are met, the modification it
defines is applied before the value of the factor is passed onwards in the
decision-making. A modification could for example involve moving the
probability of a considerable monetary loss to add to the category of minor
monetary loss, to express the effect of an insurance with an excess.

3.2 Making multi-dimensional trust decisions

Trust decisions are made on joining a collaboration and relevant points dur-
ing it, whenever new resources are committed. They are computed locally
by the policy-enforcing monitor within the business service. A decision is
situational and has a limited scope: new decisions are needed regularly to
take new experiences and other changes in the background situation into
account. A level of distrust is always present, as even after a positive trust
decision, the behaviour of collaboration partners is monitored to catch any
violations of the collaboration contract or shared policies.

A trust decision is formed from two tracks: on one track, building the
risk estimate of the situation, and on the other, building a measure for risk
tolerance. The risk estimate is built from the reputation factor, and risk
tolerance from the importance factor. All four elements can be adjusted by
context filters before their evaluation at the next step, which changes their
values but not structure. We omit the context adjustments here in favour
of a clearer description of the central processes.

A represents the set of guarded assets, represented by integers on the
range 0..|A|. Assuming that the standard assets are used, |A| = 4. J
represents the set of possible outcomes as integers between 0 and 5: 0 for
unknown effect, 1 for major negative effect, 2 for minor negative effect, 3
for no effect, 4 for minor positive effect, and 5 for major positive effect.
|J | = 6. “No effect” differs from “unknown effect”. For example, not losing
or gaining money would represent a lack of effect, while an experience with
a delayed payment on its way might be included as an unknown outcome
in decision-making.

50 3 The dimensions of a trust decision

The risk R of an action contains |A| vectors ra, one for each asset:

R = (r0, r1, ..., r|A|−1), where ra = (pa, |E|, c, qa)
The vectors store the probabilities of different known outcomes for each

asset, and three different measures of the amount and quality of the infor-
mation used to produce the evaluation. The risk evaluation is specific to
a given trustor, trustee and action; we omit representations of these three
parameters in the formalism for readability.

The first term pi represents the probabilities of different outcomes of the
action: pa = (pa,1, ..., pa,|J]−1), where each pa,j is the calculated probability
of outcome j happening for asset a. The latter indexes begin from 1;
the probability of an unknown outcome is not considered, but information
about unknown outcomes in the past is represented through another term,
qa. We require that the probabilities add up to 1 for all assets, i.e. ∀a ∈
A :

∑|J |−1
j=1 pa,j = 1.

E represents the group of all experiences the trustor has on the trustee
in its reputation view, and the number of experiences, |E|, measures the
amount of reputation information behind the risk estimation. The third
term, c, is the combined credibility of local reputation and external, third-
party reputation information at the time of evaluation. The last measure,
qa, is the number of experiences in E where the outcome was unknown for
asset a: the higher this value is in relation to |E|, the lower the certainty of
the risk analysis. We return to these quantity and quality measures when
discussing the transformation of reputation information into a risk analysis.

The reputation U of a trustee as viewed by a given trustor consists
of two halves: a local reputation U

local, and a local evaluation of third-
party reputation information U

ext. This reputation is by no means global:
it is not agreed upon by the members of the reputation network, and it
is trustor-dependent like local reputation. As discussed in the previous
section, reputation is not action-dependent: only the observed effects to
assets are measured, and it does not matter what action caused them.

The structure of both the local and external reputation information is
the same: each contains |A| vectors and a credibility score clocal or cext in
the range [0..1]. The credibility value clocal of local reputation is 1, while the
third-party reputation credibility value cext is set based on a local analysis
of the combined credibility of the reputation system the information comes
from, and the credibility of the sources providing reputation information in
that network. To avoid repetition, we present the two symmetric reputation
structures as generic variables that are equal for both halves, denoting this
with an asterisk (∗). For example, U∗ represents both U

local and U
ext, with

the exact type left undetermined.

3.2 Making multi-dimensional trust decisions 51

Both types of reputation consist of |A| vectors u∗
a, one for each asset:

U
∗ = (u∗

0,u
∗
1, ...,u

∗
|A|−1)

Each vector u∗
a consists of six counters u∗a,j , which express the number

of experiences of outcome j ∈ J , where J , as mentioned earlier, is the set
of outcome categories {0, 1, 2, 3, 4, 5}, with j = 0 representing an unknown
effect. Each counter u∗a,j represents the number of experiences where the
outcome for the asset a was as indicated by the value of j.

The set of experiences, E∗, is a group

E∗ = {e∗k : e∗k,a = outcome value j ∈ J, ∀a ∈ A}.

In other words, an experience consists of the effects of one action expressed
for each asset.

Given the set of experiences, the reputation counters u∗a, j can be ex-
pressed as as the size of the subgroup of E where the experiences had out-
come j for asset i, that is: u∗a,j = |E∗

a,j |, where E∗
a,j = {e∗k ∈ E∗ : e∗k,a = j}.

The value u∗a,0 is is particularly interesting, as it expresses the number of
experiences with unknown values for the asset. When compared to the
total number of experiences, |E∗|, it provides us a measure on the quality
of the information.

Reputation is transformed into risk by 1) merging the local and external
reputation views together with a weighted sum, 2) scaling the experience
counters representing known effects to proportions in the range [0..1] and
applying an action-specific base risk to trim impossible outcomes, and 3)
recalculating a joint credibility and information content score for the result,
that is, the variables c, |E| and qa that appear in the risk vectors.

The local and external reputation views are merged based on the amount
of information available in either, and the credibility attached to the views.
Local reputation is more credible than external, but there is usually less lo-
cal information available, and both should be reflected on the weight given
to local reputation. We define two functions, μlocal and μext, to determine
the weights for both local and external reputation values. They use the
corresponding credibility value c∗, amount of experience |E∗| and a vector
q∗ of the number of experiences where the effects are unknown for different
assets: q∗ = (u∗0,0, u∗1,0, ..., u∗(|A|−1),0). The multipliers produced by the μ∗

functions add up to 1; the specific declaration of the μ∗ functions depends
on local calibration. In other words,

μlocal(clocal, |Elocal|,qlocal) + μext(cext, |Eext|,qext) = 1.

52 3 The dimensions of a trust decision

The merging formulae can be generalized to handle more than the two
categories of reputation information as well, as long as the weights defined
by the μ∗ functions add up to 1. We present an extension to the base infor-
mation model taking advantage of this generalization in Section 4.1.5: We
divide both local and external reputation information into multiple repu-
tation epochs, which capture clearly different periods of trustee behaviour.
This division allows us to give more weight to the newest subset of expe-
riences, and react to changes in behaviour more quickly. The extension
provides a new adjustment point to the information model and decision-
making algorithm.

Using the μ∗ functions, we merge the experiences into a temporary
U

merged = (umerged
0 ,umerged

1 , ...,umerged
|A|−1), where each vector umerged

a con-
tains six combined counters: the weighted sum of the local and external
respective counters. Note that unlike the values in u∗

a, these merged values
are no longer integers, but real numbers. For all a ∈ A, j ∈ J , we have:

umerged
a,j =

∑
∗∈{local,ext}

μ∗(c∗, |E∗|,q∗) ∗ u∗a, j

In the second phase, we scale the experience counters except the un-
knowns to the range [0..1] to represent their relative frequency and future
probability. To achieve this, we sum the values of known effects (j �= 0)
and divide each value by the sum. As a result, we get a set of action-
independent values pgenerica,j , corresponding to the values mentioned earlier
in the risk representation. These values differ from the final pa,j values in
that they do not include the notion of the base risk of the action yet.

∀j ∈ J\{0} pgenerica,j =
umerged
a,j∑|J |

j=1 u
merged
a,j

As some actions can in practice never cause all outcomes, we use the
concept of base risk to merge the probabilities of outcomes impossible for
the given action into the probabilities of possible outcomes, to produce
the final pa,j values. Base risk, βa(p

generic
a), is an action-specific func-

tion defining how this merge is done. An action with little influence, for
example, should have the probabilities of major negative and positive out-
comes added to the corresponding minor outcomes and set to 0: given
pgeneric
1 = (0.1, 0.2, 0.5, 0.2, 0.1) we would then have p1 = β1(p

generic
1) =

(0, 0.3, 0.5, 0.3, 0).
In the third phase, we calculate combined measures of the quality of

information: c, |E|, and the |A| different qa values. The combined cred-
ibility c is determined by a μ-weighted average of the local and external

3.2 Making multi-dimensional trust decisions 53

credibilities. It depicts the weight given to each half in the probabilities as
well.

c =
∑

∗∈{local,ext}
μ∗(c∗, |E∗|,q∗) ∗ c∗

To calculate the total number of experiences, |E|, we add together the
number of local and external experiences: |E| = |Elocal|+ |Eext|. Although
it is clear that not all experiences have been given equal weight in the
evaluation, this measure gives an indication of how much information there
is available on the actor overall. The combined number of experiences for
each asset where the effect was unknown, qa, is gotten by adding the values
of the previously calculated q∗ vectors, for all a ∈ A:

qa = qlocala + qexta

Again, not all unknowns were weighed in the probability calculations
equally, so we could consider a μ-weighted average here similarly to the
calculation of the credibility value c as well. On the other hand, the true
total number of unknowns is a more useful value to use together with the
amount of total experience, |E|, as qa/|E| gives the proportion of uncertain
values in the experience set.

The risk evaluation must be compared to the risk tolerance to produce
a trust decision. The risk tolerance T of an action, given a particular
trustor and trustee, consists of two vectors of |A| functions fx,a, one for
each asset. The first vector represents the value bounds for automatically
accepting an action, while the second vector represents the value bounds
for automatically rejecting an action.

T = (faccept,0, faccept,1, ..., faccept,|A|−1), (freject,0, freject,1, ..., freject,|A|−1)

The functions represent the acceptable limits for the risk values in the risk
vectors ra: they evaluate whether the values are within bounds or not. If
the values do not fit fully within automatic acceptance or rejection, the
decision is delegated to a human user.

∀a ∈ A, fx,a(ra) =

{
1 if the values of ra are within the bounds
0 otherwise.

Risk tolerance is a function of the importance of an action. The impor-
tance factor I contains |A| values va, one for each asset.

I = (v0, v1, ..., v|A|−1)

56 3 The dimensions of a trust decision

Fifth Framework Programme. It aims to provide a framework for trust
management in ad hoc environments [C+03]. Example application areas
include a user determining whether to give electronic money to an un-
known vending machine, or to play poker in a network of strangers. In
both cases, a small personal device acts as a trust decision support or an
automated decision maker for a private person, using the calculated risk
for the action as a basis.

The environment sets a requirement for the trust management system
to be able to operate on uncertain information. Identity management be-
comes an essential part of the system, because there is little or no infras-
tructure for strong identification to rely on. In this sense, the challenges
for SECURE differ from those in inter-enterprise collaboration, where the
infrastructure is required for negotiating contracts. Identity management
and entity recognition solutions in ad hoc environments are a wide problem
area [C+03, SFJ+03] that falls outside the scope of this thesis.

The basic trust decision model of SECURE uses information about
the trustee’s past behaviour as a basis to calculate a risk estimate of an
action. Risks are represented as probability distributions of different costs
and benefits [C+03, EWN+03]. An example composition of a cost-benefit
probability distribution function is presented in Figure 3.8.

Figure 3.8: Combining the probability distributions of different outcome
types [C+03].

Experience information is used to select a specific probability distribu-
tion for each outcome [C+03]. The information can be a combination of
external reputation and local observations; the two types of experience are
kept semantically separate in the model [EWN+03, WCE+03].

SECURE includes two central features in the context of trust man-

3.3 Related work on modelling trust decisions 57

agement models: First, it explicitly models uncertainty in the information
leading to a trust decision, which is a necessity for systems relying on un-
reliable information sources. Second, it uses a risk model which is aware
of the stake in a trust decision: the cost-benefit probability distribution
functions are able to differentiate between major monetary losses and mi-
nor monetary losses as well as the probability of loss as opposed to the
probability of gaining something.

The SECURE risk model differs somewhat from the model in TuBE.
Where TuBE has a discrete, five-step outcome scale for four different assets,
SECURE has one continuous scale of costs and benefits in terms of a single
asset type. In TuBE, we have chosen a discrete risk scale in the name
of simplicity, while allowing more than one asset type to avoid the need
to convert clearly different types of stakes into a single value range. Due
to the the aim to automatically process more complex, inter-enterprise
collaboration situations, TuBE also has somewhat different information
needs from SECURE, including the business importance of proceeding with
the action and context filters to adjust the input.

SECURE provides a versatile information model to support different
trust decision policies and brings out some requirements it has for a policy
language. Like TuBE, it focuses on building an overall framework, and
does not set out to specify its own trust management policy language. In
the next section, we look into work on specifying policy languages for trust
management, and evaluate how well the state of the art in policy languages
matches the needs of our trust information model and process.

3.3.2 Policy languages for trust management

Trust management policy languages can be roughly divided into two cat-
egories: the traditional, certification-based approaches — which also first
adopted the term “trust management” to denote their emerging branch of
access control solutions — and the new approaches, which are based on
reputation information and experience. The two directions address differ-
ent levels of decision-making: certificates and delegation rules can be used
to determine whether a service request is connected to an existing contract,
while an experience-aware policy can determine whether the contractually
authorized partner is currently sufficiently trusted that they can access the
service on one hand, and resources should be invested in the collaboration
with their service on the other hand. In the case of a negative decision,
other options include making a possible contract violation in order to avoid
risking further resources, or for example introducing additional monitoring
to keep an eye out for further suspicious activity. These two levels have

58 3 The dimensions of a trust decision

also been referred to as hard and soft security [RJ96], referring to the auto-
mated learning and dynamic adjustment enabled by the experience-based
systems.

The certification-based approach to trust management has its roots in
flexible access policies proposed by Blaze, Feigenbaum and others. The
three most well-known systems in the field are PolicyMaker [BFL96], Key-
Note [BFK98] and REFEREE [CFL+97]. In the Web Services context,
the approach is also adopted by the Web Services Trust Language WS-
Trust [OAS07].

The evaluation of a certification-based policy is based on the exchange
of cryptographically signed certificates or security tokens, which can be
used to express authorization to access a specific service directly, or more
abstract notions such as identity, group membership or delegation of au-
thority. These kinds of general-purpose certificates can be used as a basis
for access policies such as “trustee can present sufficient proof that it is a
business service of Partner A, or of a subcontractor whom A has authorized
to operate in its stead for this purpose”. This way, it is not necessary for
the trustor to produce new authorization certificates every time Partner A
decides to authorize a different subcontractor, nor does the trustor even
need to know who exactly is subcontracting for A at the moment.

As discussed in Section 2.3.1, the TrustCoM [W+06] framework for
trust, security and context management represents this certification-based
approach. While it does have a reputation service, it is only used for finding
new partners, while the certificate-based approach is used for access control
during a collaboration.

In the experience-aware approach, reputation information can be con-
nected into the trust decision policy. Few policy languages include the
notion of reputation or experience, however. As such, they are not directly
applicable to the needs of TuBE.

The IETF RFC 2753 defines requirements and architecture options for
a general framework for policy-based admission control based on policy
enforcement points (PEP), typically on a network perimeter, and policy
decision points (PDP) which are consulted by the former to reach a deci-
sion [YIP+00]. The contents, input or format of the policies themselves are
not specified, although recommendations are given on e.g. ensuring that
conflicting policies can be ordered based on priority to determine which one
is followed.

Grandison and Sloman’s SULTAN (Simple Universal Logic-oriented Trust
Analysis Notation [GS02, GS01]) has been one of the first proposals for this
kind of trust specification. It builds on the Ponder policy specification lan-

3.3 Related work on modelling trust decisions 59

guage by Damianou et al. [DDLS01]. SULTAN has focused on analyzing
trust relationships: while it has a notion of a context for trust, it is not
risk-aware, nor does it consider incentives to trust beyond reputation or
experience information.

The SULTAN policies specify situations and conditions for specific levels
of trust or distrust, and willingness to recommend a trustee positively or
negatively [GS01]. For example, we can specify that Alice trusts Bob at
level 50 (on a scale from 1 to 100) to perform the action of transferring
money, if Bob’s bank is considered secure:

trust(Alice, Bob, moneyTransfer(Amount), 50) ? bankSecure(Bob);

The conditions may contain references to other policies. For example, Alice
may trust Bob only if Cecilia recommends him for this action at a high
enough level.

In SULTAN, changes in both trust and recommendation levels are ex-
pressed as new policy entries: beyond the policy set, the notions of trusting
and recommending, or experiences and recommendations do not exist out-
side the policy database: the data and policy are combined as policies about
the outcome of the data. In TuBE, reputation information exists indepen-
dently in a repository, and decision policies use it and risk information
calculated from it as parameters in order to determine whether an action is
allowed. The same data can produce different results with different policies,
which sets TuBE apart from the approach adopted by SULTAN.

The ENFORCE project proposes a framework for specifying and ana-
lyzing trust management policies [LMS+07]. Based on a case study, Sol-
haug et al. argue that the graphical UML sequence diagrams are suitable
for policy expression [SES07]: using a graphical, but formally defined lan-
guage makes the policies more user-friendly to for example management
representatives, while still providing support for automated processing. In
Deontic STAIRS, the UML sequence diagram profile is extended to provide
a means for specifying trust management policies [RSS08]. An example
trust policy is presented in Figure 3.9.

The example resembles an expression of risk tolerance policy in TuBE.
The “est.p” measure represents the subjective probability that the customer
will pay back a granted loan. In other words, it is a single-dimensional risk
estimate. This level of expression is insufficient to cover our own multi-
dimensional trust information model; on the other hand, it expresses the
triggers and outcome of trust decisions, which are beyond the immediate
scope of this work and yet necessary for operating TuBE. The question
remains how well Deontic STAIRS is in practice suited for this purpose in

60 3 The dimensions of a trust decision

Figure 3.9: A trust policy expressed using Deontic STAIRS [RSS08].

automated inter-enterprise collaboration management; this will have to be
evaluated separately.

The rules for obligation, prohibition and permission to grant a loan
correspond to TuBE’s automated accept, automated reject, and the gray
area in between that must be forwarded to a human user to decide. On the
gray area in the example, for probabilities between 0.8 and 0.9, the policy
simultaneously allows the bank employee to grant or to reject a loan. If the
probability is below 0.8, the employee is prohibited from granting the loan,
and if it is above 0.9, she is obliged to grant it. This property of deontic
logic is very welcome for supporting semi-automated decision-making. If we
limit the scope of what we expect the policy to cover, we can work around
the limitations of the risk model by considering the statement “est.p < 0.8”
in the examples to be equivalent to “the trust management system return
value is automatic reject”, in which case the monitor enforcing the Deontic
STAIRS policy does not need to be aware of what kind of information
model TuBE uses to produce this result.

In addition to using graphical policy languages, a further usability im-
provement would be to enable policy-setters to express policies using busi-
ness concepts, independently of the technical implementation used to en-
force these policies. In his thesis, Solhaug discusses the notion of policy
refinement [Sol09]: the process of making a high-level policy specification
more concrete, and bringing it closer to implementation and enforcement.

3.3 Related work on modelling trust decisions 61

This idea is similar to the more generic concept of vertical model refine-
ment in model-driven engineering (MDE) [Sch06, MG06]. While the initial
process of mapping business concepts to technical concepts must be done
manually, the propagation of changes to high-level policy to the more re-
fined policies closer to implementation can be automated, once the trans-
formations are set. Further developments in policy refinement would also
be highly useful from the point of view of Pilarcos and TuBE, as a central
goal of our work is to bring policy-setting to the level of business concepts,
while the implementing rules enforced by monitors must by necessity be
very simple and straightforward to be efficient to process.

In expressing risk, ENFORCE builds on the CORAS conceptual frame-
work for security risk analysis; Stølen et al. have earlier proposed a UML
profile for the risk modelling language [LdBSV04, BS04]. The group has
extended the risk work further with support for modelling how different
decision policies influence the analyzed risks [RSS08].

The CORAS modelling methodology for risk analysis has a relevance
beyond providing a basis for ENFORCE: it allows us to identify action-
specific differences in risk. The business network models discussed in Sec-
tion 2.1 can be annotated with risk information as they are produced by
domain experts; the enterprises using the models can then decide whether
they wish to take the information into account in their trust decisions.

In comparison to the policy examples presented here, TuBE policies
are quite close to the implementation level, as they operate directly on the
trust information stored in the system. For this reason, the language for
expressing the policies will be close to a generic programming language.
All TuBE policies can be seen to follow a common format of conditions and
effects: if the conditions are met, the system should perform the following
actions.

For example, a risk tolerance policy of the form “if there is a risk of
high monetary loss, reject the action” could correspond to an expression
that states that within the risk value vector R, if the probability p0,0 of
a major negative effect on the monetary asset is higher than 0.1, send a
response to reject the action, otherwise accept it.

The conditions and the effects both manipulate parameters that are
the factors from the information model, such as the action identifier, or
the source of a piece of reputation information. The conditions examine
these parameters and decide whether the inputs warrant triggering an ef-
fect, which then either manipulates the parameters or sends a message to
an external agent stating whether the action should be accepted, rejected
or forwarded to a human user. These requirements make policy defini-

62 3 The dimensions of a trust decision

tion resemble scripting the trust management system, and it is therefore
relatively uninteresting to define a policy language specifically for TuBE.

Policy refinement makes it possible to configure TuBE using higher-level
policy languages. These can then be automatically mapped to the policy
languages that TuBE enforces. The user interface for configuring the trust
management system can abstract away the different TuBE policies into a
set of trust profiles, to further simplify the configuration task. The ex-
pressiveness of the information model and the policy points in the decision
algorithm support a broad range of decision policies, while the details of
designing good user interfaces for configuring the system are outside the
scope of this research.

3.4 Chapter summary

In this chapter, we have presented an information model for computational
trust decisions, and the algorithms for translating the gathered information
to trust decisions. The information model distinguishes between different
assets and different impacts that actions can have on them, ranging from
major negative to major positive effects, which makes the model more ex-
pressive than the state of the art.

The expressive power in the different factors of the model forms the
basis for flexible decision policies, which allow the trust management sys-
tem to adjust to different decision contexts. The expressive power also
serves to make the system less vulnerable, as many attacks are based on
the limitations of the trust information model. If the model is not aware
of transaction value, for example, it is vulnerable against an attacker gain-
ing good reputation through low-value transactions and then misbehaving
in high-value transactions to cash in its reputation. The decision-making
algorithm remains reasonably straightforward and scalable despite the nec-
essary tradeoff for expressive power. Multiple measures for the quality of
the available information are carried through the process to ensure that
they are available at the decision time, so that decision policies can also set
limits to when the information is not reliable enough to make an automated
decision.

We have presented relevant trust management policy language efforts,
and found that while their underlying trust information models are too
narrow for use in TuBE decision policies, the work on Deontic STAIRS
and the underlying CORAS modelling methodology show promise in the
context of business network modelling as well as configuring the triggers
and outcomes of trust decisions. We identify policy refinement from the

3.4 Chapter summary 63

business level to the implementing level as an interesting branch of future
work as well. As the implementation-level policies of TuBE resemble scripts
for the trust management system, we have chosen to not set out to explicitly
define a TuBE-specific policy language in this work.

64 3 The dimensions of a trust decision

Chapter 4

From reputation to trust decisions

This chapter focuses on reputation management, opening the third and final
core area of research contained in this thesis. In order for the TuBE trust
management system to learn from experience, it must aggregate reputation
information from different sources. In this chapter, we first describe the ag-
gregation algorithm for reputation: receiving, interpreting and consuming
reputation information and evaluating its credibility in the first section. We
then specify ways to adjust the trust management process to different busi-
ness situations through configurable policies in the second section. In the
third section, we look at related work in reputation management, studying
common patterns in reputation systems and notable differences between
the proposals. The fourth section analyzes means of achieving interoper-
ability between reputation systems, building on the features of TuBE that
allow it to connect to a number of different reputation systems for collecting
experience information needed for trust decisions.

4.1 Learning from reputation information

In TuBE, the reputation of an agent consists of two types of information:
local reputation, based on first-hand experiences, and external reputation
gained from other actors through reputation networks. They are collected
and stored separately, using different updating processes, and only com-
bined at the point of making a decision.

Keeping the two types of information separate has three benefits. First,
it makes a clear division between information produced by the local system
that can be shared in external reputation networks, and information origi-
nating from the networks. External information should not be uncritically
fed back into the network in order to avoid amplifying single opinions by

65

66 4 From reputation to trust decisions

repetition [JMP06]. Second, during decision time, it allows us to change the
weighing between the two types independently of when or how the informa-
tion has been acquired. Third, it allows us to compare external and local
reputation in order to evaluate the quality of external reputation sources.

In this section, we discuss the algorithms for receiving, interpreting,
evaluating the credibility of and consuming experience information both
locally and through reputation systems. We present how local observations
in the form of monitor translate to experiences, and how external reputation
flows are connected into the system.

We also present three extensions to the basic process of producing and
consuming reputation information: the local credibility evaluation of repu-
tation sources and the use of credibility information in decision-making, a
reputation system based on objective and verifiable experiences, and repu-
tation epochs for detecting and reacting to changes in reputation flows. Of
the above three aspects, we have chosen to focus on the credibility informa-
tion in the simulation experiments presented in Chapter 6, as it connects
to the entire trust management process, and the other two aspects depend
on it. The proposed objective reputation system and reputation epochs are
summarized in this section, with further evaluation presented in separate
publications [RK11, RHK11].

4.1.1 Storing direct observations as local reputation

Local reputation represents the first-hand experiences of the trustor, and
the information is considered more valuable and semantically clear than
information from third parties. As a downside, as gaining first-hand expe-
riences requires taking the risk of collaborating, there is usually less local
reputation information available. It also does not help making decisions
on new potential partners, on whom there are no earlier first-hand ex-
periences. The main value of local reputation is in reliably detecting be-
havioural changes, and validating the quality of external reputation sources.
In addition, local experiences are used when participating in the operation
of collaborative reputation systems and providing new information to them.

Local reputation is built by consolidating single experiences. One expe-
rience item describes the outcome of one action, and it stores the outcome
of the action from the point of view of each asset. If it is unclear what the
outcome of the action was for an asset difficult to monitor, a special “no
outcome value” is recorded for that asset instead, representing an unknown
impact.

Monitor rules must be set up so that a group of monitor events can
always be either formed into a single outcome or into the undetermined

68 4 From reputation to trust decisions

An event could be e.g. “product order”, with the price or value of the
product as a parameter. Further parameters would be the identifiers of the
trustee and the action whose message traffic caused the event.

A specialized Pilarcos monitor plugin focuses on collecting experience
information specifically; it is not concerned with e.g. general intrusion
detection. Other kinds of monitoring can detect unknown actors sending
inappropriate requests, denial of service attacks or other security-relevant
events, but as these cannot be connected to a specific contractual context,
they are not usable for experience management. They can instead cause a
need to activate e.g. context filters to make the system particularly careful
about tying up computational resources.

The connection between Pilarcos monitors and TuBE is discussed fur-
ther in Chapter 5, which presents the system architecture in more detail.

4.1.2 Gathering outsider opinions into external reputation

External reputation is formed within a set of reputation networks, each
of which is an independent source of external reputation information. As
noted earlier, a reputation network is a combination of its users and the un-
derlying reputation system, i.e. the information model and the algorithms
to collect, update and distribute reputation information. A single reputa-
tion system can be deployed in multiple domains, for example, resulting in
separate reputation networks based on the same system.

While the reputation systems that are being currently researched are
predominantly more or less distributed, we include in our definition also
fully centralized, single-organization information sources, such as credit rat-
ing companies [Sta10], accreditors [Bet10, Tru10] and blacklists published
by consumer protection authorities [Nat10]. We foresee that centralized
information sources will continue to play an important role for reputa-
tion management between enterprises in addition to distributed reputation
systems. We will return to related work on reputation management in
Sections 4.3 and 4.4.

TuBE is designed to be able to connect to multiple reputation networks
for gathering information. The local trustor has a representative agent
in each reputation network to participate in the network, and in the case
of collaborative reputation systems, feed local experience information to it.
The representative agents report a trustee’s reputation in the native format
of their represented reputation system, and pass it to the TuBE external
reputation analysis component. The reports are transformed to experiences
of the TuBE system format, and they are assigned a credibility value. This
setting is depicted in Figure 4.2.

70 4 From reputation to trust decisions

a value between 0 and 1. The view credibility value is updated based on
a changeable policy when new experiences arrive, and it is made accessible
to decision-time policies as a parameter. Low-credibility information may
then be given less weight in relation to local experiences in a trust decision,
and it can influence the certainty measure attributed to the decision itself.

The credibility value only applies to the sources that the information
was gathered from. The actual content of the item does not affect its
credibility value: in other words, the analysis of reputation information
by the properties of each information item itself is separated from source
credibility analysis. For example, checking whether the experience differs
greatly from earlier experiences from different sources does not directly
support rejecting the experience as not credible; we do not know if it implies
that the actor’s behaviour has actually changed after earlier observations,
or if the source is lying.

The source credibility rating for external reputation information items
is based on a combination of two separate measurements of credibility: first,
the representative agent’s view of the credibility of the information based
on metadata provided by the reputation network, and second, the general
credibility of the reputation network as it is perceived within the TuBE
system.

The reputation system underlying an external reputation network may
not support assigning credibility values at all, or it may mix credibility
values conceptually with, for example, the confidence of the source, in case
of uncertain observations, or its certainty, i.e. the amount and quality
of information behind the report. For this reason, the credibility value
the representative agent assigns itself may either not be defined at all or
cannot be directly interpreted as a credibility value. Credibility values from
different reputation networks will inevitably have different semantics, and
this must be considered when translating the reputation information into
the TuBE format.

If a reputation system has a good representation of the source’s own
perception of the quality of the information it provides, and it supports the
evaluation of the credibility of different sources well, reputation networks
using the system will have a higher credibility value. On the other hand,
a reputation network dominated by unreliable or malicious actors can also
be assigned a lower reputation network credibility than another reputation
network using the same reputation system.

The representative agent within a reputation network may attribute a
low credibility value with the information item, based on receiving it from
suspicious agents in the network, before it passes it to the TuBE experience

72 4 From reputation to trust decisions

have not fixed the method to use for this for the purposes of this thesis,
but allow different methods to be applied by different policies. The next
section discusses a method for identifying and punishing false reports.

4.1.4 From subjective reputation to verifiable experiences

In the previous subsections, we have discussed reputation from the point
of view of storing and using it in the local trust decision process. We now
take a look at the feedback loop to the ecosystem: how locally gathered
experience information is shared with other actors. The evolution of shared
reputation information depends on new experiences being fed to the repu-
tation networks and processed there. The sharing process differs depending
on the reputation network, and therefore we discuss an example reputation
system in this section as well.

A central problem in the process of experience sharing is the incen-
tive and possibility of spreading false experiences, to defame competitors
or to undeservedly promote others over them. Misinformation inhibits the
reputation network actors’ ability to assess other actors’ behaviour, which
limits the impact of reputation [Sol06]. The spreading of misinformation
must therefore be detected and resolutely punished by a loss of reputa-
tion, and subsequently reduction of the actor’s credibility as a reputation
information source. This kind of a system of second-order punishment, i.e.
punishing those who deal out unfair punishment themselves, is necessary
in order for any community to scale up in size [FF03].

The capability to create this kind of punishment system depends on
whether the experiences in question are treated as subjective statements,
or objective and verifiable experiences.

In the usual case of reputation systems, shared reputation information
is the subjective evaluation of the source, and unverifiable: there is no global
monitoring that could see everything happening within the ecosystem, and
the measurement criteria used by the source are private. In this situation,
it can be questioned whether there is any point to even trying to evaluate
the objective truthfulness of the information. Instead, we can focus on e.g.
evaluating how useful the information was for the decisions made, after the
fact. In other words, if a source constantly disagrees with up-to-date local
experiences, it is less relevant for local decision-making. As a result, its
source credibility value should be lowered locally.

In related work that considers source credibility, this type of evalua-
tion is the norm. Besides testing whether external reputation information
matches with local experiences [TPJL06], comparisons between multiple
external sources [FKÖD04] can be used, with the assumption that the ma-

4.1 Learning from reputation information 73

jority opinion is safe to follow. The most common approach in related
work is to infer credibility solely based on other attributes of the source,
and not even try to keep track of the actual spreading of misinformation.
These indirect attributes can e.g. be the source’s reputation as a service
provider [KSGM03] or its social relations [SS02, GOGH08].

In addition to the loss of credibility, the source of useless information
could also be locally shunned by storing experiences relating to the spread-
ing of misinformation. They would fall naturally under negative impacts on
the control asset; similarly, experiences on good information sources could
be stored through this asset as well. Sharing this reputation information in
the network would be problematic, however: it is a subjective judgement
on the usefulness of subjective information, and its fairness is as difficult
to evaluate as that of the original experience.

As we have stated earlier, spreading misinformation in reputation net-
works should be punished with loss of reputation in order to provide a form
of social control in the ecosystem through reputation. On the other hand,
sharing the judgement that this reputation information was useless for this
trustor service simply opens up new problems: How to catch second-order
misinformation, and how to avoid being wrongly accused for defamation if
the majority happens to disagree with a given statement?

There are two solution options to choose between: settling for a sub-
jective reputation system that does not provide social control, or paying
the price for an effective reputation system. For the first option discussed
above, we can accept that all experience information is relative and subjec-
tive, and simply pick the sources that agree with us — similarly to how e.g.
movie recommendations work, where matters of taste are not challenged.
This approach strips away the social control function of reputation, and
shared experiences become simply a method of service advertisement. The
result is a service recommendation system, which punishes only misbe-
haviour that is directed towards the majority, or particularly influential
actors in the reputation network. In contrast, minority opinion only mat-
ters to those who have chosen to listen to said minority, and discriminatory
behaviour against minorities goes largely unpunished. While we should
clearly prepare to interoperate with these kinds of systems as well, the
relativistic approach to reputation alone is insufficient for our purposes.

The second option is to define a form of experience information that
has a truth value: it specifies a claim that is either correct or incorrect
independent of the actor analyzing the claim. In other words, reputation
information based on such experiences is objective.

In the case of electronic services collaborating under an electronic con-

74 4 From reputation to trust decisions

tract, objective experience sharing becomes feasible: if the contract was
followed, experiences are positive, if it was violated, they are negative.
More specific rules can and should be specified in the contract.

If an experience then claims that the contract was broken, verifying it
becomes a question of verifying whether the breach actually took place.
Due to the lack of global all-seeing monitoring or a globally trusted rule
enforcer, which would solve the problem by itself, this verification pro-
cess must be distributed. A secure marketplace enforcing good behaviour
through monetary costs for misbehaviour has been proposed by e.g. Li and
Martin [LM10]; it requires a globally trusted arbitrator who stores deposits
for all actors and judges the dispute cases.

In order to make an experience verifiable, a nonrepudiable receipt must
be provided of all business transactions, and shared experiences must be
bound to a specific transaction so that these receipts can be tracked down.
This way, peers other than the service provider and recipient can verify
that an experience is bound to a transaction that has taken place, and
that its outcome was agreed on by the transacting parties: in essence, they
form an audit trail on the transaction. In related work, nonrepudiable
cryptographical receipts have been proposed by e.g. Obreiter [Obr04], in
TrustGuard [SXL05] and in NICE [LSB03].

The cryptographical setup of signing transaction receipts is reasonably
straightforward, given that contracts require an infrastructure for digital
signatures already. A major issue remains: the process of issuing receipts
is not symmetric. In other words, the recipient of a service may refuse to
provide a receipt afterwards, or claim that it never received the service.
This is essentially a problem that cannot be solved by technology alone,
and eventually, some form of trusted third parties — third-party witnesses
taking the role of notaries, or eventually legal recourse to judge the likely
outcome — must be involved for transactions where a denial of receipt
would have particularly severe consequences.

If we assume that there are no trusted third parties to rely on during the
collaboration, it is at best possible to limit the importance of the receipt
that can be omitted: In TrustGuard, nonrepudiable receipts are issued
already on the intention to use a service, rather than receiving it [SXL05];
that way, completion of the receipt exchange protocol will be necessary
before the service is delivered. At this point the meaning of the receipt
changes, and it can only be used to verify that an experience is bound to a
transaction that has begun; it says nothing of its completion. For services
whose use is continuous or can be meaningfully partitioned into phases,
this idea can be generalized into a series of partial receipts. Partial receipts

4.1 Learning from reputation information 75

could be implemented through e.g. hash chains [Lam81], which have been
proposed in the context of incremental payment for service usage [Hei08].
While the last partial receipt may still go unissued, the risk is limited to
the service provision phase represented by that single receipt, rather than
the entire transaction. Not issuing a receipt is a breach of contract, which
can eventually be contested in the court, although this process is slow and
costly.

In a separate article, we argue that that trusted third party “notaries”
are both essential and worth their cost for the purpose of providing effective
social control through reputation systems [RK11]. Unlike global enforcers,
the notaries do not need to be trusted by actors beyond the two transaction
partners, and suitable notary service providers can be found as a part of the
population or negotiation process; a protocol for finding a jointly trusted
third party has been proposed by Alcade [Alc10]. When an optimistic
nonrepudiability protocol is used, notaries also only need to step in when
there are problems with receipt issuance, as the partners can easily vouch
for each other to provide verifiability when both follow the protocol [RK11].

Once verifiable experiences are available, the spreading of misinforma-
tion can be detected across the reputation network and punished by loss
of reputation, not just a local loss of credibility. In the default case, any
new experiences disseminated across the reputation network can be used as
they are. Matters of dissemination in distributed systems are not central
to this solution; to simplify the presentation, let us assume for now that a
reputation network implementing this protocol contains the equivalent of
a centralized storage, and that sources of experiences can be verified e.g.
through signatures.

If a service provider wishes to rebut a negative experience concerning
itself, it can use its nonrepudiable receipt as a proof. As a result, a new
experience is issued by the disputer, referencing the transaction in question,
and making the claim that the original source of the false experience had a
negative impact on the reputation asset of the disputer. The evidence for
this experience, in turn, is the combination of the false experience dissem-
inated earlier and the receipt proving it false.

If a third party or the service recipient wishes to rebut a false positive
experience, it will need the negative receipt. The service recipient, i.e. the
issuer of the receipt, is the natural source for storing these, as the misbe-
having service provider has no incentive to prove its own bad behaviour.
Due to this, it should be the service recipient who reports the experience
in the first place; in this case, disputing false positive experiences would
not be needed. It is worth noting that with the bilateral receipt scheme, a

76 4 From reputation to trust decisions

collusion between a service provider and recipient allows them to generate
unlimited positive experiences into the network which no one can prove
wrong — when studied closely, this issue boils down to how we cannot
verify, even by observing the message, monetary and eventually goods ex-
changes, that two collaborators actually did anything useful or just agreed
to pretend that they did [RK11]. This is not an issue from the point of
view of punishing unfair punishment: collusion is essentially its own form
of collaboration, and neither collaborator has been wronged in the process.
It does underline that local credibility analysis is still necessary: the two
colluders can clearly opt to provide fake service to an honest trustor as well,
at which point they should be punished with reputation loss.

Verifiable experiences make it possible to punish the spreading of mis-
information in the reputation network, while due to factors such as the
potential delay in the punishment process, they do not remove the need
to analyze reputation information locally. Local credibility analysis of all
incoming experiences remains the main technical recourse against misinfor-
mation: it is not necessary nor prudent to accept all experiences as equal,
be they subjective or objective.

The Pilarcos architecture provides our trust management architecture
with the necessary support to implement an objective reputation system
that provides the desired social control in the service ecosystem. Additional
information can be accepted from subjective reputation systems as well,
through a local credibility analysis.

4.1.5 Tracking behavioural changes with reputation epochs

When analyzing experience and reputation information for decision-making,
a central concern is whether the information is up-to-date, i.e. describes
the current behaviour of the actor in question well enough to be useful in
trying to predict its future behaviour. When faced with ten positive ex-
periences and two negative, it can make quite a difference if the negative
experiences are ancient and the actor’s recent behaviour has been spotless,
or if the good experiences are mostly older and the two negative are the
most recent experiences available of the actor.

Whether it is possible to detect the order or timing of actions depends
on the reputation information model. Maintaining the ordering information
of experiences sets heavy requirements on the way experiences are stored
and processed: treating each experience as a unique object with a times-
tamp, or with a position in a queue of experience objects, creates large
data structures, which take an increasing time to process as the number of
experiences grows. While this may not be an issue for offline data mining

4.1 Learning from reputation information 77

efforts, real-time decisions based on reputation information must ensure up-
per limits to the amount of data to process on the fly. In other words, either
the experiences must be somehow compressed, which loses information, or
old experiences must be purged after a while.

We have chosen to compress experience items into outcome counters.
The compression tradeoff loses timing information. The basic reputation
data structure places equal weight to all experiences, independent of the
time they were gathered. While it would be possible to discount old in-
formation through aging factors or other often-proposed methods [JIB07,
pp. 639], we find that most such methods in practice are either very costly
or steadily lose information: they form a kind of fixed-size window to the
past. The main problem with fixed windows, in turn, is that they cannot
be easily adjusted at the time of the decision: data is already lost while
it is gathered. For example, past transgressions can be completely erased
from such systems by simply flooding the network with new experiences
from low-value real transactions, or false experiences produced by collud-
ing partners.

The main value of discounting old information is realized from reacting
to changes in behaviour, i.e. by not allowing a good history to outweigh
recent transgressions. Considered against this goal, we find that time is
actually not the optimal measure for determining the weight or value of
a unit of experience at all. Instead, the optimal measure is whether the
experience brings new information; something we did not already know.

We can capture changes in behaviour by dividing reputation informa-
tion into groups of abstract periods of a given type of behaviour. We call
these groups reputation epochs; each epoch turns a new leaf in experience
gathering. While the latest turn of behaviour is most interesting, it is also
typical that there is very little experience on it; hence information from
older epochs must also be included. The weight given to the current epoch
determines the speed in which the system reacts to changes in behaviour.
The number of reputation epochs also provides a measure of the consistency
of the trustee: if experiences on the trustee are divided into a large and
constantly increasing number of epochs, it indicates that the trustee’s be-
haviour is not stable — or that it is not entirely fitting into any behavioural
categories the system can detect.

While reputation epochs allow us to give less weight to old information
similarly to time-based discounting, they are superior to the constant dis-
counting approach in two aspects: First, as reputation epochs are based on
behaviour changes rather than strict time periods, they fit the purpose of
detecting when information is outdated in the sense of not being useful for

78 4 From reputation to trust decisions

predicting future behaviour. Second, the weighing policy between new and
old information can be dynamically changed, and as no information is ac-
tually discarded, the oldest experiences remain available for later analysis:
the reputation system can be configured to never forget anything without
straining the decision-making process.

In order to not allow the epoch data structure to degrade into the
aforementioned problematic model where experiences are stored as unique
objects, we assume that the number of epochs will not grow without limit.
For this purpose, we can set up epoch pruning processes that ensure that
the number of distinctly stored epochs remains under control. For example,
if it turns out that an actor’s behaviour regularly fluctuates between two
types of epochs, older epochs can be merged regularly, as the fluctuations
then actually represent a different type of consistent behaviour in the long
term.

In the general case, detecting changes between reputation epochs is sim-
ilar to the reasonably well-studied problem of anomaly detection [Vil05a],
and the algorithm can be based on for example a set of “normal” val-
ues learned from earlier data. In more specific cases, rather simple epoch
change policies can be fitting. We present two example policies to achieve
two different goals:

Load balancing: A service provider usually provides good service, but
occasionally the service quality varies depending on the number of
incoming requests. The first example policy should quickly react to
a drop in the quality of service, as it also indicates a need for load
balancing.

Oscillation detection: A service provider oscillates between good and
malicious behaviour: first it collects good reputation, then it cuts
corners in as many service transactions as it can. Whenever there
is a fixed decision policy in use that is known or can be deduced by
experimenting, the optimal attacker targeting the reputation system
will collect just enough positive reputation to not be shut out of the
community, which makes this kind of behaviour relevant to address.
The second example policy should quickly react to this kind of change
for the worse, but also take advantage of the service returning to
normality.

In the load balancing example, we apply a simple dynamically learning
algorithm: a window of n previous experiences is stored by the epoch change
detector, and whenever a new experience falls outside the values present
in the existing filled window, a new epoch is created. As normal service

4.1 Learning from reputation information 79

quality is indicated by the vast majority of experiences, the window is
typically filled with such experiences. At the first drop in reputation, a
new epoch and a new, empty learning window are created. While the
disturbance goes on, the window is filling up with negative (or less positive)
experiences. During this learning phase, when the epoch contains less than
n experiences, new epochs are not created.

If the window (n) is set to be shorter than a typical disturbance, it will
be full of negative experiences by the time the service returns to normal
load, and a new epoch is started when the first positive experience arrives.
This leads to a swift return to the service provider when it is no longer
overloaded. For a more pessimistic, slow recovery, the window (n) can be
chosen to be longer than a typical disturbance, which means that reputation
is slowly regained within the newest epoch. Again, once the window fills up
with normal experiences, the first sign of a negative experience causes a new
epoch to be started. A limitation of this policy is that if the experiences
indicating normal or overloaded states have some natural variation, new
epochs may be created too easily.

In the oscillation detection example, the difference between good and
malicious behaviour is simple to observe, as the experiences will be polar-
ized: positive or negative. To allow greater variation in behaviour than
the previous policy, we apply a static, specification-based epoch detection
algorithm. We define two behaviour profiles: “good” and “evil”. The good
profile covers positive experiences, the evil profile negative. Neutral expe-
riences, or those representing unknown outcomes, fall in neither category.

Given these profiles, we define each ongoing epoch to be either good or
evil, and the reputation epoch changes if an incoming experience matches
the opposite profile rather than the current one. Neutral or unknown out-
comes do not change the epoch, as they match neither. Again, the ongoing
epoch can in principle be given full weight in decision-making. On the other
hand, the attacker may respond by oscillating on every service request: co-
operate, defect, cooperate, defect. To withstand this kind of behaviour, the
number of epochs or the number of experiences in the current epoch should
play a part in choosing a better weight division between the current and
previous epochs, or indicate that the decision should really be delegated to
a human user due to high uncertainty in the reputation information.

Even though the epoch detection profiles are statically defined like this,
information about the “nature” of an epoch is not made available separately
at the trust decision. Reputation epochs are primarily a method for order-
ing reputation information into units of consistent behaviour, and to divide
the history of experiences on a trustee into partially outdated and more cur-

80 4 From reputation to trust decisions

rent information. While it may be tempting to see epochs as representing
actual behaviour types, such as “reliable behaviour”, “regularly fluctuating
behaviour” or “suspicious behaviour”, dynamically detecting meaningful
behaviour groups is not feasible in the general case. For this purpose, only
the divisions between epochs and the actual experiences stored in them are
used in decisions.

The two above policies perform at their best when the central source
of reputation information is either first-hand experience, or a single highly
credible reputation network. On the other hand, sometimes experiences on
an actor are only available through a low-credibility reputation network,
where there may be errors in the experience information — either inten-
tional misinformation or due to e.g. differences in measurement standards.
To cover this scenario, we extend the oscillation detection case above with
an additional requirement:

Conservative oscillation detection: A potentially oscillating service pro-
vider is only known through a reputation network where some expe-
rience reports are incorrect. The third example policy should be
cautious in trusting reputation information that is out of the ordi-
nary, and treat it as an outlier unless it is backed up by additional
information.

Recall that in the earlier solution for oscillation detection, we specify in
the policy that some observed behaviour belongs to the “good” category,
some are categorized as “evil”, and some quality as neither; we follow this
categorization in this conservative version as well. To address the additional
requirement for a policy that is more resistant to noise and anomalous
experiences, we apply the idea of sequential hypothesis testing [Wal45],
which has been previously applied to limit the probability of overreacting
in anomaly detection [JPBB04] as well.

The main idea of the solution is to not change epochs based on a single
value out of the ordinary, because the experience flow is known to con-
tain some erroneous reports mixed into the valid information. Instead, we
should wait for additional supporting evidence before acting. The epoch
is changed if the evidence amassed during a fixed waiting period mostly
supports the change, or if overwhelming evidence for the change arrives
even before the wait period is over. In this case, a change is warranted
if the current epoch is “good” and the incoming experiences categorize as
“evil”, or vice versa, and the amassed evidence translates into the compar-
ison of the count of “good” experiences and “evil” experiences during the
observation. We explain the resulting Algorithm 1 in more detail below.

4.1 Learning from reputation information 81

Algorithm 1 Conservative oscillation detection.

1: � Support and timer variables are initially set and reinitialized to 0.
2: for each round do
3: if experience and epoch match then � (both are good / evil)
4: if timer == 0 then � No hypothesis testing is active.
5: skip to next round;
6: else
7: support–;
8: end if
9: end if

10: if experience and epoch mismatch then � (one is good, one is evil)
11: support++;
12: end if
13: timer++; � Advance the observation period.
14: if support ≥ k then � This indicates overwhelming support.
15: change epoch();
16: reset variables();
17: end if
18: if support < 0 then
19: reset variables();
20: end if
21: if timer ≥ t then
22: if support > 0 then � Majority of the t votes supports change.
23: change epoch();
24: end if
25: reset variables();
26: end if
27: end for

In sequential hypothesis testing, a single experience out of the ordinary
does not yet change the epoch. It only strengthens the hypothesis that the
epoch should be changed, by a constant measure i; we set i = 1 for the
purposes of this text (lines 9–11 in Algorithm 1). Similarly, an experience
supporting the current epoch weakens the hypothesis by 1, if a hypothesis
for changing the epoch has been established (lines 2–8). Again, neutral and
unknown experiences cause no effect.

The amassed evidence is evaluated on lines 13–25 of Algorithm 1. For
the epoch to change, either the change must amass support exceeding a
given threshold k, or during a period of t consecutive experiences there
must be more support for changing it than there has been for continuing

82 4 From reputation to trust decisions

the current epoch. In other words, if there is overwhelming support for
the hypothesis, it is accepted and consequently the epoch is changed. If
the evidence is somewhat contradictory, the algorithm enters an observation
period and at its end, determines whether the hypothesis is true by checking
what the majority of the amassed evidence supports. In the latter case,
even the difference of a single observation in the other direction can flip
the epoch, but we can observe that the support for continuing the current
epoch is equally sketchy at that point.

Sequential hypothesis testing could be similarly combined to the window-
based load balancing algorithm, to test the need to change epochs once the
learning window has been filled. As a downside, this modification alone
will not stop outliers in incoming reputation information from being stored
as examples of normal behaviour during the learning process. Therefore,
the algorithm would remain vulnerable to any noise in reputation flows.

The three example algorithms demonstrate the flexibility of the repu-
tation epoch concept. We have performed illustrative simulations on them
somewhat similarly to the experiments reported in Chapter 6; the results
are reported in a separate paper [RHK11]. In the paper we demonstrate
that the reputation epoch concept allows us to cover a considerable weak-
ness in existing reputation systems by supporting timely reacting to changes
in behaviour. Once the reputation epoch change policies are in place and
the locally stored experiences are annotated with this consistency informa-
tion, it is easier to specify the appropriate type of reaction based on what
kind of decision is being made: for example for a short-term action, it is
worth avoiding a service that appears to be malfunctioning right now, while
decisions on longer-term collaborations can still take advantage of stored
older experiences as well.

4.2 Adjusting to business situations through policy

TuBE combines the strengths of reputation-based and policy-based ap-
proaches to trust management. On one hand, it learns from the past
through using up-to-date reputation information as a basis for risk and
benefit estimation. On the other hand, it combines this information with
local business rules and valuations, all easily adjustable to different and
changing business situations through policy configurations.

A central aim of the design has been to separate the policies directing
trust decisions that use the gathered information, and the policies directing
the information gathering itself. Respectively, when we look at the effect
of reputation on trust decisions, two different types of policies emerge: the

84 4 From reputation to trust decisions

The merged reputation view is then transformed into a risk evaluation.
In the default case, this is done directly by converting the experience coun-
ters to probabilities by dividing them with the total number of experiences,
but an action-specific risk template can be applied when needed. As noted
in Section 3.2, the probabilities are ratios of the given outcomeIt can for
example reflect that an action is inherently low-risk and major negative
outcomes are not possible, so their probability value may be transferred to
the probability of minor negative outcomes instead. The risk evaluation is
then also subjected to context filters, which can capture, for example, that
abnormal activities in the business network have made certain resource-
intensive actions temporarily more risky than usual. Now the risk estimate
is complete.

In order to calculate the risk tolerance, action-specific importance values
are determined by an importance evaluation policy. The value is subjected
to context filters, again: for example, the importance or certain positive
effect of any selling-related actions may be temporarily increased when low
on storage space. The importance value is then passed as a parameter
to the tolerance evaluation policy, which produces one or more tolerance
constraint sets based on the importance value. Context filters are applied
to these as well; monetary risk tolerance can for example be temporarily
reduced due to running low on funds.

In the end, the risk estimate is compared to the risk tolerance con-
straints to determine which set of constraints it falls within; for example,
two sets may indicate the ranges for “clear/routine deny” and “clear/rou-
tine accept”, while any evaluations falling between them are deemed non-
routine and forwarded to a human user to decide. Any messages relating
to such deferred decisions are blocked by default until further notice. The
outcome of either allowing or blocking the action is then forwarded to the
Pilarcos monitor, which passes or blocks the message. This high-level pro-
cess is depicted in Figure 4.5.

For most policies involved in the trust decision, a clear default ap-
proach is to not perform any changes to the given values unless specifically
needed: all context filters, action-specific risk templates and importance
valuations can be left undefined unless needed. There are a few natural
default approaches for the reputation view merging policy; one example is
a credibility-weighted average of the two views of local and external repu-
tation.

The tolerance evaluation policy, and what kinds of constraint sets it
produces, has a considerable effect on the outcome of the trust decision. We
will compare different importance-independent tolerance evaluation policies

86 4 From reputation to trust decisions

utility the trustee has so far provided to the trustor. If we multiply all terms
with n, where n is the number of experiences with known outcomes stored
in the risk evaluation, and replace the px in the formula with ux = px ∗ n,
the above formula is transformed into one expressed directly through the
number of experiences with a specific outcome, as shown in Algorithm 3.

Algorithm 3 Utility-based tolerance in terms of experience counters u.

if kmajk+umaj,++ kmink+umin,+− (kmink−umin,−+ kmajk−umaj,−) ≥ tu
then

accept(action);
else

reject(action);
end if

The four different multipliers have a considerable effect on the outcome
of the decision, and must be chosen with some care; we will demonstrate
the behaviour of the policy with different multiplier combinations in the
following experiments. The threshold value tp or tu sets the minimum value
for when decisions are positive; if it is too high, potential partners must
gain a high reputation before they are ever allowed into collaborations with
the trustor; if it is too low, the trustor risks attracting malicious partners.

The same formula is repeated for all assets. The constraint set is fulfilled
if and only if the outcome counters for all assets are above their thresholds.
As analyzing the differences between the desired treatment of various assets
goes beyond the scope of this thesis, we have not implemented different
multipliers for different assets in this policy.

The minor/major tolerance evaluator policy builds on the same idea
as the utility-based tolerance evaluator, but it will not allow conversion
between minor and major outcomes, even through multipliers. Instead, it
treats major and minor effect actions as fully separate. The policy has four
multiplier values, and separate thresholds for minor and major outcomes.

The justification for not converting between different severity classes of
experiences is that the actions involving outcomes with major effects are
by nature different from those with only minor effects. If a partner turns
out to be incompetent with critical actions but works well with actions
demanding fewer resources, its reputation should be interpreted in a way
that allows it to perform the minor actions but blocks it from major ones.

Using the notation from the previous formula, we get Algorithm 4. In
it, tmin and tmaj are the threshold values for minor outcomes and major
outcomes, respectively.

The two presented policy types are by no means a thorough selection

4.2 Adjusting to business situations through policy 87

Algorithm 4 Minor/major tolerance evaluator.

if k+umin,+ − k−umin,− ≥ tmin and k+umaj,+ − k−umaj,− ≥ tmaj then
accept(action);

else
reject(action);

end if

of the possible decision policies. They do have a few central benefits from
the point of view of this work: they are intuitively simple, their basic
behaviour can be adjusted with configuration parameters, and the result
can be easily illustrated by utility score plots. Also, a handful of specific
policies that fall under either of these two types are sufficient to demonstrate
the central considerations related to trust decisions: quickly reacting to bad
experiences, giving more weight to high-value than low-value transactions,
and overcoming information sparsity problems. We will return to this topic
in Section 6.2.

4.2.2 Reputation update policy

The reputation update policy determines how external reputation infor-
mation from different sources is incorporated into the external reputation
view. External reputation information, recommendations, are delivered to
the TuBE reputation management system from representative agents in
reputation networks, and are translated into the local reputation format.
The recommendations are then analyzed locally, and the reputation view is
updated with the new information based on the reputation update policy.

The recommendations arriving can take two forms: they can be pre-
sented as single external experiences, or full reputation views, consisting of
a set of experiences that should be evaluated and interpreted as a single
whole. The presentation depends on what kinds of recommendation units
the external reputation network communicates in: some translate easily
to specific experiences, others into overall opinions. For example, a good
credit rating value can be translated to n positive experiences, where n
reflects the weight given to the information.

The simulation experiments in this thesis use a stream of external expe-
riences from sources with different credibility. These streams of experiences
are merged into a single external reputation view for the given trustee.

As our simulations focus on differences in credibility rather than in data
format of different sources, we have opted to use only the experience for-
mat in the simulation. The handling of opinions and experiences is mostly

88 4 From reputation to trust decisions

similar, but with two things worth noting: First, due to the different na-
ture of the sources, the policies handling opinions and experiences should
be expected to be different. For this reason, opinions and experiences must
be kept semantically separate in order to for example support policies of
the form “always first merge these two views by averaging to represent a
total of n experiences, then add any separate experiences into the result”.
Second, opinions are also associated to epochs similarly to single experi-
ences, but with the difference that the reputation change from a previous
recommendation must always be erased to incorporate an updated opinion
from the same source. For example, the n positive experiences added due
to a good credit rating must be removed when the credit rating turns bad,
to ensure that the relative weight given to the single opinion source does
not increase by n experiences at each update, unless the local policy setter
deems it appropriate. The added complexity is a tradeoff in order to be
able to handle a range of different information sources.

When a new external experience arrives from a given reputation net-
work, it has been assigned a credibility value based on the analysis made by
the representative agent in the reputation network. This credibility is first
combined with the credibility of the reputation network itself by applying
a source and set credibility merger policy, resulting in a single credibility
value. The experience is then incorporated into the current external rep-
utation view through a reputation updater policy, which is also applies a
policy for updating the view credibility accordingly with an experience to
view credibility merger, if necessary. The two policy applications have a
one-way dependency: the reputation updater policy can choose to discard
the experience altogether or modify it, in which case the same policy de-
termines whether the view credibility should be updated at all. On the
other hand, the more straightforward credibility merger policy remains un-
aware of the surrounding reputation update policy. The high-level process
of external reputation updates is depicted in Figure 4.6.

A straightforward example of a source and set credibility merger policy,
as mentioned earlier, is multiplying the credibility values, which are real
numbers between 0 and 1. When merging the credibility values of the
incorporated experience and the view, a similarly simple default policy
would be to calculate a weighted average credibility between the view and
the experience, using the number of experiences already stored in the view
as its weight.

The central policy for incorporating new experiences is then the repu-
tation update policy. We will compare different reputation update policies
through simulations in Section 6.3. For this purpose, we have implemented

90 4 From reputation to trust decisions

Incoming experiences must have a credibility value that is at least as high
as the view’s overall credibility. For this policy, the credibility update
policy for the view makes a considerable difference. For updating the view’s
credibility with the new experience, the weighted average update policy
described earlier can be used. This policy aims to combine the best of both
worlds: ensure that there is always some information available to make a
decision, but once this has been achieved, it aims to protect the reputation
system from being corrupted by suspect information.

In addition to the trust management policies, the business service is
governed by a range of metapolicies which override any trust decisions.
Decision-making is done on three levels: first, whether a collaboration is rel-
evant in relation to the business strategy of the enterprise, second, whether
it is valid, i.e. in accordance to for example the local privacy policy and
legislation, and third, whether it is worth the risk [KRM08]. Trust decisions
are positioned on the third level, and are only taken when the collaboration
is already known to be both relevant and valid.

Policy configuration incurs an administrative cost when setting up the
system. On the other hand, the policies are not changed on a daily ba-
sis, only at points where strategic changes are needed. We will return to
the overall administrative costs of the trust management system in Sec-
tion 6.1.5.

In summary, the trust decision and reputation update policies allow the
trust management system to adjust to different business situations. The
two sets of policies are kept separate in order to ensure that experience
information can be collected only once, and then used in different decision
contexts. We have specified some example policies to illustrate the possibil-
ities of the trust information model; we will perform simulation experiments
on these in Chapter 6.

4.3 Related work on reputation management

This section presents examples of reputation systems modelling reputation
as a probability, which is prevalent in multi-agent marketplaces. It is close
in philosophy to our approach of using experience information to calculate
probabilities of different outcomes for subjective risk estimation. In the fol-
lowing section, we will discuss interoperability between reputation systems.
We cover further related work under this topic as well.

As we have found in our survey work, the selection of proposed reputa-
tion systems is quite broad [RK05, RKK07]. While the reputation system
of the eBay online auction site [eBa11] remains the best-known example

4.3 Related work on reputation management 91

system in use, reputation networks are extending beyond simple electronic
marketplaces and private users. Reputation systems have been proposed
to support partner selection also for virtual organizations [KHKR06] and
Grid environments [vLAV05, TPJL06]; the requirements and available fa-
cilities of these kinds of environments are somewhat different from those in
the marketplaces. Simulations similar to the ones we will discuss among
the related work in Chapter 6 are used for evaluating reputation systems,
particularly those directed towards multi-agent marketplaces.

Reputation systems proposed in the literature use a diverse set of meth-
ods for calculating reputation values, ranging from simple rating aver-
ages and different interpretations of probability to social network graphs.
Jøsang, Ismail and Boyd provide further examples in their survey [JIB07].
The reputation values acquired can in turn be used as a threshold on
whether to collaborate with a given trustee, as a method of ranking multi-
ple actors to choose the most reputable partner, or presented as a decision
aid to a human user [RKK07].

Probability as a concept can be interpreted either as a frequency of
events, or more subjectively as a degree of rational belief or the plausibility
of a statement. The latter definition is more abstract, and better suited
for decision-making in contexts where probability values are not directly
attached to random experimentation.

This division does not imply that frequencies or ratios are not used in
probability calculations: reputation systems can and do calculate proba-
bilities directly from the frequency a given outcome appears in previous
experiences, as well as through more elaborate means. We can divide the
process of translating experiences to reputation into three phases:

1. Pre-processing, in which raw experiences are manipulated based on
additional information,

2. Transformation, in which the experience data is fitted into a proba-
bility value, probability density function or similar structure, and

3. Post-processing, in which the probability-based structure is further
manipulated and possibly re-transformed into another value or format
used in the actual decision-making or shown to the user.

For a simple example, let us assume an eBay-like marketplace where a
seller has received 45 positive and 7 negative ratings according to a central-
ized reputation storage. In the pre-processing phase, the reputation engine
may determine, based on separate evidence such as the reputation of the
raters, that two of the negative ratings were uncalled for and therefore not

92 4 From reputation to trust decisions

usable. It therefore decides to include only 45 positive and 5 negative ex-
periences in further analysis. In the transformation phase, the reputation
engine calculates the ratio of positive experiences in order to transform the
number into a probability value: 45/(45 + 5) = 0.9. In the post-processing
phase, the reputation engine changes this probability into a graphical repre-
sentation, such as 4.5 stars out of five, to provide a more accessible decision
aid to a human user.

The transformation phase, and often also the pre- and post-processing
phases lose some of the information that has been fed into the system. In
this case, 2 ratings were dropped from analysis in order to avoid skewing the
result in the pre-processing phase. In the transformation phase, information
about the total number of experiences was lost — the result would be
the same even if there were three times as many ratings with the same
ratios. Finally, in the post-processing phase, further details are lost in
favour of simplifying the result to an understandable form to the user.
Loss of information early in the process accumulates towards the end.

As an example of a more complex reputation calculation process, let
us consider systems which model reputation as a probability distribution.
As they typically pointedly apply the principles of Bayes’ theorem [Bay63]
in the transformation phase, these systems are also referred to as Bayesian
reputation systems [JIB07].

The basic approach of these systems is to consider a sequence of trans-
actions and their results as if it were a sample from a binomial or a multi-
nomial distribution. Bayesian parameter estimation can then be used to
discover the parameters of the target distribution [Nur06].

The Beta distribution is a probability distribution commonly used for
these kinds of reputation systems; it is applied in the Beta reputation sys-
tem [JI02] as well as many others, such as the model of Mui et al. [MMH02],
Travos [TPJL06] and bHonest [Nur06]. A related binomial distribution is
used by Perseus [Nur07]. The Beta distribution is a special case of the
Dirichlet distribution, to which we will return later.

At the baseline, all information that is needed for discovering the pa-
rameters for the Beta reputation system is the number of transactions that
ended well, and the number of transactions in total [JI02]. It is worth not-
ing that as the transactions are not assumed to depend on each other on the
probability distribution level, their ordering does not make any difference
at the transformation phase. This means that discounting old information
must be included as a part of input pre-processing phase, for example by
constantly multiplying the aforementioned two transaction counters with a
decay value whenever they are updated with new information [JI02]. Simi-

4.3 Related work on reputation management 93

lar attention can be applied to include considerations for source credibility,
relevance and other factors influencing the reputation update policy. For
example Travos applies probabilistic methods for analyzing which reputa-
tion sources are likely to be inaccurate [TPJL06].

It is the differences in pre-processing that produce the core variations
of different reputation systems based on the Beta distribution. However,
the distribution itself sets a strong limitation to the format of reputation
that can be used: as it is a distribution of binary events, all contract out-
comes must be expressed in binary as well: either the trustee cooperated
or defected. There is no way to express a partial cooperation or defec-
tion [RRRJ07a].

As noted by Jøsang and Haller [JH07] and Reece et al. [RRRJ07b],
multinomial Dirichlet distributions are more flexible in this sense: they can
be used to express cooperation and defection in multiple discrete outcomes
of the contract. Jøsang et al. also propose using a Dirichlet distribution
to produce a scaled outcome e.g. from 1 to 5, as an extension of the Beta
reputation system [JH07]. Reece et al. use the Dirichlet distribution as a
basis of observing a set of multiple, more independent contract outcomes,
such as “goods were delivered on time” and “the quality of the goods was
acceptable” [RRRJ07b]. Each independent outcome is binary: either goods
were delivered on time or they were not.

Reece et al. note that a weakness with their application of Dirichlet
distributions is in that all actors must observe an identical set of contract
outcomes [RRRJ07a]; “not applicable” or “unknown” are not acceptable
values in the binary outcome format. While this is not a problem with
fixed scales, it is a severe limitation when dividing contract outcomes into
categories: for example, while it could be relevant to measure whether
installation support was available for high-tech goods, a similar measure
would not be very interesting for plush toys. The group provides a solu-
tion to the limitation of fixed contractual outcomes: Kalman filters can be
used to express the value “unknown” as well, which means that the repu-
tation system can include observable variables that are not applicable to
all transactions [RRRJ07a].

TuBE and the described reputation systems share the approach of cal-
culating probabilities for positive and negative outcomes, but there are
considerable differences in how the information is processed. In TuBE,
we have chosen the simple approach of using ratios directly as base prob-
abilities rather than fitting continuous probability distributions into the
experience data available. The main reason for this is that the complexity
of the model lies elsewhere; we store reputation itself as counters of experi-

94 4 From reputation to trust decisions

ences only, and calculate probabilities only at decision time, in connection
to other policies adjusting the values.

Another difference is that TuBE specifically stores additional reputation
metainformation in order to support the higher level decision on whether
the trust decision is a routine case or not. As discussed in Section 4.1.5, we
propose to divide the experience collection into periods, reputation epochs,
as a way to limit information loss in the pre-processing phase on the specific
issue of keeping track of behavioural changes over time. Epochs, together
with credibility scoring and keeping track of the amount of experiences
stored, provide important input in the decision phase on whether the auto-
mated trust management system should be determining that the decision
is not really routine at all. If the information available is insufficient or
otherwise suspect, the decision should be forwarded to a human user.

As noted by Jøsang et al. in their survey, a downside of using probability
distributions is their complexity [JIB07]: users are unlikely to understand
them, and yet they should trust the formalism to produce decisions sim-
ilar enough to their own in order to delegate the decision process to an
automated system. Further, if the pre-processing phase contains multiple
different steps of discounting information fed into the distribution, and the
post-processing phase re-flattens the distribution into a single scalar value,
it becomes unclear whether the probability distribution formalism itself
contributes much in terms of a sound theoretical basis either.

The transformation and post-processing phases are a part of the decision
process rather than the reputation update process; activities in the pre-
processing phase can belong to either group. When sharing reputation
information between actors in a reputation network, and aggregating it
into the TuBE system, it is preferable to use the raw experience information
directly, if it is available. This will minimize the inherent information loss
caused by the later processing phases.

4.4 Interoperability between reputation systems

One of the design choices in TuBE is to support gathering external rep-
utation information from multiple different sources, which provides inter-
operability between reputation systems. Towards achieving this goal, this
section will approach the issue through four subtasks:

• Identifying the different types of reputation information TuBE should
handle,

4.4 Interoperability between reputation systems 95

• supporting pragmatic interoperability by assigning credibility to dif-
ferent types of information sources,

• supporting technical interoperability by converting reputation values
from one format to another, and

• supporting semantic interoperability by addressing the fact that rep-
utation values in different networks can mean different things.

We begin by studying the different types of reputation information
that TuBE should handle. While related work on combining information
from different reputation systems altogether has not emerged before this,
there are some reputation systems which apply a combination of multiple
types of information to produce the final reputation view. These systems
can provide us with some insight on how to merge information from repu-
tation systems with a focus on different types of information as well.

We find that the work of Huynh, Jennings and Shadbolt [HJS06b] on
the FIRE reputation system acts as a representative example of a multi-
sourced reputation system to discuss the attributes of different types of
sources available. In FIRE, different information sources are combined into
a single value based on a general measure of the reliability of the source
type, and the overall quality of information available within that type. We
will use the reputation types presented there as a basis of our discussion.

The FIRE model is designed for making trust decisions in open multi-
agent systems. It is based on four different types of information: direct local
experiences (“interaction trust”), external experience information gathered
by the trustor (“witness reputation”), certificates of good behaviour pre-
sented by the trustee (“certified reputation”), and reputation based on actor
class or role (“role-based trust”) [HJS06b]. Hyunh et al. use a definition
for trust which focuses on expectations of behaviour only; this falls within
the definition of reputation used in this thesis.

Direct experiences are gathered from locally storing the results of the
trustor’s earlier interactions with the trustee, providing an equivalent of lo-
cal reputation. External reputation, on the other hand, is gathered through
the remaining three categories of information.

The first type of external reputation, witness reputation, is gathered
by the trustor from agents who have interacted with the trustee. It is
the most typical form of external reputation. As there is no centralized
storage for reputation information in FIRE, the trustor discovers potential
witnesses from the network using a referral system proposed by Yu and
Singh [YS03]. The experience information is evaluated for overall quality
based on e.g. the time of the transaction it originates from and source

96 4 From reputation to trust decisions

credibility. The resulting evaluation is then used to weigh the experiences
against each other within this reputation type.

The second type of external reputation is based on the trustee actively
presenting certified references to the trustor, such as digitally signed re-
ceipts of successful transactions [HJS06a]. The trustee-centric approach is
familiar from certificate-based trust management and trust negotiations; it
has been proposed earlier by for example Obreiter [Obr04], Srivatsa et al.
in TrustGuard [SXL05] and Lee et al. in NICE [LSB03].

The third type of external reputation information is not based on experi-
ence, but on rules tied to the actor class the trustee belongs to. Membership
in a specific class of actors or a given type of role can have an effect on the
reputation of an actor; this information is particularly useful as a default
value in the absence of sufficient experience information. Hyunh et al. note
that the rules are domain-specific and set no limitations to how the role
information can be acquired [HJS06b]. Services fulfilling particular roles
may be expected to behave in specific ways according to the incentives of
the role; for example, sellers may be expected to sell a product of slightly
lower quality than agreed [HJS06b].

When we reflect the three types of reputation in FIRE to the TuBE ar-
chitecture, the first-hand experiences are similar to local experiences, and
the first two types of external reputation are simply two different ways of
operating an external reputation system: one based on subjective state-
ments, the other based on evidence. The latter sort may encode subjective
statements that are stored by the target of the recommendation, or it can
be verifiable and objective, as we have proposed in Section 4.1.4.

For considering the third type of role-based rules in TuBE, we find that
the information could be applied as context filters for the reputation or risk
value; they are not an actual reputation source in the sense of producing a
flow of experiences from external actors. For example, the seller assumption
would fit better as an adjustment of the risk of buying something rather
than a source of nominally experience-based reputation information on the
actor.

In addition to this, certain kinds of roles imply a certain level of group-
based reputation, i.e. reputation inherited from other actors in the same
group rather than a constant gain through a given role. For example, if
the different services offered by a given large service provider are expected
to behave similarly, new services by the same provider can be assigned a
default reputation based on the reputation of the other services. This is
based on internal reputation information, and due to the interdependency
between multiple actors, it does not naturally fall under the jurisdiction

4.4 Interoperability between reputation systems 97

of context filters. It could be implemented as a simulated “external” rep-
utation information network based on internal experiences, but we find it
more fruitful to separate a process of its own for handling the assignment
of an initial reputation value to newcomers.

When a new service is found interesting, a three-level hierarchy of find-
ing an initial reputation value to it is used: for new services from entirely
new providers, a fixed default is applied — in the case of TuBE, storing no
experiences is a good default. Group-based reputation can help assign an
initial reputation to new services from known providers, essentially copying
over the other service’s reputation in part or in full; rather than first-hand
experience, this is a locally passed one-time recommendation. Therefore
storing it as external reputation, with a credibility value below 1, is seman-
tically preferable to storing it as local experiences. For services that are
only unknown to the trustor, external reputation networks can be searched
for additional information.

A related type of membership-based reputation can be defined as a rec-
ommendation an organization gives to all services (or providers) that have
a membership within it. For example, an actor providing proof of its mem-
bership in a particular trader union can be given a default reputation value
that represents how well the members of the union can be expected to be-
have — under the threat of being kicked out of the union for violating its
rules, for example. Should such a union also actively vouch for its members,
however, any insurance-like effects should be captured as a context filter
for risk rather than as reputation.

Membership-based reputation can be interpreted quite generally: any
third-party certification, be it for a government-certified seller, an evalu-
ation for following process quality standards, or credit rating of a service
provider, can be interpreted as a single specific but weighty recommen-
dation from that third party. These certificates can be presented by the
trustee in a form of trust negotiation protocol (refer to Section 2.3.1), or
the information can be acquired directly from the source, such as a credit
rating company.

Even the trustor organization can in some cases act as such an in-
formation source for itself, if it gathers and stores relevant information
about partner companies that can be converted into a format usable by the
trust management system. The trust criteria identified by Msanjila and
Afsarmanesh, for example, combine multiple types of management-level in-
formation about a partner organization, such as its financial stability and
technological expertise [MA07].

98 4 From reputation to trust decisions

Certified, membership-based reputation, as discussed above, then be-
comes a special case of third-party certification that must be converted to
the reputation format of TuBE. While the remaining types of certification
do not fit very elegantly to the experience-based reputation model in TuBE,
they can prove an invaluable source of base reputation when not enough
local or external experiences are available. As such, they can be interpreted
as equivalent to a given number of actual external experiences, and applied
as a basis to which actual experiences from different networks are added to
produce the updated external reputation view.

In summary, we have identified a number of different types of reputation
in related work and existing structures in society, and ensured that they fit
into the TuBE architecture and information model. First-hand and exter-
nal experiences are the most straightforward category to deal with, while
certificates, memberships in trusted groups and other aggregated opinions
require a more elaborate conversion. The rule-based reputation effects of
roles are best expressed through context filters rather than fixed reputa-
tion. Group-based reputation inherited from the social environment of a
trustee is best dealt with through a separate reputation initialization pro-
cess, which generally deals with assigning a default reputation to unknown
actors.

Pragmatic interoperability considers the issue of choice: do we want
to listen to a reputation source, and how carefully? In TuBE, this is re-
flected through reputation source credibility, which is assigned both to an
entire reputation network and to individual sources within it.

Assigning credibility values to the different types of information sources
presented above requires some insight into what kind of information can
be acquired from them, and what kinds of incentives the reputation system
architectures support for their actors.

For witness reputation, the decentralized approach of discovering rec-
ommenders allows the third parties to decide whether they wish to provide
recommendations to the trustor about the trustee at a given time. A cen-
tralized reputation storage would, in contrast, allow only a single decision
on whether to share the information with the network in general. All actors
would also have to decide whether they trust the storage, and all provided
information would be readily accessible.

With certified reputation, the problems are different: the trustee has
full interest in presenting all positive information about itself, and acts
as a centralized storage of information for itself. However, it has very
little interest in providing negative information. This gives the experience
information a strong positive bias. A recommender may wish to not provide

4.4 Interoperability between reputation systems 99

a receipt for a good transaction to a potential later competitor, or retract
its statement later; we have discussed the challenges of asymmetry and
repudiability in Section 4.1.4.

The trustor may also have an interest to control who should know that
it seeks information on a specific actor. In the case of centralized storage for
witness reputation, and to a degree with role-based reputation, the trustor
can acquire the information without anyone but the centralized reputation
storage or the source of group membership information knowing about it.
This may be particularly desirable when reputation is used in partner se-
lection, and information is needed about actors who may otherwise not be
aware of the kind of collaboration being set up. In contrast, the distributed
witness reputation algorithm reveals the trustor’s interest to everyone who
is queried for a recommendation, and the certified reputation approach
makes the trustee aware of the trustor’s query directly.

The certainty and credibility assigned to each information source are
tools to reflect the preferences of some types of sources over others when
they are available. Reputation based on centralized certification, when
combined with strongly authenticated sources, can be highly credible but
semantically very limited in scope and slow to update, while the electronic
equivalent of “marketplace gossip” can be readily available but prone to
outside corruption. We have compared different credibility evaluation ap-
proaches in different reputation systems in earlier work [RKK07]. While
various good mechanisms and methods could be identified from the stud-
ied systems, standard mechanisms and metrics for combining information
from multiple reputation systems are missing. Standard-form metainfor-
mation of suitable granularity is also needed for evaluating the credibility
of reputation information.

In summary, the architecture of a reputation system and the actors
in the reputation network implementing it have a strong influence on the
overall quality of information that can be received through the network.
We can reflect these differences through credibility values, which supports
pragmatic interoperability for reputation networks.

Once we have selected a way to represent an information source in
TuBE, and assigned it a suitable credibility value, the remaining two issues
concern the translation of the external reputation flow into the local data
format.

To provide background on this goal of technical interoperability, we
have studied simulation experiments in related work that aim to illustrate
differences between reputation update algorithms that operate on different
information models.

100 4 From reputation to trust decisions

Before any reasonable comparison between models can be made, a con-
version between them is needed. Besides illustrating behavioural differences
of the reputation update models, it is a test of whether the target informa-
tion model that the systems have been translated to can actually hold the
central features of the different source information models. We have chosen
the UniTEC experiments as an example illustrating this subproblem, and
discuss the work in the TuBE context.

Kinateder et al. have designed the UniTEC trust and reputation model
for electronic commerce [KR03, KP03]. The UniTEC reputation system
is a fully decentralized peer-to-peer network which can store information
about products or services in an arbitrary format; the model focuses on the
distribution of the information and estimating source credibility. The sys-
tem also employs privacy-enhancing structures, such as the use of multiple
pseudonyms for each actor [KP03].

We have discussed UniTEC’s approach to credibility estimation in com-
parison to other reputation systems in earlier work [RKK07]. We will not
delve into details of the model further, but instead focus on how the generic
elements of the model have been used as a basis of information model con-
version between different systems.

Kinateder et al. have provided mappings between the UniTEC sys-
tem and other models in a way that makes it possible to compare the
behaviour of well-known algorithms built on somewhat different informa-
tion models [KBR05]. They applied the approach to four trust models:
the work of Abdul-Rahman and Hailes [ARH00] (with four discrete trust
values and an uncertainty metric), Jøsang’s Beta reputation system (based
on Bayesian probability distributions) [JI02], the Regret reputation system
by Sabater and Sierra [SS02] (using scalar metrics combined with reliabil-
ity measures), and an algorithm originally designed for UniTEC [KR03].
After manually fitting the three other information models into the UniTEC
model, Kinateder et al. simulated the behaviour of all four reputation up-
date algorithms, including two variants of the Beta reputation system, with
five different external experience streams. This final part of the experiment
was quite similar in nature to the one we performed in Section 6.3.

The model conversion work could be compared to describing the repu-
tation update policies of the different systems in a single policy language
that is expressive enough. However, as we noted earlier, differences between
information models may make the conversion impossible, and lossy at best,
depending on the target model.

The relevance of this work to TuBE is twofold: On one hand, perform-
ing a similar conversion would allow us to compare the behaviour of various

4.4 Interoperability between reputation systems 101

more complex reputation update algorithms expressed as TuBE reputation
update policies. More importantly, a similar conversion would also demon-
strate the expressive power of the TuBE information model.

Model conversion for reputation information is needed in TuBE in order
for our system to interoperate with multiple reputation networks and collect
information from them. For this goal, the reputation update algorithm
used in the external network is or how it performs and behaves are both
secondary. If the information produced by a given network is useful and
relevant, we want to convert it to fit the TuBE information model and
incorporate the experiences into the local reputation data storage.

The multi-asset reputation information model in TuBE is more expres-
sive than the models we have considered in this work, and it is based on the
concept of experiences from transactions. The complexity of most reputa-
tion models comes from translating this information to probability density
functions, fuzzy values or trust categories for the trust decision; in other
words, the central differences are seen in risk tolerance policies rather than
the reputation information. The main challenge are opinion-based reputa-
tion systems, where the unit of recommendations is not an experience, but
an aggregated, non-transparent value like “good credit rating”. Relating
these to our discussion about reputation types, these are probably best in-
terpreted as certification-based reputation, and primarily used as the basis
of producing a reputation value for a newcomer at one time. Converting an
aggregate value into experiences is a matter of defining how many agreeing
experiences we would expect to see to create the same reputation effect.

In summary, the conversion of reputation information between two dif-
ferent information models supports technical interoperability between rep-
utation systems. The experience-based, multi-asset TuBE model forms a
good basis for converting experience-based data into, while for the trans-
formation of complex, opaque values, manual mappings remain necessary.

As a last point, we must consider semantic interoperability: even
if two actors use the same format for information, they may interpret it
differently: what would be the objective meaning of an outcome scored
“two stars out of five” as opposed to one scored “three stars out of five”?

In other words, two actors within the same reputation network may be
met with the exact same situation, and while one considers it a positive
experience because nothing bad happened, the other considers it neutral
because the outcome was as expected. This is particularly valid for human
users directly expressing their experiences: there are no standard scales for
evaluations of feelings, and the users’ expectations have a strong influence
on the outcome. Experiences may therefore not even be fully comparable

102 4 From reputation to trust decisions

for a single actor, due to their expectations and valuations fluctuating over
time.

The inconsistency caused by changing expectations can be partially
alleviated in the case of automated monitoring, as monitor rules define
experiences explicitly. Local policy on how to interpret monitor events can
still vary over time and particularly between service providers, however.

Systematic bias, such the eBay users’ bias towards positive ratings1,
should also be taken into account when converting information from one
network to another. One form of systematic bias can be caused by recipro-
cation between users [MMH02], which some systems support more strongly
than others. For example, reputation networks where users cannot see who
has rated them do not directly encourage the users to return the positive
(or negative) rating in kind.

The differences in interpretation between single users are particularly
challenging to account for, and yet overcoming the semantic gap is integral
for shared experiences to be at all meaningful. Reputation systems such
as eBay provide a means for users to attach a short explanatory message
to each rating [eBa11], which helps other users willing to dig through the
rating data to understand the numeric rating. When the data is used for
automated decisions or recommendations, however, free-form text is not
particularly useful; the semantics of the ratings themselves become much
more important.

Dondio et al. have proposed a model for translating ratings between two
rating models in recommender systems [DLB08]. Besides looking into differ-
ences between the models themselves, they also discuss detecting user-level
differences in using numeric rating scales. Users can exchange information
about what kind of attributes they focus on when rating actors in general
by exchanging ratings for specific stereotypical scenarios. This stereotype
information is then used to automatically adjust the ratings to better fit
the interpretation of the user receiving the recommendations.

Gal-Oz et al. propose an architecture and model for sharing reputation
knowledge across virtual communities [GOGGF10]. A matching component
of the architecture is in charge of a task similar to that described by Dondio
et al., although the approach does not focus so much on user-specific infor-
mation. The component computes how well the communities match each
other based on community-wide information, converts reputation values
and scales them based on statistic information on rating differences, and

1It appears that eBay users give positive ratings for all transactions that ended at
least as expected, and neutral ratings if there are only minor complaints, such as the
delivery being late or the product not entirely matching its description. As a result,
99.1% of the feedback provided by buyers was positive [RZ02].

4.5 Chapter summary 103

maps attributes of reputation between communities based on a mapping of
each community’s attribute set to a generic attribute set. The authors also
discuss different alternative protocols for data exchange between commu-
nities, and their implications for information accuracy and user privacy.

The technical conversion between different reputation system data for-
mats and the TuBE reputation format is an item of future work. Semantic
conversions specific to actors in a reputation network are best done within
the external reputation systems themselves, although a systematic bias in
an entire reputation network can be taken into account during the conver-
sion of the network’s output to TuBE.

To summarize, achieving semantic interoperability requires methods to
overcome differences in measurement scales on the interpretation level, in-
cluding systematic bias. Users of the same reputation system may inter-
pret the experience values in use differently as well, which creates a more
local bias. Automated experience reports based on shared rules, such as
the contract-based scheme proposed in Section 4.1.4, are more resistant to
bias, but we cannot expect all reputation sources to converge to using the
objective model.

In conclusion, we have discussed different types of reputation informa-
tion that should be processed by the TuBE system, and reflected these to
the three aspects of pragmatic, technical, and semantic interoperability to
achieve between reputation systems. We find that the TuBE information
model forms a good basis for plugging in the basic reputation information
from different kinds of systems, while many of the more complex models for
decision-making can represented through risk tolerance policies. Semantic
interoperability must be considered for each reputation network separately,
although it is promising that some more general approaches are emerging
in related work.

4.5 Chapter summary

Two central requirements set for the trust management system are that the
system should learn from first-hand and globally shared experience, and
the trust decisions should be easily adjustable to different and changing
business situations. The experience-gathering process has been separated
from the trust decision process, as they are directed by different choices of
policy.

In this chapter, we have presented the aggregation process for reputa-
tion: where reputation information is collected from, how it is managed
and how it affects trust decisions in practice. Local reputation is built

104 4 From reputation to trust decisions

from direct observations through the trustor’s monitoring facilities, where
monitoring rules specify the trustor’s interpretation of noteworthy events
to experiences. External experiences, on the other hand, are incorporated
from multiple sources, which must be both translated into the local for-
mat and critically evaluated for credibility. The separation between local
and external experiences is maintained until decision time, which makes it
possible to adjust their relative impact on decisions at any point.

To fulfil the second requirement of a trust management system, we
have presented the central policies that allow the system to be adjusted to
different business situations. The business situation and valuations direct
all decision-making within an enterprise, and this must be supported by
any automated decision system for it to be trusted to handle even routine
trust decisions without supervision. Sensible default policies are provided
for any adjustment points that are not needed by a particular enterprise in
its current situation, but it is important that they too can be changed if
needed later on.

Chapter 5

The TuBE system architecture

In order to evaluate the functionality and operation costs of the architecture
and algorithms proposed in earlier chapters, we have implemented them as
the TuBE trust management system, and present the result in this chapter.
We will first describe the core system components, and show how they
are used in our simulation experiments, which will be discussed in the
next chapter. We then extend the discussion to the overall TuBE system
architecture, with connections to external systems such as the Pilarcos
monitor, reputation networks and configuration tools. In the third section,
we discuss how the behaviour of the system can be adjusted according to
the needs of the user. The next chapter focuses on evaluation.

5.1 Core system and simulation setup

The core functionality of the TuBE trust management system has been
implemented in Java. The 5000-line implementation focuses on supporting
behavioural simulations rather than providing a fully distributed simulation
environment; it consists of plain Java classes communicating directly with
function calls.

In accordance to the design goals described in Section 2.2.4, the data
structures and algorithms used are reasonably simple in order to remain
understandable to the user. As the complexity of the system is limited
to the policy objects used to configure it, the configuring user is able to
balance between simplicity and expressive power as is appropriate for their
application.

The implementation has four central system classes in charge of pro-
cessing information and applying policies, three passive data storage classes
and a number of limited-scope policy classes, which are shown in Figure 5.1.

105

5.1 Core system and simulation setup 107

which is then combined with the reputation view (Umerged) of the
actor, providing probabilities (pa) for different outcomes in the risk
evaluation (R);

• an importance evaluation policy similarly defines how information in
the action data storage is applied to form the importance (I) for an
action; and

• a tolerance evaluation policy (ΦT(I)) transforms the importance of
the action into risk tolerance formulae (T).

The result of the produced evaluation is a combination of risk estimate
and a set of risk tolerance constraint sets; when the risk is passed as a
parameter to the tolerance constraints, the final trust decision can be made
based in what constraints the risk fits within, such as “definite no”, “definite
yes” or “gray area”, which denotes a need to delegate the non-routine
decision upwards.

In order to produce a trust decision, the Evaluator retrieves information
from all three data storage classes: It retrieves base risk formulae from the
Action data storage, which stores a grouping for each action and connects
each group with information needed to build specific base risk formulae for
them. For our simulation, these are not set nor used, as the risk evaluation
policy in effect during the simulations considers all actions as equal. The
action objects carry reference to the storage holding their data. From the
Context storage, the Evaluator retrieves active context filters to apply to
the different decision factors. While these filters are also policies in essence,
their number and internal priorities vary, which makes it more natural to
interpret them as input to the decision rather than a part of the policy
configuration. Therefore they are also not in the domain of the Policy
manager, which upkeeps one policy per policy implementation point. The
available parameters for determining whether to apply a context filter or
not are the trustor, trustee, action, contract id, and time.

From the third data storage class, Reputation data storage, the Eval-
uator retrieves reputation information, which is tied to the trustee. The
Reputation data storage forms the connection between the decision-making
in the Evaluator and reputation management done by the External repu-
tation analyzer and Reputation manager.

The Reputation manager is the key interface for updating the Repu-
tation data storage. For the purposes of our simulation, the Reputation
manager simply passes onwards information for storing; it does not feed
back local experiences to the external reputation systems, or compare local
and external experiences to analyze the credibility of external information

108 5 The TuBE system architecture

sources, as this part of its tasks is not relevant for the simulation setup.
Hence it does not use any policies in this implementation, either; we dis-
cuss the full interactions of the reputation management classes further in
the next section.

The External reputation analyzer receives reputation information, trans-
lated into the TuBE internal format, from external reputation sources. It
applies three policies; the first one to to determine how to merge the credi-
bility attributed to the incoming information by the recommender and the
credibility of the source network, the second to determine what experiences
to merge into the current reputation view and how, and the third to set
the combined credibility for the updated reputation view.

The two main simulator classes are the Proto simulator and the Gen-
erated experience source. The Proto simulator runs the high-level experi-
ment, setting decision and reputation update policies in the policy manager
and identifying which predefined simulation scripts to run with the policies.
The Generated experience source runs the assigned experience script and
alternates between invoking the Reputation manager or the External repu-
tation analyzer to store a single experience, and then calling the Evaluator
to produce an evaluation for a trust decision.

As a final step, the Generated experience source analyzes the evaluation
result and produces a log file entry for processing the simulation results. For
the simulations described in this thesis, the stored result depicts the current
reputation of the actor during the given round and a “score” calculated with
the help of the risk tolerance formula; the classes implementing the risk
tolerance formulae each provide their own support data for this purpose.
For example, for a tolerance policy requiring that there are more positive
than negative experiences, the Generated experience source logs the value
(positive experiences − negative experiences). When this value is positive,
the trust decision is positive as well. This information has been used to
produce the graphs in Section 6.

Besides the system-level classes, there is a set of support classes. Be-
yond the policy classes, the support classes have limited functionality, and
mainly serve to represent different data structures. A summary of the sup-
port classes is presented in Tables 5.1 (the tube top-level package) and 5.2
(the tube.policy package) on the following pages. The system classes
reside in the package tube.system, with external reputation management
grouped under tube.system.externals. The simulator classes reside in
tube.system.clients.

Overall, the prototype is designed to have a high level of internal in-
direction: for example, classes that only need to be able to match Action

5.1 Core system and simulation setup 109

Table 5.1: The tube package: basic data structures and indirection classes.
tube - basic data structures and indirection classes

Action Representation of an action.

ActionId A unique id for an action.

ActionParameters The parameter data for an action.

Actor Representation of an actor, such as a trustee.

ActorId A unique id for an actor.

Asset Representation of an asset and static data on the default
assets.

Compressed-
Experience

The experience counters of a reputation view.

Context The context of a given action; a set of ContextItems.

CounterId A class for creating locally unique counter-based identifiers.

Credibility Representation of the credibility of an information source or
reputation view.

Evaluation The result of a trust decision evaluation, carrying the risk
and tolerance data.

Experience Representation of a single experience: outcomes per asset.

ExperienceId A unique id for an experience, for referring to open experi-
ences.

ExperienceSet A data structure for storing and upkeeping open experiences.

External-
ReputationView

Representation of an external reputation view.

Importance Representation of an importance evaluation for the action.

LocalReputation-
View

Representation of a local reputation view.

Outcome Representation of an outcome, and a static list of the differ-
ent possible outcomes.

Reputation Result of a reputation evaluation, carries the merge of local
and external reputation views.

ReputationView Representation of a reputation view; functionality common
to local and external reputation views.

Risk Result of a risk evaluation, carrying the probabilities of dif-
ferent outcomes for different assets, credibility of the merged
reputation view and representation for the amount of infor-
mation stored in it.

Tolerance Result of a tolerance evaluation, carrying a set of Tolerance-
Constraints.

110 5 The TuBE system architecture

Table 5.2: The tube.policy package; policies in the system.
tube.policy - abstract classes for different policies in the system

ContextItem Implements a context filter rule (a modification
routine and conditions for executing it) for a de-
cision factor or several.

ExpToView-
CredibilityMerge

Implements a rule for recalculating an external
reputation view’s credibility value when a new ex-
perience of a given source credibility is merged to
it.

Importance-
Evaluator

Implements a rule for calculating the importance
of a given action.

Policy Inheritable for all policies; identifier and priority
handling.

ReputationMerge Implements a rule for merging local and external
reputation views.

ReputationUpdate Implements a rule for merging a new experience
to an external reputation view.

RiskEvaluator Implements a rule for calculating the risk of a
given action, given the trustee and its reputation.

SourceAndSet-
CredibilityMerge

Implements a rule for merging the credibility of a
source reputation network overall and the credi-
bility value set by the network itself.

ToleranceConstraint Implements the rule for accepting a risk to be
within a given risk tolerance constraint class.

ToleranceEvaluator Implements a rule for calculating the risk toler-
ance of a given action, given its importance.

tube.policy.defaults (actual policies) and tube.policy.dummy (test-
ing tools) extend the abstract classes to implement a set of policies for
experimentation. The policies used in the simulations are described in
Section 4.2.

identifiers to each other assume little about what form the action’s param-
eters take, or even whether the identifier itself is an integer or a string of
characters. This kind of encapsulation results in a high number of sup-
port classes with relatively limited functionality, while in return hiding the
internal structure of data items from classes which do not need that infor-
mation.

The simulation environment has been implemented as a standalone tool.
The simulation setup is simple, involving only single-threaded processing.

112 5 The TuBE system architecture

cision and reputation update policies, to manage action data such as base
risk information, and adjust rules governing context filters. The connection
is one-way in that TuBE itself remains unaware of the internal operation
of the system providing the configuration. In the simulation system, all
configuration options are set directly by the simulation classes.

TuBE also has two connections to external systems that are indepen-
dent of the rest of the Pilarcos middleware. The first one is the system’s
representation in reputation networks, which provide external reputation in-
formation and to which local experiences are communicated. TuBE needs
a specialized representative agent in each reputation network it connects
to, as each network may use a different reputation system, and consists of
its own set of actors causing different policy needs for participation. The
agent operates as a member of the reputation network on TuBE’s behalf,
and communicates with the core TuBE system directly.

The second independent connection is to context information sources.
The source for manual context adjustments can be integrated into the con-
figuration toolset, but in more complex environments, context filters are
generated and re-prioritized automatically based on triggers from e.g. an
Enterprise Resource Planning (ERP) system. In the latter case it is natural
to separate the configuration tool for fixed policies from the more dynamic
and partially automated context management. In the simulation setup,
context is left unconfigured and remains fixed. Figure 5.3 presents the
TuBE system architecture in full.

The first and foremost connection between the TuBE decision mak-
ing system and the Pilarcos middleware arises through the Pilarcos mon-
itor [KMR05]. The monitor has been implemented to be plugin-based in
order to make it straightforward to add new monitoring functionality to
it. The monitor plugins can either proactively affect the messages passing
through the monitor, or passively process them for information. This fa-
cilitates connecting TuBE into the monitor in the form of two plugins: a
Trust decision plugin, and an Experience gathering plugin.

The Trust decision plugin is a proactive monitor plugin, which means
that the monitor forwards message traffic it intercepts to the plugin, and
waits for the plugin to make a decision on whether the message is allowed
to pass or not. The trust decision plugin then consults its decision trigger
rules to determine whether the message warrants a new trust decision, or
if it is part of a message sequence for an action that has already been
decided on. An example trigger could be the arrival of a specific type
of message, such as a product order; the rules are kept very simple for
efficiency reasons. If necessary, it makes a request to the Evaluator to

114 5 The TuBE system architecture

can for example serve different groups of services, as long as the reputation
data storage is synchronized between them.

The Local events analyzer accepts event information from Experience
gathering plugins, prioritizes the different events in relation to each other if
needed, and translates them into outcomes of the action they are connected
to. While an action is ongoing and has already had some effects that may
still change based on later messages, the analyzer stores local experiences
as open experiences via the Reputation manager. Open experiences can al-
ready be used for trust decisions, but unlike completed, closed experiences,
they can be updated if later monitor events demonstrate a need for it.

For example, for a buying action, the trustee may fail to pay on time,
which may in itself have a minor negative effect. If the payment fails to
arrive altogether, the effect is major, but if the partner compensates for the
delay, the effect may yet become positive. In some cases, the time during
which compensation is possible is so long that it pays to store how the
action seems to have ended while the outcome can still change. When fur-
ther updates are no longer accepted, the Local events analyzer notifies the
Reputation manager that the experience can be closed. Open experiences
must be stored as independent objects, which will eventually slow down
the decision-making process if their number grows.

The configuration toolset we referred to earlier in this section is divided
into two parts at the top of Figure 5.3. TuBE configuration tools set policies
used by the core TuBE system, and keep the Action data storage up to date.
They are also used to define context filters, while the filters can either be
triggered manually through the tools, or automatically through Context
sources, which can be for example other parts of the Pilarcos collaboration
management middleware. This strategic configuration adjustment can be
used when the trust decisions need to be adjusted on the changing phases of
the collaborations managed by the middleware; these phases were discussed
in Section 2.2.3.

All policies within the core decision system are managed through the
Policy manager; classes using them are marked with scrolls tagged with “P”
in the figure. In the simulation setup, the Proto simulator class replaces the
policy configuration interface. It passes policies on directly as their Java
implementations, while a full policy configuration setup will need to trans-
form the policies from policy language to implementation. As the policy
languages are only ever seen by the configuration toolset and transformed
to Java for distribution and use, applying a different language only requires
a new interpreter in the configuration tools. Due to this flexibility, defining
a specific set of policy languages is outside the scope of this thesis.

5.2 The system architecture and interfacing 115

The Service-specific monitor configuration tools are used to upkeep the
trigger rules for requesting trust decisions and generating monitor events
in the TuBE monitor plugins. The tools can either be a part of the generic
TuBE configuration tools or operate entirely separately. To differentiate
these rules from the policies used by the core TuBE system, they have been
marked with scrolls tagged with “T” in Figure 5.3. With suitable annota-
tions in place, the monitor configuration can to a large degree be extracted
from the business network models discussed in Chapter 2.1. Despite this
connection to high-level configuration, monitoring rules are very simple and
straightforward to ensure their efficient implementation.

The fourth and final connection, to external Reputation networks, is
depicted at the bottom of the figure. Each Reputation network may use
its own reputation system and data format, and different policies can be
set in the External reputation analyzer for how local information is shared
and new information accepted from these external networks.

For each Reputation network, a Network-specific translator stands be-
tween the network and the TuBE external reputation management. The
translator converts information from the native format of the network to
the TuBE internal format, either as full reputation views, or separate ex-
periences. The translator must also be notified by the External reputation
analyzer of what actors’ reputation it should observe, and how their iden-
tities in the network are converted to actor identities in TuBE. This also
forms the extent of the policy configuration of the translator; the final de-
cision of what experiences are considered credible enough to include is left
to the External reputation analyzer. A centralized decision is needed here,
as only the analyzer has information on all the networks, including their
credibility, as well as information on the gaps in existing information that
must be filled in at different levels of urgency. The External reputation
analyzer receives knowledge of what actors experience is needed on from
the Reputation manager, which also has an overview of what kind of local
information is available.

Besides extracting information from the Reputation network, the Ex-
ternal reputation analyzer also forwards local reputation information to
the network through the translators. The Reputation manager observes its
own policy on when local experiences have changed enough to warrant an
update; this information is forwarded to the translators via the External
reputation analyzer, which applies its own policy on whether specific in-
formation should be shared in a given network. Only local experiences are
shared: once external reputation information has been accepted into the
TuBE system, it should not be sent out again, as this can create problems

116 5 The TuBE system architecture

with giving some opinions additional weight by repeating them from one
network to another [JMP06]. In the end, receiving the echoes of such rep-
etitions from the reputation network corrupts the trustor’s own reputation
information.

Another task for the Reputation manager is to determine when a change
in incoming reputation information is credible and strong enough to warrant
an epoch change. Local and external reputation views follow the same
epochs, as they are assumed to depict the same actor’s behavioural change.
While the actor may only have changed its behaviour in a single network
and not be planning to change its behaviour towards the observing trustor,
the social pressure function of reputation supports reacting to the change
nevertheless. In addition, many reasons for a behavioural change, such
as too much load, lack of funds or a service having been hacked, can be
expected to reflect on the local trustor as well. For external information,
credibility and the amount of information supporting a change are crucial
in determining whether a change in incoming experiences actually depicts
a change in behaviour or whether it should simply be interpreted as an
outlier or an error, which should not cause a reputation epoch change.

In the simulation setup, the Reputation manager simply passes onwards
information for storing; as connections to experience sources and external
reputation systems are replaced by the simulator classes, it has nothing to
analyze. As a result, the simulation setup does not include any policies for
the Reputation manager to follow, either.

The system provides support for further simulations in the future as
well. Experimentation with actual demo services passing SOAP messages
is enabled by implementing the connection through the monitor plugins to
the Pilarcos middleware prototype.

On the other hand, choosing a few existing representative reputation
systems and implementing translator components for them makes it pos-
sible to demonstrate differences between the systems. In this sense, the
system can provide an interoperability standard for reputation informa-
tion content. We have designed the information model to be sufficient to
support flexible policy adjustment through business concepts, and justified
why a simpler model would not be able to cover the needed functionality.

5.3 Configuring the TuBE system

The TuBE trust management system can be adjusted to different decision
contexts, configured to process reputation flows from a number of different
reputation networks, and to separate routine decisions from those requiring

5.3 Configuring the TuBE system 117

human intervention. As the flipside of this power, the system is only as
effective as the policies governing it. We have discussed example policies
in Section 4.2 and will study their behaviour further through simulations
and attacker analysis in Chapter 6. In this section, we take a look at where
these configurations come from, which ones are necessary to specify and
which ones can be covered by defaults, and how the configuration process
can be otherwise simplified.

We begin by analyzing the minimal configuration needed. When pro-
vided with default policies for all policy points possible, TuBE matches a
much more constrained fixed-policy system in ease of use at the user end.
The system sets sane defaults wherever possible, and different features of
the full decision-making can be separately configured to be used, rather
than needing to configure them to not get in the way.

For a small enterprise operating with simple routine decisions, the main
task of configuration can be delegated e.g. to the commercial provider of
the trust management system. The power of configurability is in that the
delegation can be revoked when and where necessary. Making configuration
an easy task then becomes a question of designing the configuration tools
to support these local exceptions from default behaviour, as well as using
policies generated from other policy collections that are already set, such
as the eContract governing the collaboration.

As a part of configuring the system, the point of triggering a trust
decision must be decided. Default decision points for each service type
can be defined by business network and service type modellers, however:
The business process models define tasks which can be expected to form
reasonable units of trust decisions, and the defined choreography can be
tagged with information on when the risk-relevant parameters of a given
task are known so that a decision can be made.

The only policies that cannot reasonably be covered by “factory-set”
defaults are the basic principles of experience processing. There is no re-
quirement to use both local and external reputation information if one half
caters for all the needs of the enterprise, but both cases require some con-
figuration:

• If local experiences are used, the system must at the minimum be
told how to identify behaviour that is according to specification (i.e.
a good outcome), which allows it to consider anything deviating from
that to be negative. This approach resembles specification-based in-
trusion detection [Vil05a]. This specification does not need to be
generated from scratch for trust decision purposes: it is provided by
the business network model and the eContract governing the collabo-

118 5 The TuBE system architecture

ration. The impacts of the outcomes, however, vary according to the
size of the enterprise: whether, for example, the lost amount of money
represents a minuscule part of the enterprise budget or constitutes a
considerable financial problem.

• If external experiences are used, choosing an information source is
necessary, but further analysis can even be outsourced to it: high-
quality reputation information can be provided as a separate service
for a cost, similarly to how credit rating companies operate today. For
a truly minimal configuration, negative experiences may be reported
manually rather than automatically shared; no sharing at all would
undermine the social pressure that ensures the scalability of the ser-
vice ecosystem. Standardization of reputation information formats
allows the generation of ready translators for the reputation informa-
tion, complete with mapping identities to the existing formats used
for the service offers stored in eContracts.

In contrast, risk and importance can be fixed to be the same for all
actions, context can be left unconfigured, risk tolerance can be based solely
on whether negative experiences are present or not, and all outcomes can
be reduced to minor positive or negative monetary effects. Precision is
available for organizations that need it enough to invest into the configura-
tion; returns of the investment improve as readily available standards and
models allow semi-automated configuration and reduce repeat work.

Beyond fixed defaults, we find that the business network models pro-
duced by domain experts will form an important basis for extracting e.g.
base risk values for specific actions, or for categorizing actions based on
their business importance from the point of view of a successful collabora-
tion. A domain expert is well suited to estimate the general risks and gains
inherent for a given role in a collaboration; by embedding this information
into the business network models, the configuration of base risk informa-
tion does not require a separate modelling round within each enterprise
using the model — unless their own observations disagree with the model.
The connection between business network models and trust management
system configuration remains optional to respect the actors’ autonomy: the
right to override all and any centrally determined policies and valuations.

While TuBE policies are rather simple to support their real-time en-
forcement in the Pilarcos monitor, we envision that these low-level monitor
rules can be generated from a higher-level policy language. This will al-
low semi-automatic configuration changes through the TuBE configuration
interfaces. Policy refinement and different types of policy languages have
been discussed in more length in Section 3.3.2; for TuBE, we summarize

5.4 Chapter summary 119

the possibilities and impact of enhancing collaboration models with policy-
relevant information in Section 6.1.

In conclusion, policies play a major role in the proposed trust manage-
ment architecture, and therefore it is important to study their behaviour as
well. To ensure that the administrative cost of configuring the system does
not become too overwhelming, particularly for small enterprises, TuBE has
been designed to operate reasonably in simple decision contexts using a
minimalistic configuration, so that more powerful features of the model
can be taken into use when needed. Synergy from other service ecosystem
management tasks will ease the configuration of the trust management sys-
tem specifically; policy refinement allows higher-level, more general policy
languages to be semi-automatically translated into the more specific rules
of TuBE.

5.4 Chapter summary

We have implemented the TuBE trust management system in order to eval-
uate the concepts and algorithms proposed in the previous chapters. This
chapter has presented the internal structure, functionality and interfaces
of the trust management system. The implemented core features support
the central processes: the trust decision making, where reputation infor-
mation is converted to a risk evaluation and compared to a risk tolerance
policy, and reputation information processing, where incoming experiences
are evaluated for credibility and introduced into the local reputation repos-
itory.

The TuBE trust management system operates in a distributed environ-
ment with other Pilarcos infrastructure services. The underlying Pilarcos
infrastructure provides a large range of supporting information and com-
ponents that TuBE is in a unique position to take advantage of. There
is consequently no need to reinvent existing Pilarcos functionality, such as
contract negotiations, within this work.

Central connections for the TuBE system include external reputation
systems, which allow the system to learn from shared experience, and the
Pilarcos monitor, through which the trust decisions direct the collaboration
and gain input for local experiences. Due to the scope of our experiments
in the next section, the simulation setup focuses on the two central internal
processes within TuBE, and the policies involved.

Policies allow the system to adjust to different business situations. They
are separated from the overall implementation, so that they can be changed
at runtime. We have defined two central classes of policy: the trust decision

120 5 The TuBE system architecture

policies, and the reputation update policies. Within these classes there are
a number of more detailed policies, such as how to evaluate the credibility
of a new experience.

We have also discussed how the behaviour of the system can be adjusted
through policy configuration, as well as ways to ease the configuration task.
The former is needed to allow the system to adapt to changes, while the lat-
ter topic is relevant to demonstrate the feasibility of the system in terms of
the administration costs it incurs. Configuration tools can take advantage
of the models made available by other infrastructure services in Pilarcos,
such as business network models and the collaboration contracts. As a
design choice, the configuration of local decision-making and reputation
update processes is left in the control of local administrators at the service
provider enterprise: if local policies and the shared contract come to be
in conflict, the local policies are followed, although the cost of violating
the contract is also considered as a business importance factor in the trust
decisions. This respects enterprise autonomy.

The following chapter utilizes the simulation setup we have described
for evaluation purposes. As a part of evaluating the attack resistance of
the system, the behaviour and performance of a set of example policies is
illustrated through simulations and a game-theoretic analysis of optimal
attacks against them.

Chapter 6

Evaluation and experimentation

This chapter evaluates the TuBE trust management system through the
system requirements set in Chapter 2, including adjustability to different
business situations and attack resistance. The earlier chapters have spec-
ified an information model for multidimensional trust decisions, decision-
making algorithms to allow private decisions at specific points of the col-
laboration, an aggregation algorithm for reputation to allow the system to
learn from first-hand and shared experiences, and ways to privately adjust
the system behaviour to different business situations.

In order to support the evaluation in Section 6.1, we present two ex-
periments and game-theoretical policy analysis done on the implemented
TuBE system prototype in Sections 6.2 and 6.3. The common simulation
environment for the two experiments is described in Section 6.1.6. For
both experiments, the first two subsections specify the fixed inputs. The
first simulation experiment varies trust decision policies against different
local experience streams, and the second fixes the trust decision policy to
the best-performing policy of the first experiment, while varying reputation
update policies against different external experience streams.

Section 6.4 presents related work on simulation experiments to demon-
strate the state of the art in evaluating reputation-based trust management
systems and contrast it to the methodology applied in the previous sections,
while Section 6.5 extends this background into a discussion on the feasibil-
ity of creating a benchmark for trust management systems, which would
provide a shared measure to help compare the performance of different
proposals.

121

122 6 Evaluation and experimentation

6.1 Evaluation criteria

In this section, we evaluate our proposed trust management architecture
from the point of view of six system requirements: conceptual usability of
decision making, support for autonomy, adjustability for different business
situations, implementation of social control, scalability and feasibility, and
attack resistance. For each criterion, we go through the set of proposed
features that fulfil the requirements.

In addition to the evaluation presented here, the underlying Pilarcos
architecture for open service ecosystems has been analyzed using a selec-
tion of methodologies for constructive research, such as architecture evalu-
ation (e.g. SAAM and ATAM [CKK02, KBAW94, KKC00]) and creating
prototypes for the different infrastructure services to gain experience on
the feasibility of different approaches through them. Within the research
group, expertise from different domains of computer science and software
engineering is applied to study the potential failure points of the architec-
ture as well as important scenarios to support both from the point of view
of a single partner, and the entire service ecosystem. Interaction with com-
panies through research projects also exposes the approaches taken to open
criticism from the industry partners, while company use scenarios have pro-
vided cases and threat scenarios to address. A security threat analysis of
the overall architecture [MRVK10, Vil11] has proved particularly relevant
for TuBE.

6.1.1 Conceptual usability of decision making

The criterion for providing conceptually usable decision making tools un-
derlines the necessity for using concepts that are consistent with the do-
main where policies are set. In other words, business-level concepts are
considerably better for defining decision policies on business services than
implementation-specific technical concepts. It therefore falls upon the trust
management system to map business-level concepts to technical concepts
that are implementable. Conceptual usability also encompasses the expres-
sive power of the models.

The proposed trust decision model balances risks and incentives, defin-
ing the former in terms of past experiences and reputation, and the latter
in terms of business importance and risk tolerance. All are influenced by
context, expressed through the effects the business and technical environ-
ment has on the other factors. Risk, in turn, is not only expressed in terms
of monetary assets being threatened, but also the reputation of the en-
terprise, its ability to control its own autonomy, and its satisfaction in its

6.1 Evaluation criteria 123

collaborations. All these aspects of trust decisions have been chosen with
conceptual usability in mind.

In addition, the multi-dimensional model for trust and risk differentiates
between small and large successes and failures, and their relation to subjec-
tive satisfaction of expectations as well as objectively measurable impacts.
It can identify situations where no experience information is available, or
where the information is too low quality to be credible. In related work,
these two are often indistinguishable from situations where the overall ex-
periences have been polarized but carry an equal number of positive and
negative reports, or situations where experiences simply indicate that the
known transactions had no actual effect either way. Our proposed models
have the expressive power to adjust the reactions of the system to all of
these cases to what is considered appropriate for each of them separately.

In terms of understandability, the basic models employ simple elements,
steering clear from solutions that would detract from the overall usability
of the system. While powerful statistical models, such as different types of
probability distribution functions, can be applied in the decision policies
when they are deemed necessary, they are not required to operate the sys-
tem. Policies can be equally well be implemented based on simple additive
rules, or even specific limits such as “no negative monetary experiences are
tolerated in this case”. Achieving the required expressive power for the
models brings with it a necessary tradeoff in adding more elements for the
user to learn, but the complexity resulting from the possibility of choice
can be controlled through sane default policies that eliminate the effects of
any unnecessary factors from decision-making.

In summary, the proposed trust management system provides support
for expressing decision policies in terms of business concepts in a way that
can differentiate between relevant situations surrounding the trust deci-
sions. Using concepts familiar to the policy setter improves the overall
usability of the system.

6.1.2 Support of autonomy

The criterion for supporting autonomy encompasses the need to allow ser-
vices to make their own decisions, to be allowed to control their own infor-
mation and to minimize the need for submitting all actors to centralized
monitoring or rule enforcement.

The proposed trust management model is built on local trust decisions,
made with a combination of private information and experiences shared
through reputation systems between the members of the ecosystem. The
trust decisions are based on balancing risk and incentives, both of which
are subjective and therefore locally determined.

124 6 Evaluation and experimentation

We distinguish between three types of information exposure: public,
controlled sharing, and private. For trust management, shared reputation
falls in the second category, and other fixed factors of the trust decision in
the third category. Public information from business network models and
shared information from collaboration contracts may be used as a reference
in the process of defining these values, if the enterprise so chooses.

In accordance to the Pilarcos open service ecosystem model, all con-
trol is distributed to the service peers: local policies can override shared
contracts, when the need is greater than the deterring effect of any com-
pensation clauses in the contract. As with all collaboration contracts, the
rules of reputation networks can also be overridden: the service can choose
to not share experience over a collaboration or provide false information,
and the surrounding environment is designed with this possibility in mind.
In contrast, centralized monitoring would require an external party to place
tamper-proof components within an enterprise’s domain of control. While
this results in more reliable data from the monitoring party’s point of view,
it disrupts the autonomy of the monitored party and creates an opening
for uncontrolled leaking of information on e.g. what kinds of actors and
business scenarios the enterprise is focusing on in its collaborations.

As another extension of the localized choice, we do not require that
all members of the ecosystem must agree on a single reputation system to
use. Instead, we allow reputation information to be collected from multiple
sources, analyzed and combined into a whole that is suitable for a given
enterprise. As a part of the VORe reputation system proposal [RK11], a
specific collaboration contract can require sharing information in a given
reputation system according to a given scoring rule if the participants agree
on it beforehand, but even then the information is limited to that collabo-
ration, and does not need to be used in local decisions if it is not considered
sufficiently relevant or credible.

In summary, the proposed trust management system makes local deci-
sions based on private, locally analyzed information, which can be comple-
mented with external sources as needed. Centralized control is minimized;
instead, different collaboration contracts contain the agreed-upon rules, and
monitoring is done by each service over the part of the collaboration it can
observe without invading the domains of control of other participants. In
addition, information flowing out of the service is controlled primarily by
local policies. These factors ensure that the system supports enterprise and
service autonomy.

6.1 Evaluation criteria 125

6.1.3 Adjustability for different business situations

The criterion for adjustability for different business situations connects to
the architectural requirement for providing ways to adjust the trust deci-
sions. Under this criterion, we analyze whether these ways provide sufficient
support for the system to evolve gracefully as the needs of the organization
change. This evolution can take place within two processes: the collabora-
tion process, and the design and ecosystem evolution process.

During the collaboration process, TuBE automatically adjusts to differ-
ent situations through learning from experience and supporting metapoli-
cies for determining when a decision is, in fact, routine enough to be au-
tomated. Learning from experience automatically is a significant improve-
ment to certification-based trust management, which relies on manual revo-
cation processes. In addition, the architecture separates data aggregation
policy from decision-making policy, which allows it to collect experiences
once to use them in different decision contexts, without losing information.
This design choice is coupled with reputation epochs to ensure that the
system can react to changes in reputation flows while following the same
separation: the change is noted when data is collected, but its weight is
only determined at decision-time.

The TuBE information model provides input to the metapolicy that de-
termines when a decision is a routine case suitable for automation. Central
measures for such a decision reflect the amount and quality of information
available to base the decision on, as well as the magnitude of risks related
to the decision. The amount of quality of information is measured in terms
of the number of experiences collected, the credibility of the experience
data, and the consistency of the actor’s behaviour measured as the number
of reputation epochs the experiences are divided into. The risks related
to the decision can be measured both as specific probabilities of e.g. high
monetary losses, but also comparing the probability of minor effects and
major effects respectively. With the help of a context filter affecting the
risk tolerance categories, a given action can be set to be made as a manual
or automated decision independent of the other data available as well.

As a part of the ecosystem evolution process, the needs of the service
provider enterprises and the ecosystem as a whole may change. Manual
policy configuration can be used to reflect the different and evolving roles
of actions, actors and contracts in policy, to adjust to temporary changes,
and to consider the evolution of the entire service ecosystem.

From the point of view of a single enterprise, for example, the action
of buying or selling a product requires a different analysis of risk than
providing a price list to a requester. A long-term strategic partner may

126 6 Evaluation and experimentation

require a different treatment in decisions than a new partner, which, in turn,
can either be evaluated for suitability through an opportunistic experiment
of low-risk activities, or as a highly desirable addition to a strategic network
that is primarily evaluating the trustor instead.

Similarly, the importance of contracts differs: the incentive to continue
a collaboration even at a short-term cost is higher if there are foreseeable
future gains to be made to balance for it. Temporary changes can include
e.g. preference adjustment to a need to move products in order to free
up storage space and generate cash flow, more conservative risk evaluation
due to an observed ongoing attack taking place in the ecosystem, or even
declining new requests to create new products when the collaboration is
about to move to its termination phase.

We envision that in the future, TuBE rules can be generated from a
higher-level policy language, which allows semi-automatic configuration
changes. Policy refinement makes it possible to set up strategic policy
configurations that affect trust management policies as well as e.g. privacy
policies, or the sets of acceptable business network models.

The entire ecosystem may face pressure to evolve when new ways of
making business are discovered: for example the emergence of cloud ser-
vices for information storage and virtual, load-balanced servers is dropping
the hardware, setup and maintenance investment needed for a small actor
to offer high-availability web services. Other services and products may
become unsellable: for example setting up a wiki used to require server
space and someone to install and maintain the software, while consumer-
grade wiki platforms are now offered essentially free of charge1; similarly,
email, calendar and scheduling for private users as well as online encyclo-
pedias, travel guides and even some travel agency services must currently
compete with free alternatives2. The trust management system must be
able to adjust to changes in the ways business is made: the sets of inter-
esting actions can change, the business network models be replaced with
new ones when collaboration needs evolve, and new relevant reputation
networks may emerge.

The TuBE trust information model is multidimensional, including rep-

1For example Wikia (http://www.wikia.com/) hosts a number of wikis for e.g. inter-
est groups and collaborative software projects.

2For example Google (http://www.google.com/) offers email and a shareable calen-
dar service, while Doodle (http://www.doodle.ch/) offers a more specialized schedul-
ing and poll service. Wikipedia (http://www.wikipedia.org/) is a community-driven
multilingual encyclopedia, and Wikitravel (http://wikitravel.org/) a travel guide
with a similar operational model. In turn, online flight search services like Amadeus
(http://www.amadeus.net/) and centralized hotel booking systems have enabled con-
sumers to essentially bypass travel agencies in organizing trips abroad.

6.1 Evaluation criteria 127

resentations for both risk and incentive. The former is important in evalu-
ating what the expected losses or gains of an action are based on the future
actions of the trustee, but it is equally important to model that a trust de-
cision depends on the trustor’s state: they may have reasons independent
of the trustee’s behaviour to accept or deny a request. Further rule refining
can be made through context filters, which allow setting up special cases
that depend on e.g. the given contract and time period within which the
request is made.

As a part of the larger whole of the Pilarcos collaboration management
middleware, TuBE produces automated trust decisions in routine situa-
tions, and focuses on whether the activity is worth the risk. Other parts
of the infrastructure cover the evaluation of whether the collaboration is
interesting in terms of belonging to a suitable business domain, and en-
suring that a proposed contract or action is not inherently clashing with
e.g. local privacy policies. This separation of concerns in decision making
allows policy adjustments to be made on the level that is most relevant to
the change at hand.

The Pilarcos open service ecosystem supports ecosystem-wide evolution
as well, including the addition of new actors and new types of collabora-
tions. Traditional strategic networks with predetermined partners can be
used when they are considered to be the most beneficial, while the trust
management system supports opportunistic experimentation on new collab-
orations and partners as well. In terms of collecting reputation information
on these new partners, TuBE is not limited to a single external reputation
system, but is designed to connect to multiple systems of different types,
which makes it possible to actively adjust where there is a lack of experience
information on any given actor.

In summary, as the business environment and the enterprise evolves,
the decision-making infrastructure must evolve with it. TuBE and the un-
derlying Pilarcos architecture can adjust to different situations through the
combination of a sufficiently expressive information model providing sup-
port for a range of policy configurations, and an architecture design to
provide automated reactions to changes in behaviour and available infor-
mation.

6.1.4 Implementation of social control

The criterion for implementing social control in the open service ecosystem
demands that in the absence of a central authority to enforce rules, contract
violations and other misbehaviour are sanctioned in a distributed way. In
order for this to work, the sanctioning system must operate on two levels:

128 6 Evaluation and experimentation

punishing regular, i.e. first-order misbehaviour as well as sanctioning any
unfair punishments (including lack of deserved punishment) to first-order
misbehaviour, on the second level. This combination allows the community
represented by the open service ecosystem to remain operational even as it
grows in size.

In reputation-based trust management, behaviour control is primarily
based on reputation. Misbehaviour is punished by a drop in reputation.
Reputation itself is simply a measure, but when reputation information is
effectively disseminated and persists over time, it influences the business
opportunities available to the members of the reputation network. Good
reputation increases the desirability of the service, while bad reputation
deters potential collaborators. If the reputation of a service drops very
low, it is effectively shut out of the ecosystem — other services do not end
up choosing it as a partner.

The effective dissemination of reputation information consists of four
factors: well-defined semantics for reputation, motivation to share infor-
mation in the system, support for credibility analysis of the reputation
information, and controlling the leverage that any single actor has on the
reputation of others. Most of these aspects are determined by the rep-
utation system in use, and TuBE does allow different kinds of reputation
systems to be used for trust decisions. Our analysis will focus on the VORe
(Verifiable and Objective Reputation) system proposed in Section 4.1.4, as
it has been designed to fulfil the requirements of inter-enterprise collabora-
tion in particular.

In the VORe reputation system, the semantics of shared reputation is
agreed upon in contracts and business network models: a specific type of
contractual outcome translates to a specific kind of experience shared in
the reputation system. This makes reputation less contextual and increases
its fairness, ensuring that for example different expectations do not cause
different experience reports for the exact same behaviour. The motivation
to share information is also ensured through making reputation sharing a
part of the contracts that are negotiated and agreed upon before collabo-
ration. Failure to report or a misreport are punished by a reputation loss,
the extent of which is agreed upon in the contract for the reputation net-
work itself. Misbehaviour in reporting is, in other terms, a contract breach
like any others. Fear of retribution, a central reason to not report negative
experiences, is strongly reduced when the outcomes are well-defined and
the reports required in the contract. Reciprocal experiences, i.e. positive
reports given in return for positive reports, and negative for negative, are
limited by requiring well-defined evidence to back them up.

6.1 Evaluation criteria 129

In VORe as well as other reputation systems, credibility analysis re-
mains essential. Despite the audit trail of evidence built into the VORe
reputation system, colluders can still claim to have transacted without ac-
tually doing anything but producing the receipts. On the other hand, pre-
senting false evidence about honest actors is a verifiable breach of contract.
Contractual breaches are more solid cases for legal repercussions than a
typical case of spreading of misinformation, unless it is extensive enough
to be judged as libel. No matter what reputation systems it connects to,
the TuBE trust management system supports local credibility analysis to
be made in addition to any analysis that is defined within the reputation
system itself.

Limiting the leverage of any single actor on the reputation of others
encompasses two design choices: First, the cost of creating a new iden-
tity must be balanced with the power it brings in the reputation system.
While creating new services is straightforward, the number of identities
they translate to in a reputation system can be tied to the identity of the
enterprise to limit their influence. Second, to avoid amplifying single ex-
periences through repetition, only first-hand experiences should be shared
in the reputation network. TuBE ensures this through storing local expe-
riences separately from external reputation information.

To support the persistence of reputation information, it must be tied to
a persistent identity. While assigning such identities to private people is a
problem commonly observed in related work, enterprises must necessarily
have a persistent identity bound to its legal entity in order to sign electronic
contracts. In other words, persistent identities are ensured by the service
ecosystem.

In further support of this goal, the proposed internal reputation infor-
mation model ensures that no information is lost, and no old transgressions
or successes forgotten. While policies may be changed to give more weight
to recent behaviour than to old, aggregated experiences, they are separated
from the information gathering policies in order to ensure that the weight-
ing can be changed later. Reputation information is collected once, then
used in multiple different decision contexts.

As a final factor of social control, reputation epochs ensure that an
amassed good reputation does not outweigh recent transgressions. The
calibration of exactly how much patience is extended towards previously
well-behaved actors is configurable through trust decision policies.

In summary, the proposed trust management and reputation manage-
ment systems implement social control in the service ecosystem by creating
incentives to behave well and gain reputation, while failure to follow shared
rules is punished by reputation loss.

130 6 Evaluation and experimentation

6.1.5 Scalability and feasibility

The criterion for scalability and feasibility of the systems implementing
the proposed architecture encompasses the requirement that the costs and
benefits of implementing such a system must be in balance. Costs can be
divided into two categories:

• computational costs encompass how heavy the system is to operate
in terms of algorithmic complexity, messaging and storage, while

• administrative costs comprise the necessary human labour to set up
and operate the system.

The computational costs of the trust management system accumulate
from three processes: first, making a trust decision, which must be done
in real time; second, processing monitor information into experiences and
passing it into reputation systems; and third, processing incoming reputa-
tion information. The algorithmic complexity of the system is dominated
by searching for information from ordered databases, such as the local rep-
utation data storage; with e.g. a binary search, such information retrieval
grows logarithmically in relation to the number of elements stored in the
database. The messaging complexity within the system is low, while the
second and third processes involve communication with a large external rep-
utation network; we will analyze it further in relation to these processes.
We summarize the storage requirements of the overall system at the end of
this analysis. Refer back to Figure 5.3 for an overview of the architecture.

Table 6.1 summarizes the different activities in the three processes and
gives an estimate of the scale and type of the relevant variables involved.
Search operations are assumed to be made to ordered databases and there-
fore logarithmic in complexity, while the processing of rules and contacting
different actors in a reputation network grows linearly with the number of
items to process.

The trust decision process consists of identifying the need for a trust
decision, retrieving the supporting information based on the action and
trustee involved from local storage, and processing it into a decision. The
first phase is done based on the type of the incoming message sent to the
business service and the relevant contract identifier. It involves a straight-
forward local lookup on whether the necessary decision has already been
made for this contract. We assume that messages triggering trust decisions
arrive to the trust management system in correct order, as other monitoring
facilities follow this process for reasons of keeping the state of the shared
business process up to date. Locating the base risk for an action can be

6.1 Evaluation criteria 131

Table 6.1: The algorithmic complexity of the processes in TuBE.
Activity Complexity Operation and expected scale

Trust decision process (real-time)

Identify message type,
extract parameters

O(rt) process: 10 rules

Check for existing decision O(log t) search: 102 transactions
Find relevant action data O(log ra) search: 10 formulae
Find reputation for trustee O(log n) search: 106 actors
Process open experiences O(eo) process: 10 objects
Merge reputation epochs O(ee) process: 10 relevant epochs
Find, apply context data O(c log c) search and process: 10 filters
Apply risk tolerance policy O(1) process: 1 policy
Delegation to human - (No longer real-time)

Processing monitor information (background process)

A message into events O(rm) process: 10 rules
An event into experiences O(re) process: 10 rules
Store experience locally O(log n) search: 106 actors
Send to reputation network O(1)–

O(n)
process: 106 actors

Receiving reputation information (background process)

Receive updates O(1)–
O(n)

process: 106 actors

Analyze credibility O(1) process: 1 policy

considered a low, constant cost, as the number of actions monitored by a
single trust management system instance is assumed to be small.

The second phase of the trust decision process involves locating the
trustee’s experience information from the local reputation data storage.
The cost of this lookup from an ordered database grows logarithmically with
the number of actors whose reputation information is stored in the local
repository. Including any open experiences within the reputation counters
is a linear task; the number of open experiences is expected to be small.
If reputation epochs are used in the decision and not pruned to limit their
number, calculating the risk and comparing it to a risk tolerance policy
like the ones considered in this thesis can grow linearly with the number of
reputation epochs stored for the given actor. This assumes that each epoch
would be added to the result with a separate weight, for example.

The cost of the third phase of trust decisions depends mainly on the
number of context filters that are relevant for the case. With the example

132 6 Evaluation and experimentation

policies considered in this thesis, and the assumption that the number of
active context filters is also reasonably low, the costs of this phase can be
approximated to be constant: the processing of context filters consists of
comparisons and basic arithmetic, and the context storage database can be
suitably indexed to make finding relevant context filters a fast operation.
In general, the cost of processing context filters therefore grows linearly
with the number of relevant filters for each case. The final comparison to a
risk tolerance policy is a constant cost, given that the number of tolerance
categories is low.

We conclude that real-time trust decisions are computationally feasible,
as the most dominant algorithmic cost is involved with the logarithmic
complexity of locally looking up experience data for a given actor. This cost
is quite low; the complexity is comparable to that of e.g. a regular DNS
lookup, which forms the core of the Internet naming system: its complexity
grows logarithmically depending on the number of actors as well. As with
DNS, the necessary data can also be cached close to the monitor instances
needing it, in case the total number of actors known to the enterprise grows
sufficiently large to slow down decision-making.

This analysis only covers automated decisions. When the trust decision
is found to fall within the gray area that requires human intervention,
the result by necessity becomes delayed. Human decisions should only be
invoked in locations of the process where there is at least a day’s time to
react, unless the process is constantly monitored by specialized staff around
the clock. Until the human decision process is finished, the essential effect
of the gray-area categorization is a negative decision. In other words, if the
contract specifies a timeout that is passed before the answer arrives, the
service has been denied as far as other collaborators are concerned.

Processing monitor information into experiences is done as a back-
ground process. Its computational complexity depends on the number of
relevant monitor events per task, and the different rules that a single moni-
tor event can invoke. We assume that for a given type of collaboration, the
number of different events and rules to process is quite low; again, we ex-
pect to benefit from pre-processed and therefore conceptually higher-level
monitor events that can be produced as a side effect of tracking the state
of the shared business process for other purposes.

Monitor rules dealing with experience production consist of comparisons
and simple arithmetic done on the message parameters, and cross-checking
the outcomes with other messages within the same task (i.e. the activity
producing a single experience). The number of different rules invoked by a
given message type is expected to be reasonably low; as with context filters,

6.1 Evaluation criteria 133

the complexity of processing these rules grows linearly with their number.
Each service instance should run its own monitor process, which performs
the bulk of the analysis; only the experience updates are centralized to a
single experience store. This reduces the threat of experience processing
forming a computational bottleneck for all the services of an enterprise as
well. While Pilarcos monitor rules can depend on the outputs of other
monitor rules that provide shared preprocessing, they are not allowed to
form cyclic dependencies; this limitation allows further performance opti-
mization [HKL+04].

The messaging cost of passing the generated local experiences into an
external reputation network depends strongly on the dissemination method
of the network. The upper limit, for a completely unstructured reputation
network, is equivalent to the reporter having to send a message to every
member of the reputation network for each reported experience, i.e. it
grows linearly in relation to the number of members in the network. The
minimum cost to the reporter itself is a single message sent either to a
centralized repository or to a connection point which is responsible for dis-
seminating the information. The real cost is somewhere in between, shared
between the members of the reputation system. In a reputation network
similar to the VORe reputation system discussed in Section 4.1.4, all net-
work members interested in experiences on a given actor must receive the
experience information at some point, one way or the other. The number
of total messages sent for a given experience is therefore dependent on the
number of reputation network members, and may be at most tripled if the
experience is rebutted. The dissemination process can be made more ef-
ficient particularly when there are trusted third parties present who can
cache and disseminate reputation information for multiple participants, es-
sentially representing them in the reputation network.

The computational cost of receiving reputation information from exter-
nal reputation networks is similarly dependent on the dissemination method
of the network: where the maximum cost for sending out experiences is
present when the reporter has to actively push the information to all other
participants, the maximum cost for receiving is reached if the recipient
must query for, i.e. pull, the information from all other participants. The
push method is the more efficient of the two from the point of view of
the entire reputation network, as it avoids the additional messaging load
from unnecessary polling for new experiences, and has the additional ben-
efit that interest in a specific actor’s reputation is not shown actively to
other members of the network. A centralized trusted server storing repu-
tation information can employ the publish/subscribe paradigm to ensure

134 6 Evaluation and experimentation

that new reputation information is pushed swiftly to interested parties and
only them. In contrast, distributed peer-to-peer dissemination carries some
additional messaging or storage costs for maintaining an overview on sub-
scribers, and the interest information indicated by subscriptions may be
too sensitive to share with the entire network; as a result, peers may opt
to subscribe to everything to maintain their privacy.

The transformation and other processing per experience forms a con-
stant cost both in sending out and receiving reputation information. A
central difference between reporting and receiving of reputation informa-
tion is that the receiving is done only once for the local reputation infor-
mation repository: a single repository can cover multiple services within an
enterprise, and it definitely serves multiple service instances.

In summary, the algorithmic complexity and messaging costs of reputa-
tion management are comparable to those of general information dissemi-
nation in distributed systems: there are tradeoffs between centralized and
distributed approaches, but in itself TuBE does not introduce particularly
complex processing or messaging needs.

For storage costs, the largest data structure needed for supporting the
trust management system is the local reputation data storage. The base
experience information is stored in a constant-sized set of counters, and the
total storage required depends linearly from the number of actors whose
reputation is tracked; not all actors in every reputation network are nec-
essarily interesting in this sense. Reputation epochs should be regularly
pruned for real-time use; storing hundreds of epochs per actor does not no-
tably increase the quality of decisions compared to storing the total number
of epochs and the most relevant handful of latest changes.

If storage space is not an issue, a trail of every experience ever stored
can be kept in a separate storage and used for data mining. The condensed
data structure we have discussed above is essential for real-time decisions,
while the full uncompressed experience data could be useful for example to
automatically discover more effective rules for reputation epoch changes.
This kind of processing is separate from the proposed trust management
system; instead, it may support system configuration, essentially trading
automated processing for the time spent by human users performing the
policy design and configuration.

To conclude, the computational costs of the trust management system,
in terms of algorithmic complexity, messaging and storage costs, are rea-
sonable and ensure the scalability of the system. A dominant feature in
the cost is the number of actors tracked in the reputation system, as the
number can both expected to be large and affects messaging costs as well

6.1 Evaluation criteria 135

as local searching costs, to a lesser degree. The number of different policies
applied by the different enforcement points, such as the number of active
monitor rules and context filters, is another factor that linearly increases
the cost of decision-making; we consider these costs to be more control-
lable, however. Processing-intensive elements in particular are replicated
in the system to limit the formation of bottlenecks in the automation. To
conclude the analysis of the feasibility of the proposal, we will now consider
the administrative costs of setting up and running the system.

The administrative costs of the TuBE trust management system should
be considered in the context of the entire Pilarcos collaboration manage-
ment infrastructure: its different functionalities support each other, and
while the cost of configuring a supporting subsystem may be high, the cost
of running the system without it could be entirely unfeasible. We will
therefore now focus on the maintenance costs of the proposed TuBE sys-
tem as a part of Pilarcos. Aspects of the configuration of the TuBE policies
specifically have been discussed earlier in Section 5.3.

The maintenance costs of the trust management system as well as the
open service ecosystem in general fall to two categories: the initial in-
vestment needed to set up the system, and the administrative costs of its
operation.

The initial investment for adopting the overall Pilarcos infrastructure
is high: it requires enterprise architecture changes and personnel education
in the new orientation towards services and models. At the same time, ap-
plying the infrastructure promises significant cost reductions later on, due
to making change management depend on reconfiguration, i.e. updating
metainformation and models, rather than re-implementation [Kut02].

The overall administrative costs for supporting the automation of col-
laboration management tasks have also been suspected to be very high [RK10].
Business network models, service types and service offers must be produced
and published in the respective information repositories. Further, trust in-
formation must be annotated into relevant models of e.g. inter-enterprise
collaboration and enterprise risk management in order to make the infor-
mation available to automated processing.

On the other hand, these activities are a part of the normal design
and management processes in enterprises. On these areas, the Pilarcos
architecture provides an opportunity to move from low-level, technology-
dependent expressions to higher-level conceptual work at the business level.
This is reflected in conceptual usability as well: policy-setters use high-
level policy languages to express their goals, which are then refined to
automatically enforced lower-level policies.

136 6 Evaluation and experimentation

Producing the base action risk information relevant to trust manage-
ment can be pushed to domain experts. Business network modelling must
be done for contracting and collaboration enactment purposes, and analyz-
ing the risks for any enterprise activities can be based on the same models.
This combination makes it possible to enrich trust decisions with the re-
sults of a single modelling effort, rather than repeating the analysis in each
enterprise separately.

In summary, the trust management system and the Pilarcos collab-
oration management system both require an administrative investment in
order to automate processes such as routine decisions, interoperability man-
agement, information processing and monitoring. We argue that the invest-
ments are worth the gains from automation: a flexible system requires more
configuration than a rigid solution, but we expect that in the context of
inter-enterprise collaboration, a rigid solution will very quickly turn out to
be outdated and therefore unusable.

The proposed trust management system brings opportunities for auto-
matically adapting to changing business situations. The key strengths of
the open service ecosystem approach lie in its openness and flexibility: the
ecosystem is open both to new business models and to new actors, and it
is scalable. There is no single reputation information source but multiple,
and each enterprise can choose which reputation source to connect to.

To balance for the costs, the trust management system allows oppor-
tunistic behaviour and experimenting on collaborations with new partners
made available in the ecosystem. On the other hand, it allows collabora-
tions to be set up based on traditional strategic networks as well; policies
approving only specific well-known partners are by no means prohibited.
The ease of setting up new collaborations supports both small and medium
enterprises in reacting to business opportunities that they could not cover
alone, and large enterprises in exploiting new niche markets.

6.1.6 Attack resistance

As all computer security, our criterion for resisting attacks reflects a balanc-
ing between two goals. On one hand, the trust management system should
be resistant to and able to punish different forms of misbehaviour, includ-
ing coordinated attacks. On the other hand, it should remain usable and
not be so strict that would severely inhibit business in comparison to hu-
man decision-making. In policy-based systems such as TuBE, the balance
can be adjusted through policy configurations, as long as the underlying
information model supports the level of expressiveness needed. We will first
present the elements in the trust management system designed for address-

6.1 Evaluation criteria 137

ing different known vulnerabilities, and then discuss our experimentation
on different policy configurations.

We have set out to address eight types of vulnerabilities observed in
different existing reputation-based trust management systems in our sur-
vey [YRX12]:

1. Inability to differentiate between situations where a routine decision
can be made with sufficient information, and different forms of prob-
lematic decisions.

2. Not differentiating between high-value and low-value transactions in
reputation, enabling value-based attacks where low-cost transactions
are used to boost reputation and high-cost transactions to maximize
profit from misbehaviour.

3. Making it too difficult to differentiate between qualitatively different
threats, e.g. forcing policies to set a monetary price for the autonomy
of the enterprise.

4. Having insufficient information available for decisions due to sparsity.

5. Inability to detect and punish misinformation in reputation sharing,
enabling a plethora of reputation attacks aiming at defamation of
competitors or whitewashing of colluding attackers.

6. Imbalance between the cost of creating new identities and the leverage
gained through them in reputation sharing, which manifests through
Sybil attacks [Dou02] and other forms of ballot stuffing.

7. Reacting slowly to changes in behaviour, which provides a large win-
dow for profiting from gained reputation through misbehaviour.

8. Completely forgetting old transgressions after a while (i.e. time-based
decay of reputation information): the time to forget grows shorter
when reaction speed is increased.

The first four vulnerabilities relate to the decision-making model, while
the latter four focus on the reputation information.

The first vulnerability is introduced the moment we set out to automate
decision-making: routine decisions are suitable for machines, but there is
a number of ways the situation can become problematic. Our first re-
quirement has therefore been that non-routine decisions should be dele-
gated to human users, which has created a need to distinguish between the
two types of decisions. The information model provides means to set up

138 6 Evaluation and experimentation

this kind of delegation based on particularly high stakes (risk), insufficient
information to support the decision (amount of reputation information),
insufficient credibility of information (measure of credibility of reputation
information), the trustee’s unpredictable behaviour (number of reputation
epochs), or special cases based on a given actor, contract, action or time
(context filter triggers). All these factors can also be used to provide an
automatic negative decision, for example.

Differentiating between high-value and low-value transactions becomes
relevant in inter-enterprise collaboration, where the stake and business
value of different actions can vary greatly. As all experiences and deci-
sions cannot be treated equally, we have introduced five different levels of
impact for our risk and reputation values: major negative, minor negative,
minor positive, major positive and no effect. With this support, risk toler-
ance policies can be adjusted to e.g. allow even somewhat probable minor
losses to gain experience on a new collaborator, as long as there is no risk
of major losses.

The risks of inter-enterprise collaborations are not only monetary, and
we find that this should be reflected in the risk information model. A com-
mon, if somewhat mundane example of evaluating different risks in decision-
making involves trying to determine whether a person who is known to be
good at fixing cars would be a reliable babysitter, as the two tasks and
their related risks are considered very different. From our point of view,
competence is not the central issue here: offering a service of a given type
is a statement that the actor is competent in the field. The main problem
is the different risk taken (the functioning of a car versus the wellbeing of
offspring), and whether the two can be easily captured by some common
measurement. We find that for opportunistically exploring collaboration
partners in the open service ecosystem, it may pay off to accept some mon-
etary losses occasionally, while observed security problems should be taken
more seriously. Negative experiences on the latter, in turn, can be a show-
stopper for some kinds of actions, while not an issue at all for others. In
order to upkeep a reasonable selection of collaboration partners, it is im-
portant to be able to tolerate past problems selectively: our asset-based
and impact-aware risk model is at the core of implementing this goal.

When the differentiation power of the information model is increased,
we must be careful not to introduce chronic sparsity in reputation infor-
mation, i.e. not having the right type of information available for different
types of decisions. We have introduced the four-asset model as a compro-
mise between setting experiences for every type of activity separately and
not being able to distinguish between different kinds of threats at the other

6.1 Evaluation criteria 139

extreme. Policies, in turn, can be used to convert one type of informa-
tion to another (e.g. to sum together high-value and low-value transactions
with a coefficient, or to convert bad reputation to monetary terms) at de-
cision point rather than losing the particularity of the data by storing it
pre-converted.

The first of the reputation-related vulnerabilities reflects the value that
reputation information gains when decisions are based on it: the measure
introduced to deter attacks becomes an attractive target of attack itself. To
counter these attacks, misinformation must be identified and punished in
reputation sharing. In order to punish misinformation fairly, the truthful-
ness of a given experience must be well-defined; this is not the case in most
reputation systems, which are based on more or less subjective feedback.
We have proposed a reputation system based on objective and verifiable
experiences to allow us to detect and punish false reputation reports. On
the other hand, local credibility evaluation is introduced both to deal with
input from subjective reputation systems and to notice when shared repu-
tation information is simply not reliable as a predictor of an actor’s future
behaviour, for example due to discrimination attacks. We will return to
how credibility information can be used in trust decisions in Section 6.3.

Balancing between the cost of creating new identities and the leverage
gained through them is an issue that particularly plagues systems with low
cost of entry, such as electronic marketplaces and peer-to-peer systems di-
rected at private consumers. For an open service ecosystem, the cost of
entry is not particularly high, but it involves setting up the means to sign
collaboration contracts that are legally binding. This requirement fixes the
cost of creating new identities: it is equal to creating a new legal entity,
such as a company; discarding these identities is therefore also somewhat
more regulated than getting rid of one’s pseudonymous login for a random
Internet service. Through this contract-signing identity, connecting sepa-
rate business service instances to their host enterprise (or a similar relevant
entity) is straightforward, and allows reputation systems to limit the impact
a single organization can overall have on the reputations of other services.
In addition, ballot stuffing attacks are less attractive because of the lack of
globally agreed-upon reputation information: each trustor privately eval-
uates what reputation information they find credible, and recommenders
whose input does not support the trustor’s predictions are discarded.

Slow reactions to changes in behaviour are a difficult problem for rep-
utation systems. On one hand, old reputation information is valuable in
placing any recent problems in a larger context, while relying too much on
the past makes attacks based on changing behaviour attractive. We have

140 6 Evaluation and experimentation

identified this problem as another point where balancing between two goals
is necessary, and therefore it must be adjustable through policy. Reputa-
tion epochs make it possible to give more weight to recent behaviour as
opposed to old, and to vary the weight based on the decision at hand. The
number of reputation epoch changes observed for a given actor also acts as
a measure of the unpredictability of their behaviour; if the number of epoch
changes is high, a human user should be involved to analyze whether the
actor forms a threat or simply does not fit into the epoch categorization in
use.

Completely forgetting old transgressions in time-based discounting of
reputation information is related to the previous vulnerability: context is
lost when old data is discarded. Through the reputation epoch approach,
we do not lose any information; pruning reputation epochs does not forget
old experiences, it simply clumps e.g. sufficiently old experiences together
into groups within which all experiences are given the same weight.

In summary, TuBE both contains elements that directly deter attacks,
and provides extensive support for policy configuration to locate the bal-
ance between too strict and too lax protection against attacks. The overall
behaviour of TuBE depends strongly on the policy configuration in use.
More specifically, while a poor reputation can be expected to lead to neg-
ative trust decisions and good reputation to positive, the actual definition
of “good” and “poor” and the specific effect a trustee’s reputation has on
trust decisions depends directly on two central policies: the trust decision
policy, and the reputation update policy, which incorporates new experi-
ences into the trustor’s reputation view. In order to understand the impact
policies have on the resulting decision, we must study their behaviour.

In the following sections, we present the results of two simulation ex-
periments to illustrate the effect of policies on the operation on the trust
management system, and to identify desirable characteristics of the policy
types being compared. The example policies have been chosen to cover
central aims within decision-making and reputation updating, and they
demonstrate some of the strengths of the TuBE trust management system
in comparison to current state of the art.

For the purpose of the simulation experiments, the core TuBE system
as described in Section 5.1 has been implemented in Java and run on the
Java virtual machine (version 1.6), and the simulation tests run on an Linux
box (Ubuntu Lucid) running on Intel Core2 Duo CPUs and 3GB of RAM,
based on fixed inputs generated through rules such as “3 major positive
experiences, one major negative”, which leads to every fourth experience
(exactly) indicating a major negative impact on the monetary asset. No

6.2 Experiment 1: Comparison of decision policies 141

random data was generated for the purpose of these experiments, as we do
not use statistical models in this experiment; instead, the measurements are
based on example experience streams and streams purposefully designed to
bring out the worst performance in the tested policies.

The policies and simulated experience streams used have been created
for the purposes of this thesis and presented in Sections 6.2 and 6.3. For
measuring resistance against rational attackers, we analyze optimal attacks
by hand with game-theoretical means. Simulation-based benchmarks are
a poor tool for analyzing attackers [Gol11], while they can be prove useful
in measuring the capability of the system to allow specific desired forms of
behaviour. Real or realistic inter-enterprise collaboration experience data
is not readily available, either. We contrast this to the state of the art on
simulation and experimentation within trust and reputation management
systems further in Section 6.4, and discuss the possibilities and limitations
of benchmarks further in Section 6.5.

6.2 Experiment 1: Comparison of decision poli-
cies

In the first experiment, we compare the effects that six trust decision poli-
cies have on simulated collaborations. The policies are selected to provide
a representable set of decision policy types, and we observe how effectively
they discriminate against actors whose behaviour is not beneficial, as op-
posed to those who perform well. There is a tradeoff between not allowing
any failures or misbehaviour, and keeping the set of possible partners from
being needlessly narrowed down; we return to this challenge in Section 6.2.4.
The best-performing policy of this experiment is used as trust decision pol-
icy in the second experiment described in Section 6.3, which then varies
the reputation credibility factor while evaluating different reputation up-
date policies instead.

We use two methods to study the effects of the policies: on one hand,
we apply each decision policy to a set of differently developing reputations
and observe their behaviour, and on the other hand, we study how well an
attacker optimized against the decision policy would be able to perform. A
synthesis of the findings is presented at the end of the section.

6.2.1 Decision policies

We first briefly define the fixed and changing variables of the experiment
setting, and then specify the trust decision policies to be compared.

142 6 Evaluation and experimentation

In TuBE, the trust decision policy is influenced by multiple factors; we
focus on capturing the interaction between a given stream of experience
and a given risk tolerance formula. To emphasize this connection and to
control the scope of the experiment, we fix the actor, action, its importance
and the decision context to not have any additional effect on the decision.

The trust management system is given a stream of local experiences
of given values, and after each experience is incorporated, the gathered
reputation is used as a basis of a trust decision by transforming it to risk
and comparing it to the given risk tolerance formula. While the main point
of interest is in whether the trust decision is positive or not, the tolerance
formulae also provide us with a scoring interpretation of the information,
i.e. how strongly positive or negative the decision is.

Each of the six risk tolerance formulae is applied to seven different
experience streams. At the start of each stream, the reputation of the
actor is purged to start the experience gathering from scratch.

There are three important concerns related to selecting a tolerance eval-
uation policy. First, since reputation is used as a medium of punishing mis-
behaviour, good reputation must be slowly gained but quickly lost. Second,
as all transactions do not require equal investment, experiences from low-
value actions should preferably be separated from high-value ones when
making decisions as well: in eBay terms, actors should not be able to sell
a few toothpicks to gain a reputation as a trustworthy car seller. Finally,
differentiating between experiences should not lead to information sparsity,
i.e. lack of suitable information for making a well-founded decision.

While the six different tolerance formulae have been chosen to illustrate
the central concerns above, they can also be found in slightly different
formulations in related work. For example, the policies also represent basic
classes of trust decision policies, which can be deduced from the trust score
calculations summarized by for example Jøsang et al. [JIB07].

The six risk tolerance formulae are as follows:

A: Basic: A basic “must not have had more negative experiences than
positive experiences” policy: no difference is made between minor and
major effects. This policy provides a baseline for comparisons.

B: Pessimistic: A more strict policy, “must have had 3 positive expe-
riences per each negative experience”. Again, no difference is made
between minor and major effects. This policy reflects the need for
quickly losing reputation due to misbehaviour: three good experi-
ences are needed to cover for each negative experience. The multi-
plier has been chosen to illustrate the difference already with a small
number of experiences.

6.2 Experiment 1: Comparison of decision policies 143

C: Sharp: Like A, but with triple weight given to experiences with
major positive or negative effects, as opposed to minor effects. This
policy is a tradeoff between the second and third concern: it avoids
information sparsity by transforming experiences from one class to
the other with a multiplier.

D: Sharp-pessimistic: Like B, but with triple weight given to expe-
riences with major positive or negative effects, as opposed to minor
effects. This policy reflects the first concern as well as balancing
between the second and third concerns.

E: Separative: Separating minor and major experiences to their own
classes: the number of major positive experiences must be at least
equal to the number of major negative experiences, and the same for
minor positive and minor negative experiences. The different effect
classes are not translated to each other. This policy reflects the second
concern of differentiating between high- and low-value transactions
more strongly than C.

F: Separative-pessimistic: Like E, but with triple weight given to
negative experiences. This policy combines the first two concerns.

The Basic policy A corresponds to decision policies based on rating
averages, which treat all experiences as equal [JIB07]. The main under-
lying assumption is that actors mostly behave either well or badly, and
do not fluctuate between the two. Any stray experiences opposite to the
general trend are considered more a measurement error than calculative
changes in behaviour. The Pessimistic policy B, on the other hand, repre-
sents the approach of weighted averages [JIB07]. The weights are generally
chosen to emphasize negative experiences over positive in order to punish
misbehaviour more severely. This policy can also be seen as a more clear
attempt at giving the trustee motivation to behave well through the threat
of punishment, while policy A is simply observing the reality.

The Sharp policy C represents a moderate approach to the second con-
cern of separating experiences on low-value actions from high-value ones.
The TuBE trust information model allows giving more weight to the latter
and slow down reputation gains from minor actions. As a result, the actor
must do more small transactions in order to have the reputation equiva-
lent to a single large transaction. The underlying logic is that once enough
small transactions pile up, they eventually amount to the same benefit to
the trustor as a single large transaction. For example, a seller could con-
sider two partners to have invested into the business relationship equally

144 6 Evaluation and experimentation

much, when one is a long-term customer who places regular small orders,
and the other is a new customer who has placed a few large orders.

The Separative policy E represents an even stricter approach to the
same concern, keeping small and large activities completely separate. The
policy reflects situations where transactions defined as large require invest-
ments that only relatively few actors are willing to make, and no others
should be trusted to handle them, despite their good track record on other
activities. In comparison, small transactions are something almost any
service provider can be counted on, and it becomes more attractive to ex-
tend the competition to more providers for these tasks in the hopes of a
better deal. This principle applies also with private people: we generally
do not buy a car from a random marketplace vendor, even though we do
not mind using the same amount of money to buy smaller items from a
set of equally random marketplace vendors over a period of time — we
are more selective of trading partners when larger amounts of money are
at stake at once. Finally, the combination policies Sharp-pessimistic (D)
and Separative-pessimistic (F) modify C and E respectively to comply with
the stricter philosophy that good reputation should be quickly lost when
negative behaviour is observed.

The policies above are expressed in terms of the number of experiences,
as we expect they are more intuitive to understand than the probabili-
ties that are actually stored in the risk evaluations. As the TuBE risk
evaluation contains the information necessary to automatically convert the
probabilities back to the unscaled numbers, this kind of implementation
of the risk tolerance policies minimizes the number of transformations the
reader must do themselves in order to follow the experiment. We note that
the outcomes would not differ if the conversion were never made.

The policies are summarized in terms of experience counters in Ta-
ble 6.2. Each formula applies to all assets. If the risk is not within the
constraints for a single asset, the result of the evaluation is negative (deny
access); we omit the gray area of delegated decisions in this experiment.

Table 6.2: The risk tolerance formulae.
Policy Formula

A maj pos + min pos − min neg − maj neg ≥ 0

B maj pos + min pos − 3 * (min neg + maj neg) ≥ 0

C 3 * maj pos + min pos − min neg − 3 * maj neg ≥ 0

D 3 * maj pos + min pos − 3 * (min neg + 3 * maj neg) ≥ 0

E maj pos − maj neg ≥ 0 ∧ min pos − min neg ≥ 0

F maj pos − 3 * maj neg ≥ 0 ∧ min pos − 3 * min neg ≥ 0

6.2 Experiment 1: Comparison of decision policies 145

As can be seen from Table 6.2, policies A-D (Basic, Pessimistic, Sharp
and Sharp-pessimistic) are variations of the same formula, with the differ-
ences based on different multipliers for major and negative effects, while
E and F (Separative and Separative-pessimistic) represent a different phi-
losophy. The multiplier 3 is chosen to be sufficiently low for its effect to
be balanced for a relatively short stream of experiences, while still being
clearly different from the effect observed without a multiplier.

The left-hand sides of the inequalities presented provide us a one- or
two-dimensional “score” that the trustee has within the decision policy, and
which develops with their reputation. We will use these numbers to visual-
ize the effects of the decision policy on the interpretation of the experience
stream. For example, a trustee with 3 minor positive experiences and one
minor negative experience would have a score of 3 − 1 = 2 within policy
A, but a score of 3− 3 ∗ 1 = 0 within policy B. In both cases, the decision
would be positive, but only barely so with the latter.

The policies A-D can be seen as using a form of utility measure, in the
sense discussed in Section 4.2.1, that calculates whether the trustee has
been sufficiently beneficial to the trustor in the past to trust them for the
next action. In addition, E and F calculate two separate values, both of
which follow a similar logic. All policies are friendly to newcomers, however,
having a trust threshold set to 0 rather than a positive value.

The behaviour of the given policies on different experience streams is
demonstrated as follows: A in Figure 6.1, B in Figure 6.2, C in Figure 6.3,
D in Figure 6.4, E in Figures 6.5 and 6.6 and F in Figures 6.7 and 6.8.

6.2.2 Experience streams

We apply each of the decision policies defined in the previous section to a
set of different experience streams to demonstrate their differences. This
section defines the chosen experience streams, and the reasoning behind
them.

As we are not focusing on the benefit of using multiple assets in this ex-
periment, the experiences contain a known outcome only for the monetary
asset, and unknown outcomes for the other assets. We will therefore refer
to experiences directly by their monetary outcome; e.g. a “major negative
experience” is an experience with a major negative effect on the monetary
asset, and unknown effect on all other assets. Given that the tolerance
formulae described above have their acceptance threshold at 0, all other
assets will always be within the risk tolerance.

Each experience stream is produced by a generator based on a simple,
deterministic repetition rule. For example, a principle of “every third expe-

146 6 Evaluation and experimentation

rience has a major negative effect, the rest is minor positive” is expressed as
a repetition rule of “2 x minor positive, major negative”. In practice, exact
cyclic repetition is rather unrealistic, but for the purposes of illustrating
the behaviour of different policies via simulation, adding randomness would
only produce unnecessary noise in the results.

We have chosen two simple experience streams as a baseline, one for
a basic well-behaving actor (stream 1), who continuously completes mi-
nor transactions well, and one repeatedly misbehaving, or “sloppy” actor
(stream 2), who never completes actions with a major effect but who co-
operatively completes two minor actions for each major one. Besides rep-
resenting an opportunistically misbehaving actor, the second stream can
also represent a somewhat incompetent service provider. For example, the
provider may offer very affordable cloud computing services, but the service
does not scale up and hangs whenever it is fed a larger job. As a result, the
service provider may be a good option for small tasks, but should never be
trusted with larger ones.

In addition, we have calculated a pattern of optimal attacker behaviour
against each of the six decision policies, and apply these streams to all
of the policies as well (streams 3a to 3f). For policies C and E, we note
that an attacker who is capable of cooperating on an action that causes
a major positive effect for the trustee is also capable of building up its
reputation faster. For this purpose, policies C and E have two optimal
attacker patterns, one for a “strong” (i.e. more capable) attacker, and one
for a “normal” (i.e. not as resourceful) attacker. The experience streams
are summarized in Table 6.3.

Table 6.3: The experience streams. 1 and 2 are baseline streams, 3p are
optimal attacker streams for decision policy p.
Stream Repetition rule

Stream 1 All minor positive

Stream 2 2 x minor positive, (followed by a) major negative

Stream 3a minor positive, minor negative

Stream 3b 3 x minor positive, major negative

Stream 3c, normal 3 x minor positive, major negative (= 3b)

Stream 3c, strong major positive, major negative

Stream 3d 3 x minor positive, minor negative

Stream 3e, normal minor positive, minor negative

Stream 3e, strong major positive, major negative (= 3c strong)

Stream 3f 3 x minor positive, minor negative (= 3d)

6.2 Experiment 1: Comparison of decision policies 147

We will return to the definitions of the optimal attackers below; for now,
we present the experience streams as given. Each stream is 100 experiences
long, which sets the length of each simulation round; the patterns defined
are simple enough that the trends of the policy behaviour are clearly visible
from 100 rounds of decisions.

As can be seen from the repetition rules, six of them form pairs of two
equal streams. The experience stream 3c normal, representing the optimal
behaviour of a weak attacker for policy C, is equal to the stream 3b; stream
3e for the strong attacker is equal to stream 3c for the strong attacker, and
stream 3f is equal to stream 3d. This means that the optimal attackers
in fact introduce only another 5 different streams to the experiment, and
the total number of streams to apply to the decision policies becomes 7,
containing the streams 1, 2, 3a, 3b, 3c strong, 3d and 3e.

6.2.3 Policy performance in the face of attacks

When it comes to selecting a trust decision policy to protect the trustor
from harm, we can roughly divide the trustees into three categories:

• Clearly trustworthy actors, who mostly just complete actions with
positive outcomes;

• untrustworthy or sloppy actors, whose service fails repeatedly for non-
malicious reasons such as incompetence, misplaced cost savings or too
high promises; and

• malicious actors, or attackers, who actively aim to defect as much
as possible within the constraints of the decision policy used by the
targets.

A good reputation system promotes the clearly trustworthy actors,
weeds out the untrustworthy according to a suitable threshold, and is resis-
tant to malicious actors, who in essence target the reputation system itself.
If a malicious actor has full knowledge of its reputation and the trust de-
cision policies of the target, it can optimize its behaviour so as to reap the
most gains from defecting while keeping its reputation high enough that it
is still allowed into further transactions. While locally stored reputation
information is considered private and sensitive information, the reputation
system design cannot depend on this information never leaking. Testing
how well the system deals with an optimal attacker with full knowledge
of the system gives us a measure of the performance of the system that
does not depend on this unpredictable variable. This approach is used in
evaluating e.g. cryptographical algorithms as well.

148 6 Evaluation and experimentation

The two baseline experience streams (1, 2) of only positive experiences,
and of positive experiences mixed with major negative experiences, cor-
respond to the two first categories of actors. The malicious actors are
represented by experience streams 3a to 3f, which represent the optimal
way for the attacker to take advantage of its partners. As an attacker is
similarly forced to weigh gains against benefits in deciding the targets for
its attack, a decision algorithm minimizing the gains of the optimal attacker
will also set a strict upper bound for the potential gains of any less optimal
attackers.

This approach of aiming to minimize the maximal gains of an adver-
sary is known as minimax decision strategy in game theory [RN03]. In
security analysis, it is commonly used to evaluate defences, looking for
ones that would minimize the maximal damage an attacker can cause un-
der certain assumptions. There is a clear demand for it to be applied to
reputation-based systems as well, when evaluating them from a security
perspective [Gol11].

For the purpose of applying minimax decision analysis, we must define
the rules of a game that assign costs and gains to different actions, or
game moves, that the attacker can make, and aim to minimize its maximal
gains. In our experiment, the modeled attacker has an option between
either cooperating in an action with a minor or major effect, or defecting
with a minor or major effect. His goal is to defect as much and with as
high effect as possible, while keeping a reputation sufficient to prompt a
positive trust decision also after the defection. Given our chosen decision
policies, this means that before defecting, the attacker must first gain the
reputation that the defection will cause him to lose.

In the defined game, we measure the attacker gains through the damage
caused to the trustor, i.e. through the effect of its defections. By aiming
to minimize these gains, we can measure how effectively a decision policy
deters misbehaviour. From the point of view of security analysis, we argue
that this is also a reasonable model for minimizing the maximal losses to
the trustor due to the trustee’s misbehaviour.

The reason we measure specialized attacker gains specifically, rather
than trustor losses or even more general trustee gains, are twofold: First,
in order to be able to analyze and influence attacker incentives, we exclude
the losses the trustor suffers from turning down collaborations. It is already
known that punishing misbehaviour is often detrimental to the individual
on the short term, yet beneficial for the ecosystem and its members in the
long term [FF03]. Second, as inter-enterprise collaboration is not a zero-
sum game, we certainly do not wish to minimize the gains of everyone but

6.2 Experiment 1: Comparison of decision policies 149

the trustor; in fact, it would be best for the sustainability of the ecosystem
to maximize the gains of all well-behaving actors instead.

To be optimal, the attacker takes advantage of full knowledge of the
decision model used, and we will compare the decision policies based on
how well the attacker is able to perform while being subjected to them.
Actions with no reputation effect would be similar to doing nothing at all,
which is uninteresting for the purposes of this demonstration; we therefore
assume a compulsive attacker who must defect at least once per attack
script.

We also assume that all outcomes are accurately detected, so the at-
tacker’s actions have a direct influence on its reputation. Also, as external
reputation is not used here, fake positive experiences are not available as
an option; we will return to this possibility in Section 6.3.

Whenever the attacker cooperates in order to increase its reputation,
it must make an investment. For example, the eBay seller selling matches
in order to defect on a car sale needs to buy and distribute the matches in
order for the plot to succeed. As the attacker’s aim is to defect, it benefits
from successfully causing negative outcomes to the target, and must pay the
investment to cause positive outcomes in order to increase its reputation.
We scale the attacker’s payoffs and costs of different outcomes as follows:

• A major negative effect: +6 points

• A minor negative effect: +2 point

• No effect: (not in use)

• A minor positive effect: -1 point

• A major positive effect: -3 points

The scaling between major and minor effects is chosen as a factor of three;
this example weighing is sufficient to give a clear separation to the two
different classes of outcome, and also matches the weight set earlier for
major effects in the decision policies based on a utility measure. Negative
effects, on the other hand, are considered worth relatively more than the
corresponding positive effects cost, because it is assumed that the attacker
does get some minor gains to balance the cost of cooperation as well, even
though defection remains the central goal. We assume that the attacker
is always working with a cooperative trustor, who does not defect itself as
long as its trust decision is positive.

We also note that in addition to the weights here, causing 3 minor
positive effects is assumed to be easier than causing a single major positive

150 6 Evaluation and experimentation

effect, because typically cooperation in major ventures requires more initial
investment on the service capabilities of the attacker; for example in eBay
auction terms, it is slightly easier to acquire many low-value items for sale
than a few high-value items. This is not indicated by the scoring, but
rather as a division between strong and weak attackers. On the other hand,
causing a single major negative effect (i.e. defecting on a car sale) is speed-
wise preferable over causing three minor negative effects (i.e. defecting on
match sales), to ensure that the investment to good reputation is cashed in
as profit as quickly as possible.

We will now present the optimal attacker scripts testing the strength
of the decision policies. For each script, we show the series of actions
that the attacker must take, and calculate the utility points gained by the
attacker based on the scoring defined above. The more an attacker is able
to gain, the weaker the policy is against knowledgeable malicious actors, as
its deterring effect is not particularly high.

Figure 6.1: The behaviour of decision policy A. Streams 3a, 3c strong and
3e normal overlap, as do 3b and 3d.

Figure 6.1 presents the behaviour of decision policy A in response to
the different experience streams. The optimal attacker script for decision
policy A is as follows:

1. Cause minor positive effect

2. Cause major negative effect.

6.2 Experiment 1: Comparison of decision policies 151

Given our scoring, the attacker ends up with (−1)+6 = 5 points gained per
each iteration of the script, averaging 2.5 points gained per action taken.
In other words, this is the maximal outcome the attacker can gain in our
game.

The transaction rounds are set on the X axis, while the Y axis depicts
the “trust score” gained by the actors representing the different experience
streams, which in turn are depicted by the plots. The decision is always
positive if the trust score is positive; the score is calculated as a side effect,
and demonstrates how quickly each actor’s reputation increases in relation
to the chosen risk tolerance formula.

Policy A does not deny requests in any of the cases, as none of the
streams have a larger number of negative experiences than positive. Some
experience streams behave equally in relation to a given risk tolerance for-
mula; Policy A makes the least separation between different streams, and
divides the seven streams into four classes on the plot, all of which cause
equally positive decisions.

Figure 6.2: The behaviour of decision policy B. Streams 3a, 3c strong and
3e normal overlap, as do 3b and 3d.

Figure 6.2 presents the behaviour of decision policy B, given the different
experience streams. The optimal attacker script for decision policy B is:

1. Cause minor positive effect x 3

2. Cause major negative effect.

152 6 Evaluation and experimentation

With this policy, the relative weight of negative experiences to positive
is higher in terms of reputation (3x) than in terms of the relative gain to
the attacker (2x). The attacker’s profits are therefore reduced, but he still
gains (−1)∗3+6 = 3 points per each iteration of the script, averaging 0.75
points per action taken.

The streams with lines falling below 0 are rejected after the first round
of the repetition rule; the lack of differentiation between major and minor
effects is emphasized by the graph only showing four different lines for the
seven streams; 3a, 3c strong and 3e normal are all seen as a single line,
as well as 3b = 3c normal and 3d = 3f. Although B cannot differentiate
between major and minor effects, it does reject the three cases (2, 3a, 3c
strong = 3e strong, and 3e normal) where the number of positive experi-
ences is not sufficiently larger than the number of negative. Two of these
are also the two streams causing the highest losses to the trustor, while 3e
normal (minor positive, minor negative) is, by our attacker gain definition,
not quite as large a threat as the uncaught 3b = 3c normal (3 x minor
positive, major negative) would be.

Figure 6.3: The behaviour of decision policy C. Streams 3b, 3c and 3e
partially overlap.

Figure 6.3 shows the behaviour of decision policy C. The Y axis reflects
the trust score of the actor, this time calculated based on the utility-based
trust decision policy, with a multiplier 3 given to experiences with major
impact.

6.2 Experiment 1: Comparison of decision policies 153

The optimal attacker script for decision policy C is as follows:

1. Cause minor positive effect x 3 (/ cause major positive effect)

2. Cause major negative effect.

Similarly to B, the “normal” attacker ends up with (−1) ∗ 3+ 6 = 3 points
gained per each iteration of the script, averaging 0.75 points per action. Our
preference for outcomes with a minor positive effect artificially reduces the
speed of attacker gains in this case. A strong attacker script with a single
major positive effect followed by a major negative effect would provide
−3 + 6 = 3 points as well, but average 1.5 points per action taken.

Decision policy C successfully catches the two experience streams (2
and 3a) causing the highest losses. However, as it is less strict about neg-
ative experiences than policy B, it allows the stream 3e normal. It clearly
improves on policy A, but still allows many attacker streams through.

Figure 6.4: The behaviour of decision policy D.

The behaviour of decision policy D can be seen in Figure 6.4. The trust
score on the Y axis is based on the utility-based trust decision policy, giving
a multiplier of 3 both to major-impact and negative experiences.

The optimal attacker script for decision policy D is as follows:

1. Cause minor positive effect x 3

2. Cause minor negative effect.

154 6 Evaluation and experimentation

With this policy, the relative weight of negative experiences to positive is
less beneficial, as with decision policy B. When combined with a heavier
reputation cost for major defecting, the attacker ends up making no profit at
all. This means that the optimal script ends up being as close to no activity
at all as possible, given that we did not allow the simulated attacker the
option of full inactivity (0 points). The script with at least one defection
leads to (-1) * 3 + 2 = -1 points, averaging -0.25 points per action taken.

Using 9 minor positive actions and a major negative would lose points
faster than running the optimal script thrice, as it lasts only for 10 (vs.
4∗3 = 12) actions. The benefit per script would be the same: (−1)∗9+6 =
−3. With the single major defect, it averages to -0.3 points per action taken.
A more powerful attacker causing 3 major positive effects for each major
negative would lose points even faster: again (−3) ∗ 3 + 6 = −3 points per
iteration, but averaging -0.75 points per action.

As decision policy D takes a particularly strict approach to defections,
it successfully catches all experience streams that we have defined to be
beneficial to the attacker. In addition, the policy also correctly orders
the experience streams based on attacker preference: as we compare the
streams’ benefit to the attacker against the steepness of the downward slope,
D orders the 5 rejected streams as 3a, 3c strong = 3e strong, 2, 3b = 3c
normal and 3e. Stream 2 does provide more benefit per iteration (+4) than
3c strong = 3e strong (+3), but because the latter has a shorter script than
the former, it allows the attacker to defect more often and gain a higher
average benefit per round. The two streams that are not beneficial to the
attacker are similarly presented in correct order.

Decision policy E divides the actions clearly into two groups, and there-
fore sets two options for the attacker: either he must invest in the capability
to cooperate in major ventures in order to be able to defect with major im-
pact, or he can avoid the investment but not be able to reap large gains
fast either. The behaviour of the policy is presented in Figures 6.5 and
6.6. The graphs show the two different comparisons of minor and major
effects, respectively. For a positive decision, a plot should be positive on
both graphs.

Given our slight preference for minor positive effects, the optimal at-
tacker script for decision policy E is as follows:

1. Cause minor positive effect (/ cause major positive effect)

2. Cause minor negative effect (/ cause major negative effect).

In this case, the attacker gains (−1) + 2 = 1 point per each iteration,
averaging a gain of 0.5 points per action. If we assume a more powerful

6.2 Experiment 1: Comparison of decision policies 155

Figure 6.5: The behaviour of decision policy E for minor effects. Streams
3a and 3d partially overlap.

Figure 6.6: The behaviour of decision policy E for major effects. Streams
1, 3d and 3e normal overlap, and 3c strong partially overlaps them.

attacker and replace both minor effects with major ones, the gains increase
to (−3) + 6 = 3 points per each iteration, averaging 1.5 points per action.

The minor effects graph shows that none of the experience streams
have any problem upkeeping the balance of minor effects; as the attackers
generally aim for large benefits fast, their defections show mostly on the

156 6 Evaluation and experimentation

graph plotting major effects. Like C, policy E rejects the two most attacker-
friendly streams of 3a and 2, in addition to which it rejects 3b = 3c normal,
which aims to exchange multiple minor cooperations for major defections.
On the other hand, it happily accepts the slightly more lucrative tactic
of alternating major positive and major negative effects, which is also the
optimal strong attacker tactic against the policy (3c strong = 3e strong).

The behaviour of decision policy F is shown in Figures 6.7 and 6.8. The
graphs split the presentation in two parts like the previous pair. The first
graph shows the balance of minor effect outcomes, while the second graph
shows the balance between the major effect outcomes.

Figure 6.7: The behaviour of decision policy F for minor effects. Streams
3c strong and 3d partially overlap.

Decision policy F applies the same adjustment to E as policy D did to
policy C. Actions with the smallest total effect become optimal once more:

1. Cause minor positive effect x 3

2. Cause minor negative effect.

As with policy D, the attacker is losing points as well: (−1)∗3+2 = −1
point per each iteration, averaging −0.25 points per action taken. Policy F
differs from D mainly in that the option of trading minor positive actions
for a single major negative is not available, although it was not the most
attractive one to the attacker in any case, as it speeded up the losses.

Like policy D, F rejects all experience streams that would be benefi-
cial to our defined attacker, accepting only the baseline good behaviour

6.2 Experiment 1: Comparison of decision policies 157

Figure 6.8: The behaviour of decision policy F for major effects. Streams
1 and 3e normal overlap, while 2 and 3c strong partially overlap.

stream (1) and the optimal but still lossy attacker stream (3d = 3f). In
other words, it accepts only streams that do not form actual successful at-
tacks. Due to the semantic gap between experiences with minor and major
effects, policy F does not provide a clear ordering between the streams.

The curves for 2 (2 x minor positive, major negative) and 3c strong =
3e strong (major positive, major negative) partially overlap on the major
half of the graph (Figure 6.8). The path of the former can be described as
“two steps still, third step three down”, while the latter reads as “one step
up, second step three down”; both eventually average out as a slope of -1
per step, synchronizing at every two (4 * 0 + 2 * (-3) = -6 in 6 steps) and
three (3 * 1 + 3 * (-3) = -6 in 6 steps) iterations respectively.

6.2.4 Analysis

The six decision policies presented represent three approaches to differen-
tiating between minor and major effects. The optimal attacker behaviour
is an effective method at comparing the policies’ robustness; the scoring of
the optimal attacker scripts is summarized in Table 6.4.

Awareness of the scale of the effect, i.e. the impact, in the policy pair
C (Sharp) and D (Sharp-pessimistic) has attackers at a clear disadvantage
when compared to A (Basic) and B (Pessimistic); the gains from malicious
behaviour drop respectively. The strict scale division applied by the pair
E (Separative) and F (Separative-pessimistic) further limits the attacker’s

158 6 Evaluation and experimentation

Table 6.4: Optimal attacker performance with different decision policies.
Decision policy Total points Script length Points per action

Policy A 5 2 actions 2.5

Policy B 3 4 actions 0.75

Policy C 3 4 actions 0.75 / 1.5*

Policy D −1 4 actions −0.25

Policy E 1 / 3* 2 actions 0.5 / 1.5*

Policy F −1 4 actions −0.25

*) The higher gains are possible for a powerful attacker capable of
completing actions with a major positive effect.

gains in the case with equal weight given to positive and negative actions,
but D and F already perform equally well against our attacker. On the
other hand, the principle behind E and F is quite strict: if we consider
actions causing major effects to be entirely in a class of their own, we are
also unable to take advantage of earlier experiences gained with actions
with only minor effects.

As can be seen from decision policies B, D and F, making the repu-
tation cost of defection relatively higher than the monetary gains from it
eventually defeats the purpose of malicious behaviour. This prospect relies
on the assumption that all experiences require the actors to perform real
actions, and all outcomes are correctly detected.

Despite the encouraging results of these specific simulations, relying
only on fully reliable local experiences leaves a problem with newcomers: if
the initial cooperation threshold for reputation is 0, like in our experiment,
each newcomer can potentially defect for a single major negative effect with
each cooperative actor in the environment before it is blocked from further
collaboration with them. If the cost of creating a new identity is less than
the gain from the round of defections available, malicious behaviour remains
worthwhile.

The problem is slightly alleviated if a new actor is blocked from major
ventures until it has gained enough reputation to cover a single defection,
similarly to the attacker behaviour principle used in this experiment. This
kind of adjustment is supported by the structure of the TuBE trust model,
which makes it possible to use a different decision policy for different types
of actions. If the risk tolerance policy were merged with the reputation
update policy, i.e. storing reputation as a single number already fully pre-
processed for decisions, it would not be possible to apply different decision
policies on a single mass of gathered reputation.

6.3 Experiment 2: Comparison of reputation update policies 159

No matter how strictly the decision policies react to defection or guard
important actions, however, allowing the attacker even the first small action
will inevitably allow him to defect in that one. In other words, at least a
first minor defection will always be possible. Without this tradeoff, the
network of actors would not be able to grow by introducing newcomers,
because they would not start with sufficient reputation, and would not be
able to gain a better one due to no one agreeing to collaborate with them.
To allow newcomers, some risk of defection must be endured. The gains
from these initial defections increase with the number of available targets.

The main way to reduce the gains from defections against different ac-
tors is communicated experience: in the optimal case, the attacker can only
manage a single defection before word of its negative reputation spreads
through the network. This reduces the payoff for creating new malicious
identities considerably.

However, with communicated experiences, another type of misbehaviour
becomes possible: actors in the network can lie about their experiences for
various reasons. In order to control reputation-related malicious behaviour,
a second type of misbehaviour analysis is needed to discourage lying and
upkeep the quality of information provided [RKK07]. In TuBE, this type
of knowledge is included as a credibility score for the information.

6.3 Experiment 2: Comparison of reputation up-
date policies

Our second experiment compares the effects that four reputation update
policies have on trust decisions. The policies operate on external repu-
tation information, and the central choice to make is whether to accept
information which is not entirely credible, and if so, what weight to give
it in calculating the resulting reputation. The second experiment follows a
structure similar to the first one: the policies under scrutiny are applied to
a set of different simulated experience streams, some of which are optimized
against each policy for the attacker to defect as efficiently as possible.

The reputation update policies have been selected to represent different
types of solutions to this choice, and we again observe how effectively they
discriminate against ill-behaved actors. The central choice and tradeoff
in the first experiment concerned the number of possible partners; in this
second experiment, accepting only high-credibility information may mean
that we sometimes do not have any information available. This problem
and the influence of the different policies is further analyzed in Section 6.3.4.

160 6 Evaluation and experimentation

6.3.1 Reputation update policies

The policies for incorporating new experience aim to ensure a high quality
of reputation information stored in the system. High-credibility, up-to-
date information from well-trusted sources is what all trust decisions would
be based on in a perfect world, but sometimes low-credibility information
must be used to have some kind of baseline to work with. This opens the
door for possibly counterfeited or otherwise useless reputation information.
On a larger scale, low-credibility reputation networks can be subverted by
malicious actors altogether, which means that they can falsely create a
high reputation for themselves within that network. An example of this
kind of reputation attack involves creating multiple accounts on eBay to
pass positive feedback between them on transactions that never took place.
This kind of Sybil attack [Dou02] can also be used to defame a honest actor
with a burst of unfairly negative feedback from seemingly different sources.

A reputation update policy determines how to incorporate a new expe-
rience with a given, locally assigned credibility into the existing storage of
reputation information. More specifically, in the case of external reputa-
tion, it determines whether the experience is incorporated into the current
external reputation view, and what the new credibility value of the view is
after the update. These two decisions are divided into two separate policies.

In our simulation, we do not use the final credibility value of the view
in the trust decision; this makes the policy used for the view’s credibility
update only interesting when the value influences later reputation updates.
Further, as only external experience is used, we do not define a separate pol-
icy for giving more or less weight to local experience; the resulting external
experience views are converted to a risk evaluation as they are, independent
of the view’s final credibility value. For this reason, only one policy, which
is using the view credibility as a parameter to the reputation update policy,
actually depends on the choice of credibility update policy.

To control the scope of this experiment, we again define that the actor,
action, its importance and decision context have no impact on the final
trust decision. Unlike the first experiment, we focus on external experi-
ences, which adds the credibility of each experience as input to the system.
As earlier chapters have noted, local experiences all have the same credi-
bility value of 1 (full credibility), while external experiences have varying
credibility, represented with a value between 0 and 1.

As a further simplification, we use only two levels of credibility in the
experiment: full credibility for information coming from “trusted sources”,
representing truthful experiences too expensive to counterfeit, and “low”
credibility for information coming from sources which may have been com-

6.3 Experiment 2: Comparison of reputation update policies 161

promised, representing counterfeitable experiences. We fix the trust deci-
sion policy to be the well-performing policy D from the first experiment,
i.e. we require that for a positive trust decision, the number of experi-
ences of different types satisfy 3 * major positive + minor positive − 3 *
(minor negative + 3 * major negative) ≥ 0 for all assets. The reputation
update policies will then determine which experiences are counted in these
decisions.

The trust management system is given a stream of external experiences
with given values, and after each experience has been processed by the
reputation update policy, we transform the current reputation to risk and
compare it to the risk tolerance formula described above to see whether the
trust decision would be positive or not, and what the value of the left side
of the above inequality, the “score” of the trustee, would be.

Each of the four reputation update policies are applied to the seven
different experience streams. At the start of each stream, the reputation of
the actor is purged to start the experience gathering from scratch.

There are two competing concerns related to selecting a reputation up-
date policy: We simultaneously want to maximize both the amount and
quality of reputation information available for making the trust decision.
In other words, while we would like to accept only certified high-quality
information to ensure well-informed decisions, we also want to ensure that
there is always sufficient and up-to-date information available to make the
decision. Sometimes a partner may only be well-known in a low-credibility
reputation network, and the first whistleblowers warning that an actor has
turned malicious may not generally be the most trusted sources.

The compared four reputation update policies are as follows:

I: Accepting: A basic reputation update policy that incorporates all
experiences, independent of their credibility. This policy provides a
baseline for comparisons; it embraces the first concern of maximizing
available information, while ignoring the second.

J: Weighted: A policy transforming credibility directly to the weight
the experience has on the view: for example, four experiences of cred-
ibility 0.25 would have the same effect as one experience of credibility
1. This policy follows the philosophy of accepting all available infor-
mation, but ensuring that high-credibility information has the highest
impact. It fulfils the first concern, while compromising on the second
concern on ensuring the high quality of information.

K: Fixed-cutoff: A fixed minimum credibility requirement: if the cred-
ibility of the experience is below a fixed limit, it will be ignored. This

162 6 Evaluation and experimentation

policy focuses on fulfilling the second concern of maximal quality, and
ignores the first.

L: Variable-cutoff: A variable minimum credibility requirement: if
the credibility of the experience is below the current credibility of the
reputation view, it will be ignored. The view’s credibility is averaged
over the experiences stored in it. This policy draws a compromise of
the first and second concerns: after first ensuring that there is at least
some information available, it focuses on ensuring maximal quality.

The Accepting policy I accepts all experiences and stores them in the
reputation view. A suitable update policy for the view’s credibility would
be for example the average credibility of the experiences stored in the view.
It represents the principle of gathering all information there is available on
a given actor, regardless of its presumed quality.

While experiences are consolidated into the view by incrementing out-
come counters and the separate credibility values are lost in the transforma-
tion, the new average credibility can be approximated with (Credibilityview∗
n + Credibilityexp)/(n + 1), where n is the number of experiences stored
in the view. As said, this will not influence the simulation results, as view
credibility is not used in trust decisions within the experiment.

The Weighted policy J implements an intuitive principle of weighing
information by its credibility: more credible information should have more
influence on updating the reputation view, so information which is not fully
credible is weighed down by its credibility before it is added into the whole.

There is a slight technical issue with fitting this policy into our reputa-
tion model: the approach suggests that reputation views should store real
numbers, while the reputation view counters are discrete by design. As an
experience of credibility 0.5 is worth an 0.5 increase in the outcome coun-
ters, the policy object itself is used to store the “partial” experiences, and
only whole units are incorporated into the reputation view. The tempo-
rary real values produced by this policy are kept invisible to the rest of the
system, which operates on discrete experiences. The downside is that the
policy object itself becomes stateful as a storage for temporary information.

Given an experience with a credibility of 0.5 and a major positive mon-
etary outcome, the reputation update policy leaves the reputation view
unchanged, and instead stores 0.5 in its own internal counter for major
positive outcomes in the monetary asset. If the outcomes for other assets
are unknown, the unknown effect counters are set to 0.5 for those. When a
second similar experience of for example credibility 0.7 arrives, the internal
counter for major positive monetary outcome rises to 0.5 + 0.7 = 1.2, at

6.3 Experiment 2: Comparison of reputation update policies 163

which point 1 is deducted from the counter, and a major positive monetary
outcome is added into a new experience with the same actor and stored
into the reputation view.

The check is done simultaneously to all assets; if the incremented counter
for an asset does not go over 1 to reflect a full experience, the outcome for
that asset in the experience will be set to unknown. This also means that
the number of unknown effects stored in the view may well become rela-
tively more numerous than they were within the original experiences. As
noted in earlier sections, experiences with unknown outcomes for specific
assets can be used as a measure of the relative sparsity of information
available for that asset, but they are not directly used in producing the risk
estimate. The absolute number of unknown outcomes forwarded by this
policy will not rise above the rounded-down sum of the credibilities of all
experiences stored. If the information very often has unknown outcomes
for certain assets while varying strongly within other assets, the counters
for unknown effect can be disabled to stop the policy from forwarding ex-
periences consisting only of unknown effects.

A suitable update policy for the view’s credibility to complement policy
J would be for example one which keeps the view credibility at a constant,
predefined value. Averaging the credibility of the experiences stored loses
some of its meaning when some of the incoming experiences only cause
delayed changes in the reputation view.

The Fixed-cutoff policy K ignores experiences if their credibility is be-
low a fixed level. For the purposes of this experiment, the cutoff point is 0.6,
which means that the low-credibility experiences are ignored. It is a quite
strong interpretation of the need to maximize the quality of decision-making
information, as actors only known through low-credibility reputation net-
works will remain as completely unknown actors with this policy. On the
other hand, the more questionable information from these networks cannot
affect the trust decisions either. The choice may be justified for example
in situations where some information sources are suspected to have been
compromised.

As discussed before, the credibility value of an external experience is
normally a combination of the credibility of the source network and the
credibility assigned by the representative agent within the network, rather
than fixed by the source alone. If the network supports credibility evalua-
tion internally, this policy can also allow us to only accept only relatively
high-quality information from a reputation network that occasionally pro-
duces very low-credibility information as well. A suitable credibility update
policy to complement this kind of policy would be for example the averaging
one described for the Accepting policy (I).

164 6 Evaluation and experimentation

The Variable-cutoff policy L also ignores experiences with insufficient
credibility, but its cutoff point varies based on the credibility of the in-
formation already stored in the reputation view. For the experiment,
the policy is combined with the average credibility policy described for
the Accepting policy (I): the view’s new credibility is calculated to be
(Credibilityview ∗ n+Credibilityexp)/(n+ 1).

This also means that if only low-credibility information is stored in the
view, it will continue to accept more of it, ensuring that all actors can be
covered. However, once it has access to higher-credibility information, it
no longer accepts more of the low-credibility experiences. This allows for
increasing the quality of the information over time once the set minimum
has been reached. As a downside, it will not react at all to low-credibility
warnings about behaviour changes once some high-credibility information
has been stored as well.

The behaviour of the given policies on different experience streams is
demonstrated as follows: I in Figure 6.9, J in Figure 6.10, K in Figure 6.11,
and L in Figure 6.12.

6.3.2 Experience streams

We apply each of the reputation update policies described above to a set of
different experience streams to demonstrate their differences. Each stream
is produced by a generator based on a deterministic repetition rule, such
as with the experiment described in Section 6.2.

We will continue to focus on the monetary asset. A “major positive
experience”, for example, refers to an experience with a major positive
outcome in the monetary asset, and unknown outcomes in all others. The
unknowns will have no side effects on the behaviour of the policies used, as
they are ignored by the decision policy. It is worth noting, however, that
as a result of the structure of the experiences, the Weighted policy (J) will
merge some experiences with only unknown outcomes into the view.

As mentioned earlier, the experiences are all external, with two levels
of credibility: full (1) and low (0.5) credibility. For brevity, we also re-
fer to these two types as “real” and “fake” — this is not to indicate that
the credibility value clearly denotes validity, but due to the nature of the
experiment: the low-credibility experiences in most cases are chosen to rep-
resent counterfeit experiences produced by attackers. The system cannot
tell apart fake and real experiences: it only sees differences in assigned
credibility.

The full credibility experiences could also be fed into the system as lo-
cal experiences, but then they would not go through the observed update

6.3 Experiment 2: Comparison of reputation update policies 165

policies, as they are only applied to external experiences. The attacker’s de-
fections are therefore not actually directed at the simulation’s trustor itself;
the defections can instead be seen as reported attacks against the “trusted”
neighbours of the trustor, whose shared experiences are considered fully
credible. The low-credibility experiences, on the other hand, would come
from a more open network, which is more likely to have compromised actors
producing incorrect information besides any factual reports.

We have chosen three streams as a baseline for demonstrating the gen-
eral behaviour of the policies: a well-behaved actor known through a reliable
source, a seemingly well-behaved actor known only through an unreliable
source, and a well-behaved actor suffering from a reputation attack de-
faming it in an unreliable reputation network. An additional four streams
represent the optimal attacker behaviour against the four different policies,
bringing the total number of streams to 7. The optimal attacker behaviour
is further discussed below; we present the streams here as given. Each
stream is 100 experiences long; the trends of the behaviour of the policies
can be observed from the corresponding 100 rounds of trust decisions. The
experience streams are given in Table 6.5.

Table 6.5: The experience streams. 1-3 are baseline streams, 4p are optimal
attacker streams for reputation update policy p.
Stream Repetition rule

Stream 1 All real* minor positive (credibility 1)

Stream 2 All fake* minor positive (credibility 0.5)

Stream 3 Reputation attack: real minor positive, fake minor negative

Stream 4i 3 x fake major positive, real major negative

Stream 4j 6 x fake major positive, real major negative

Stream 4k 3 x real minor positive, real minor negative

Stream 4l 3r x fake major positive, r x real major negative**

*) Experiences with credibility 1 are referred to as “real”, while
experiences with credibility 0.5 are referred to as “fake” for brevity.
**) Here r indicates the total number of defections; the script runs only
once.

Stream 1 represents information about a well-behaved trustee who has
interacted with a reliable source. In order to be useful, a reputation update
policy must interpret this information as a sign of trustworthiness. Stream
2 can represent a well-behaved trustee who has only interacted with sources
that are not inherently trusted, but also an attacker who has control over
a less reliable information source and can therefore produce counterfeit

166 6 Evaluation and experimentation

positive experiences on itself; the information will also be treated differently
by the different policies.

Stream 3 represents a reputation attack against a trustee who behaves
well in its interactions with reliable sources, but is constantly defamed by
unreliable sources. It would be desirable that a reputation update policy
would put more weight on the positive information from reliable sources.
On the other hand, it is also entirely possible that an actor behaves dif-
ferently towards different actors; if two sources are in disagreement, the
usefulness of the information is altogether slightly reduced — either the
trustor is an unpredictable turncoat, or at least one of the sources is lying.
There is no separate stream for demonstrating a reputation attack made by
a high-credibility source, but the effect can be imagined through combining
this stream with the Accepting policy (I).

The attacker streams are similar to the previous experiment’s attacker
streams; the main difference is the introduction of credibility information.
In addition, stream 4l is not really a repetition rule, but runs only once: for
100 rounds, r is set to 25, and the script becomes 75 x fake major positive,
followed by 25 x fake major negative.

In the attacker scripts, all low-credibility experiences are seen as coun-
terfeit, while the high-credibility experiences are considered to truthfully
describe the outcomes of actions. We wish to promote a clear preference
for high-credibility sources when such information is available, while being
aware of the tradeoffs. More complex policies should put weight on how
credibility values are assigned in the first place, but share the preference
for high-credibility information in the actual updates.

6.3.3 Policy performance in the face of attacks

When selecting a reputation update policy to protect the trustor from be-
ing mislead by external reputation information, we can roughly divide the
trustees into four categories:

• Well-reputed actors recommended as trustworthy by high-credibility
sources,

• Promising actors recommended as trustworthy by low-credibility sources,
but generally unknown by high-credibility sources,

• Shunned actors warned to be untrustworthy either by high-credibility
sources or by unanimous low-credibility sources, and

• Mysterious actors receiving either very few or contradictory recom-
mendations.

6.3 Experiment 2: Comparison of reputation update policies 167

While all of these categories are simply perceptions rather than water-
tight proof of the trustees’ actual behaviour and trustworthiness, a good
reputation system should generally promote the well-reputed actors and
weed out the shunned actors. However, the two other classes require more
careful balancing. A very risk-averse trustor will prefer not to collabo-
rate with the mysterious actors, independent of whether they offer better
terms of service. Should everyone adopt this approach, though, newcomers
will have no chance of proving themselves, targets of defamation cannot
clear their name, and the service ecosystem will begin to deteriorate. The
promising actors face a problem similar to newcomers in that they have not
proven themselves enough, but at least they have some recommendations
supporting them. On the other hand, it is also easier for a malicious at-
tacker to appear as one of the promising actors rather than a well-reputed
one, and even easier to claim that any negative recommendations about it
result from reputation attacks rather than honest feedback.

The first experience stream represents the well-reputed actor category,
while the second stream represents promising actors. We have skipped the
shunned actors category in the simulations, as all policies would leave them
out3, and have set the third stream to represent one type of mysterious
actor, one receiving contradictory recommendations. Additional streams
represent optimal attackers targeting specific reputation update policies.

As with the first experiment and the minimax analysis, the optimal at-
tacker has full knowledge of the policies in use, and aims to keep their rep-
utation high enough to ensure a positive trust decision. In addition to the
options before, the attacker now has control of a malicious recommender, a
reputation source which produces external experiences to the trustor. The
source has lower credibility than the trustor’s first-hand experience; for the
sake of the example, we set the credibility of these counterfeit experiences
to be 0.5 in the trustor’s system, which is half of the credibility granted to
local experiences and external experiences from trusted sources (1).

We define counterfeiting these low-credibility experiences to cost noth-
ing to the attacker; once it has gained control of third party recommenders,
it simply has them conjure as many positive experiences as it needs. On
the other hand, having to produce more information does slow down the
attacker. We provide scoring for the policies based on how many actions,
counterfeiting or causing actual experiences, it takes in total to produce
the gain for the iteration, which is reduced by having to counterfeit more
experiences.

3To the trust management system, credible negative feedback would appear as locally
observed misbehaviour, which was simulated in the previous section.

168 6 Evaluation and experimentation

We have also examined a weak attacker variant which is only able to
produce counterfeit experiences and must defect from all real actions. How-
ever, barring the Fixed-cutoff policy (K), the weakness makes no actual
difference, and with K, it cannot gain any reputation.

We will now present the optimal attacker scripts testing the strength
of the reputation update policies. For each script, we show the series of
actions that the attacker must take, and calculate the utility points gained
by the attacker. Again, a measure of the deterrence strength of the policy
is how much and how fast the attacker is able to gain by defecting.

The first update policy sees no difference between low-credibility and
high-credibility information. Figure 6.9 presents the behaviour of policy I
when applied to the different experience streams. The X axis represents the
rounds of transactions, and the Y axis represents the trust decision utility
measure or “trust score”, calculated based on the Sharp-pessimistic trust
decision policy D; as noted, the trust decision is positive while the score
remains above 0.

Figure 6.9: The behaviour of reputation update policy I. Streams 1 and 2
overlap, while 4i and 4k partially overlap.

In this graph and the following, the X-axis again depicts the number of
rounds, and the Y-axis the trust score calculated according to the utility-
based trust decision policy D defined in Section 6.2.1.

The optimal attacker behaviour for the Accepting reputation update
policy I becomes:

6.3 Experiment 2: Comparison of reputation update policies 169

1. Counterfeit major positive effect x 3

2. Cause major negative effect.

Given our earlier scoring, the attacker gains 3 * 0 + 6 = 6 points per
iteration, averaging 1.5 points per action (6 points per authentic action
and 2 points per counterfeit action).

As streams 1 and 2 differ only by credibility value, policy I is unable to
differentiate between them; they appear as a single line in the figure. The
policy is also unable to identify any of the attacker behaviours 4i, 4j and 4l
as attacks, while falsely identifying stream 3, which represents a reputation
attack against the trustee, as the trustee’s misbehaviour. Stream 4k is an
attempted “attack”, but according to our scoring model it is actually not
beneficial to the attacker; it causes positive decisions as expected.

The Weighted update policy slows down the attacker slightly by scal-
ing down the impact of low-credibility experiences while still accepting all
information; more counterfeit experiences are needed to upkeep a good rep-
utation. Figure 6.10 shows the behaviour of policy J when applying the
different experience streams.

Figure 6.10: The behaviour of reputation update policy J.

The optimal attacker behaviour for reputation update policy J is there-
fore:

1. Counterfeit major positive effect x 6

2. Cause major negative effect.

170 6 Evaluation and experimentation

The attacker still gains 6 * 0 + 6 = 6 points per iteration, which now
averages to 0.85 points per action (6 points per authentic action and 1
point per counterfeit experience). In the general case, if the credibility of
the counterfeit information is 0 ≤ c ≤ 1, the attacker can gain 2 ∗ c points
per counterfeit experience produced; the higher-credibility experiences it
can counterfeit, the greater its gains. This emphasizes the need to assign
credibility values wisely as a part of defending against malicious actors.

Given the credibility value of 0.5, stream 2 increases the trustee’s repu-
tation by 1 every second action; as a result, the number of positive stored
experiences is half of what stream 1 causes.

The reputation attack represented by stream 3 remains successful: while
fake experiences only count as half experiences, two fake experiences to-
gether have a weight of 3 (0.5 * 2 * 3) in the decision policy, while two
positive real experiences only have a weight of 1 * 2 * 1 = 2. While the
different weights affect its success here, in principle a reputation attack like
this can only be slowed down by a weighted policy like J.

The simple attack of stream 4i is detected, as there are too few counter-
feit positive experiences in relation to the actual negative ones. Doubling
their number for 4j to balance for the lower weight generates the optimal
attack against this policy. Meanwhile, earlier reputation gains are already
spent halfway through the defection phase of stream 4l.

With the Fixed-cutoff reputation update policy K, the credibility limit
for accepting an experience is set to be higher than the credibility of the
malicious source; in the opposite case, the results would be the same as
with policy I. The behaviour of reputation update policy K is shown in
Figure 6.11.

Because of the fixed cutoff, the attacker can only increase his repu-
tation by authentic actions, which reduces his optimal behaviour to the
non-beneficial script seen in the first experiment:

1. Cause minor positive effect x 3

2. Cause minor negative effect.

As noted earlier, the attacker is now losing points: (−1) ∗ 3 + 2 = −1
point per each iteration, averaging −0.25 points per authentic action taken;
without counterfeiting this is not a successful attack.

As all low-credibility experiences are ignored, the policy gives no credit
for them, successfully identifying all attacks. The reputation attack repre-
sented by stream 3 has no ill effect on the trustee’s reputation, while the
defections of streams 4i, 4j and 4l cause the trust decisions to promptly

6.3 Experiment 2: Comparison of reputation update policies 171

Figure 6.11: The behaviour of reputation update policy K. Streams 2, 4k
and 4l partially overlap.

turn to negative. The optimal “attack” stream, 4k, oscillates near the 0
line, and is not beneficial to the attacker.

It is worth noting that if we interpret stream 2 as an actor who is gen-
uinely cooperative, but only known through a low-credibility information
source, this reputation update policy is unable to take advantage of the in-
formation: the trustee remains as good as unknown, gaining no reputation
in the local system. This is also the main weakness of policy K: more strict
selectivity means that there is less information available.

With the Variable-cutoff reputation update policy L, the attacker can
only take advantage of counterfeit experience until the trustor has gained
credible enough local information that it refuses to accept further low-
credibility experiences. However, as the malicious source’s credibility never
goes down within the scope of the experiment, the policy does not actually
limit the attacker’s options much in practice; it only forces the attacker
to make more long-term investments in its reputation. The behaviour of
reputation update policy L is depicted in Figure 6.12.

With this policy, the attacker has no actual limit of how many counter-
feit experiences it can pass to the trustor until it starts defecting. However,
after the first defection, the trustor has its first experience above credibility
0.5, and this averaged with the earlier experiences will inevitably bring the
cutoff point above 0.5. This only changes the ordering of actions in execut-

172 6 Evaluation and experimentation

Figure 6.12: The behaviour of reputation update policy L. Streams 1 and
2 overlap.

ing the attack, however; the relative gains remain unchanged. The optimal
attack becomes:

1. Counterfeit major positive effect x 3 (x r)

2. Cause major negative effect (x r).

As with the Accepting policy I, the attacker gains 3 * 0 + 6 = 6 points per
iteration, averaging 1.5 points per action (6 points per authentic action and
2 points per counterfeit experience). Once the initial feed of counterfeit
experience has been spent, this policy would then force the attacker to
follow the script described in policy K in order to be able to defect any
more.

The main difference between the attacks against policy I and L is that
for L, the attacker must decide beforehand how many rounds of the script
it wishes to run, and feed the trustor all the counterfeit experiences for
the run before it begins the defection half. Such a long-term investment
does make the attack slightly less reliable, but here it the difference is not
measurable. In fact, this attack demonstrates the need to react swiftly to
behavioural changes: because the decision policy gives equal weight to the
old and new experiences, the attacker can spend its gained reputation in
peace. If a sudden behavioural change caused a reputation epoch change,

6.3 Experiment 2: Comparison of reputation update policies 173

the weight of old reputation would no longer allow a long defection phase.
This approach is demonstrated in a separate publication [RHK11].

The reputation view’s credibility is calculated as a weighted average
of the earlier experiences and the new experience. As with policy I, no
difference between streams 1 and 2 is apparent to the chosen trust decision
policy. However, during and after stream 1, the reputation view’s credibility
is a solid 1, while with stream 2, it is only 0.5; this could be considered in
the trust decision by a suitable policy.

The reputation attack of stream 3 fails from the beginning, as the first
experience already sets the view’s credibility to 1, cutting off anything less
credible. Streams 4i and 4j gain positive reputation from their counterfeit
experiences up until the first defection, which brings the average credibility
of data stored in the view above 0.5. After this, the policy only accepts the
actual experiences with credibility 1, finally ending up with average view
credibilities of circa 0.95 and 0.85, respectively. The difference is caused by
full-credibility experiences appearing more often in stream 4i.

The cutoff of counterfeit experiences after the first defection forces the
optimal attacker (represented by 4l) to gain all of its positive reputation
before it begins to defect. Finally, stream 4k, which is not actually beneficial
to the attacker due to consisting only of real experiences with relatively
few defections, keeps the trust score nonnegative and close to 0 as with the
Fixed-cutoff policy K.

6.3.4 Analysis

The four reputation update policies presented each represent their own
approach to differentiating between low-credibility and high-credibility in-
formation. We have compared their behaviour in relation to the different
experience streams in the previous section. Table 6.6 compares the policies
based on how well they thwart the optimal attacker.

The mean length of the scripts is equal to the mean length of the scripts
in the first experiment, and the length of the attacker script for the Sharp-
pessimistic decision policy D in particular. The attacker script for the
Weighted policy J is clearly longer, while the one for the Variable-cutoff
policy L shares the 4-step cycle in principle but is forced to delay its payoffs
or it becomes unable to repeat the script more than once.

Typically, the attackers seem to have have more to gain from the ex-
tended information sources. The Fixed-cutoff policy K is the only one
which performs as well with the external information sources as policy D
originally performed with only local information. This is simply because K
ignores the low-credibility information source altogether.

174 6 Evaluation and experimentation

Table 6.6: Optimal attacker performance with different reputation update
policies. Script length is expressed as the number of actions involved.
Update policy Total points Script length Points per action

Policy I 6 3 + 1 = 4 1.5 (2 / fake, 6 / real)

Policy J 6 6 + 1 = 7 0.85* (1*, 6)

Policy K** -1 0 + 4 = 4 -0.25 (0, -0.25)

Policy L*** 6r 3r + r = 4r 1.5 (2, 6)

*) A lower value of “low” credibility reduces payoff speed.
**) Degrades to policy I if the minimal credibility cutoff point is too low.
***) The repeatability of the attack script is limited.

It is clear that using information that comes with the possibility of ma-
liciously introduced errors is a tradeoff. As we argued in the analysis of the
first experiment, information sharing and complementing local information
with external is the only way of reducing the benefits of circulating at-
tacks within a network of actors. On the other hand, uncritically accepting
only negative information and ignoring the low-credibility positive in case
it is counterfeited makes reputation attacks a viable method of shutting off
competitors from the market. Granted, a reputation attack at a trustee is
not a direct attack against the trustor, but it will leave them stuck with
fewer service providers, or at worst none to choose from.

Out of the four policies, the Accepting policy I is most vulnerable to
low-credibility counterfeit experiences: it ignores credibility information
altogether. The policy is too accepting, and as such suits only environments
where the vast majority of information is truthful, and the occasional error
will not disrupt anything critical.

The Weighted policy J also accepts all information independent of its
credibility, and as such is not far from the Accepting policy I. The weighing
approach does have the effect of slowing down attacks based on counter-
feiting. However, in environments where fake experiences are free and can
be quickly mass-produced, this policy will not make much of a difference.
This combined with the fact that the policy in practice needs to upkeep
its own information makes it poorly suited to very large and active net-
works of actors. Where massive flows of shared experiences are normal, its
moderate slow-down effect is easily overrun by determined attackers, and
having to upkeep a handful of additional state information for each actor
whose reputation is observed makes it more expensive than the options.

The Fixed-cutoff policy K very efficiently hampers even the optimal
attacker, but as said, it also suffers from being too strict — and if it were

6.3 Experiment 2: Comparison of reputation update policies 175

any less strict, it would not make a difference. Similarly to the problems
with the Separative decision policies E and F noted earlier, policy K makes
an absolute separation between two different classes of information, and as
a result is unable to take advantage of connections between the classes. On
the other hand, if credibility values are well-assigned and the environment
has a considerable number of malicious information sources, policy K is a
natural choice for pruning the incoming experiences. In fact, in its divi-
sion of experiences into groups based on credibility, K behaves similarly
to reputation systems which actively select the recommenders they ask for
information in the first place [RKK07].

Compared to policy K, the Variable-cutoff policy L is able to use in-
formation more efficiently in situations where it is most sorely needed: if
only low-credibility information is available, L takes advantage of it un-
til it gains higher-quality information. It fares relatively poorly against
the optimized attacker, mainly because the simulated attacker can risk a
long-term investment into its reputation. After the first credible defec-
tion, however, the policy has better information available and refuses to
accept more low-credibility experiences. The optimal attack is vulnerable
to interruptions; one interruption could come from successfully detecting
behavioural changes and reacting to them promptly, at which point the
sudden first defection would cause a more dramatic drop in the trust score.
We discussed the division of reputation into epochs in Section 4.1.5.

The policies presented here are only a small subset of options, chosen
both to represent different takes on the principles of maximizing the amount
and/or quality of information, and for their suitability to an experiment us-
ing simple experience streams. A simple option is often the best, especially
considering that the overall system is quite complex even with very simple
partial policies. On the other hand, the reputation update policy is a cen-
tral guard of external information flowing into the system, and a decision
system is only as trustworthy as the data it builds on. With this in mind,
we propose some extensions to the presented policies for specific purposes.

As argued above, the Weighted policy J does not perform very well
by itself. It may be that the principle of weighing experiences based on
their credibility would serve better if complemented by a policy with some
actual selective power, such as the cutoff policies K or L. For example, K
could be extended to reject experiences below a minimal credibility value
c1, unquestioningly accept experiences with credibility above another value
c2, and multiply experiences in the “gray area” between the two borders
(c1 ≤ c ≤ c2) with their credibility or a fixed value in order to reduce
their influence. Within this experiment, this kind of extension would not

176 6 Evaluation and experimentation

have had much effect due to the extremely limited variation between cred-
ibility values; it would simply have slowed down the attacks, as it already
originally did.

If storage space is an issue, policy J could be approximated with a vari-
ant that does not store internal state, but would be probabilistic rather
than deterministic in its behaviour. This variant policy accepts each expe-
rience with a probability given by the credibility value rather than adding
up partial experiences. Such an algorithm behaves on the average more pre-
dictably as the number of experiences processed per actor grows. However,
this increase does not immediately follow from there being more active ac-
tors in the network, so there are situations where storage space does become
an issue but a probabilistic version of policy J could still be inconveniently
unpredictable.

The instant increase in selectivity may in some situations be an is-
sue with the Variable-cutoff policy L, which will basically refuse all ex-
periences below the credibility of the first experience presented to it. A
straightforward method to make the policy more flexible involves adjusting
the barrier of acceptance downwards based on the number of experiences
stored in the view; generally, once a certain amount of information has
been reached, rejecting new low-credibility experiences seems less limiting.
For example, up to a suitable minimum number of experiences, such as
20, the extended policy may qualify information that has only at least half
the credibility of the view, or go as far as accepting all information, or all
above a minimum credibility (as per policy K) until a desired number of
stored experiences is reached, and then applying policy L from that point
onwards to adjust to the quality of information available. In the general
sense, the experience with credibility Credibilityexp would be accepted if
Credibilityexp ≥ f(n) ∗ Credibilityview.

In this case, the behaviour of the above kind of policy can be easily
enough deduced from the behaviours of the existing simulations. We have
explored some basic ideas for a multiplier function f(n) that depends on
the number of experiences stored. However, policies with simple “intuitive”
explanations likely to be understandable by the users were not otherwise
particularly compatible with the simulation setup. For example, it would
seem reasonable to demand that the change of the view’s credibility should
satisfy Credibilityview ∗ n ≤ Credibilitynew ∗ (n+1), where n is the number
of experiences stored in the view and Credibilitynew the new credibility of
the view. It turns out to not be strict enough: if combined with the average
credibility update policy we have used earlier, this policy would only ever
reject experiences with a credibility value below 0, which means accepting
everything.

6.3 Experiment 2: Comparison of reputation update policies 177

Replacing the actual new credibility in the inequality with for example
an unweighted average of (Credibilityview + Credibilityexp)/2 would give
(n − 1)/(n + 1) as the multiplier function f(n). This function behaves
in practice rather similarly to the original policy L given our simulation
setting, as an experience of credibility 0.5 will only be accepted into a view
with a credibility of 1 up until 3 experiences have been stored. While this
does not directly indicate that the multiplier function is without merit, in
terms of understandability it would seem a better idea to set fixed points
which adjust the minimum credibility requirement, if such an adjustment
is needed.

In summary, changing the Variable-cutoff policy to adjust to the amount
of experiences available seems to lead to mathematically more complex poli-
cies without providing much impact in terms of producing different results
than the simulated, simpler policies.

The reputation epochs discussed in Section 4.1.5 are managed by a
different policy than the ones simulated here: a reputation epoch change
policy takes effect after the decision to include an experience has been made.
While they have been left out of the simulations here for this reason, either
one of the suggested epoch change policies, combined with an epoch-aware
trust decision policy, would be sufficient to thwart the lengthy optimal
attack against the Variable-cutoff policy L. While the general problem of
oscillating behaviour is not entirely eliminated even with reputation epochs,
it forces the cycles of attack versus reputation-gaining good behaviour to
be short, like most simulated streams here. We have studied the effects of
reputation epochs and suitable policies in a separate paper [RHK11].

Different options for reputation update policies suit different types of
information sources and situations, and they must be fitted to the other
policies in use. It would seem to be a quite serviceable approach to accept
information from certain known sources nearly uncritically, and spending
the effort analyzing borderline credible information if and only if the extra
experiences are interesting enough given the information already available.
In the end, having the view credibility information available at decision
time leaves us with some additional flexibility. If the trust decisions for
some actions require a highly critical view of the trustee’s reputation, we
can refuse a request if we do not have credible enough information available,
while taking full advantage of the low-credibility information for less critical
trust decisions.

178 6 Evaluation and experimentation

6.4 Related work on simulation experiments

Our experiments make two kinds of contributions: First, the behaviour
of a given decision or reputation update policy is demonstrated through
exposing it to different representative experience streams and plotting the
resulting trust decision score. Second, the limitations of each policy are
demonstrated by defining the behaviour of an optimal attacker, and cal-
culating how much it is possible for it to benefit by defecting before its
reputation drops too low. We claim that for studying the attack resistance
of policy-based systems such as TuBE, this approach is more suitable than
the prevalent comparable methods applied in related work.

As the objective correctness of a reputation-based trust management
system’s calculations cannot be proven, given that there is no suitable def-
inition for “correct” in this context, the results that the system produces
cannot be validated directly. Both our test runs with experience streams
and the scoring for attackers are forms of simulating the system on fab-
ricated data; “real data” for this purpose does not exist due to the sub-
jectivity of the system, and even remotely realistic data with a sufficient
level of detail is unattainable at this time. While our example simulations
weigh little in way of proof of correctness, we extend the state of the art
in simulation experiments for reputation-based trust decisions particularly
through our game theoretic minimax investigation of optimal attackers.

To discuss the state of the art in simulation experiments, we present
experimentation approaches from two categories: simulating marketplace
resistance against attackers following given behaviour patterns, and simu-
lating a single actor’s competitiveness in a marketplace.

The first category represents mechanism design: it compares the be-
haviour of different reputation systems in a marketplace where a number
of agents misbehave, and the goodness of the system is based on how well
the entire marketplace can resist different kinds of misbehaviour when ev-
eryone uses the same system and the same policies. This simulation has
the involved actors using reputation information to select their transac-
tion partners probabilistically, which adds an element of randomness into
the simulation. As the defined attackers follow statistical models rather
than making optimal choices according to the decision context, this kind
of simulation is directed more towards the domain of reliability than secu-
rity [Gol11].

The second category represents agent design; it pits different decision
policies against each other on the same marketplace. It forms a type of
benchmark for how a given decision model influences an actor’s compet-
itiveness on the market, given an existing marketplace, or mechanism, it

6.4 Related work on simulation experiments 179

needs to adjust to. Each actor aims to maximize its own gains; any system
of altruistic punishment inevitably falls outside the scope of this kind of
simulation. For agent design, the input, i.e. the format of reputation infor-
mation available from different actors in the marketplace, is fixed, but the
actors themselves can choose the internal trust information models they
follow themselves.

6.4.1 Reputation systems in electronic marketplaces

Related work literature presents multiple simulation experiments on the
behavioural performance of different accumulative and probabilistic repu-
tation systems in an electronic marketplace [SVB06, Nur07, JHF03]. In
such a marketplace, intelligent agents, which correspond to our service
providers, perform pairwise brief transactions of buying and selling goods.
The marketplace is given a distribution of agents with different behaviour
profiles, and each agent type has a decision policy; typically the reputation
update policy is equal between all agents, and all experience information is
shared. The simulation then measures for example the average number of
transactions taken with a given type of agent (honest, malicious, etc).

The basic behaviour profiles of agents are typically very straightforward,
such as “honest agents always carry out transactions honestly and give fair
ratings”, while “malicious agents act honestly or dishonestly by chance,
and always give negative ratings” [Nur07]. More complex behaviour can
be tied to the marketplace as a whole; for example, a “spamming” agent
can otherwise act honestly, but always rate other agents negatively in order
to make itself more attractive in comparison [Nur07], or an agent may be
an opportunistic defector, adjusting its behaviour based on whether there
is anyone in the marketplace who will transact with it [JHF03]. Schlosser
et al. define a behaviour profile for a “disturbing” agent as one who first
builds a high reputation with good transactions, and then uses up the
reputation so gained by defection [SVB06]; this represents the mechanism
design equivalent of the optimal attacker model used in our simulations,
which had an agent design focus.

When game-theoretic simulations are used like this for mechanism de-
sign, agent behaviour types are chosen globally for all policies under com-
parison, and measure when the system as a whole can or cannot protect the
entire electronic marketplace. All agents, or at least all agents of a match-
ing type, use the same decision algorithm, and if honest agents transact
frequently with malicious agents, the reputation system has failed. Based
on this definition, few reputation systems are resistant to the optimal at-
tacker model — even the “disturbing” behaviour model [SVB06] turns out

180 6 Evaluation and experimentation

to be aptly named, when in fact it is nothing more than a model for a selfish
agent behaving rationally within the limitations set by the environment.

The reason that observations are limited to fixed policies in these ex-
periments is that in order to be able to give conclusive results, the tools of
game theory require strict formalization of the environment and agent be-
haviour; the core problem then becomes how to formulate a question within
this vocabulary so that it is “solvable”, while ensuring that the result still
gives some useful information about real marketplaces.

In order to make a successful reputation system for electronic com-
merce, we must aim to discourage the rational selfish agents from harmful
behaviour, not just to protect unselfish “honest” agents from them. This
is the social pressure effect of reputation systems, and it cannot be left
outside our models: reputation systems that can only try to predict future
behaviour are chronically powerless against intelligent adversaries that are
able to change their behaviour to maximize their profit.

In our simulations, we have taken the agent design approach and study
how a given agent survives on a marketplace with rational selfish agents. We
have made no assumptions of what policies other actors use. We focus solely
on the reputation update and decision policies of the single trustor, and the
gains the single optimal attacker is able to make with an attack directed
at the trustor using any of the different methods available to subvert the
policies in place. By dropping these gains below a certain level we can
discourage the rational attacker from misbehaviour. Protection against
irrationally malicious agents is somewhat less likely to be needed, nor can it
really be achieved through social control; for example random malfunctions
do not depend on reputation, nor is a powerful group of outsiders trying
to shut down the entire marketplace at any cost likely to care about their
capability of operating on the market afterwards.

The main difference between electronic marketplace simulations and
their metrics, and the simulations we have made in the previous sections, is
in the point of view taken. In the aforementioned simulations, the simulator
observes a marketplace of multiple actors to determine what the effect of
the reputation mechanism has on the market as a whole. This also gives
a nondeterministic flavour to the results: agents choose partners from the
marketplace semi-randomly based on their reputation, their own behaviour
rules may have some random elements (such as choosing to defect with
probability p), and the distributions of different types of agent profiles
on the marketplace may be expressed as probabilities rather than fixed
numbers of each type.

In contrast, the TuBE simulations observe only two service actors at

6.4 Related work on simulation experiments 181

a time, use reputation for a binary trust decision rather than for partner
selection, and have no random elements; the results are the same on each
consecutive run. We do not enforce a single reputation system on the entire
marketplace, and hence it also becomes less meaningful, in this context, to
observe the combined effects of having a specific reputation system (or
reputation update policy) in use by all actors.

In the simulations of Schlosser et al. [SVB06], the “disturbing” agent
knows its reputation because the models have a centralized reputation sys-
tem, i.e. the reputation update policy and experience information are
shared between all agents. In comparison, Nurmi simulates a reputation
system where the disturbing agent equivalent must actively estimate its
own reputation due to not having access to any globally shared reputa-
tion value [Nur07]. It will have less information available than our optimal
attacker, in favour of increased realism; on the other hand, a reputation
model should not be relying on reputation information being kept secret
either, so from a security perspective, the assumption of full knowledge is
valuable.

In the TuBE model, policies and reputation information are kept pri-
vate, which means that the normal attacker does not actually have any
way of knowing when it should start defecting. In other words, it is sepa-
rately empowered by the simulator in order to achieve optimal behaviour.
This allows us to study the worst-case scenario from the point of view of
defending against malicious agents.

Although electronic marketplace simulations seem to be a common ap-
proach for illustrating the behaviour of reputation systems, modelling at-
tack cost and benefit for the attacker is not a new idea in evaluating re-
sistance to a specific type of attack. The approach has also been adopted
by for example Margolin et al. to quantify resistance to the Sybil attack,
i.e. generating multiple identities to subvert a system by achieving a sin-
glehanded majority [ML08], and somewhat differently by Srivatsa et al.
in resisting oscillatory behaviour such as in the “disturbing” agent model
mentioned above [SXL05].

The work by Margolin et al. is based on specific objectives of a rational
attacker, and the expected cost of achieving them within one protection
approach. Of the two, it is more similar to our work in philosophy, while
the nature of attacks is quite different.

The TrustGuard system of Srivatsa et al., in turn, is more similar in
its application area; central differences are that all transactions are equal
in value and outcomes are binary. However, in this work, similarly to the
prevalent electronic marketplace simulations, the attacker is not rational: it

182 6 Evaluation and experimentation

does not react to changes in its reputation, but rather changes its behaviour
at fixed intervals. In other words, the attacker does not optimize its own
behaviour for maximum benefit, but the trustor simply minimizes the gains
of specific types of attackers within the cost-benefit model.

The difference between fixed and optimal attackers is small but signifi-
cant in that the optimal approach involves finding the specific strategy that
carries the greatest benefit to the attacker, and measuring its cost—in other
words, all attack strategies will yield equal or worse outcomes for any kind
of attacker. As we cannot choose our attackers in reality, we must assume
a flexible rational attacker and measure the effectiveness of our defences
against it.

As the optimal attacker strategy depends on the cost model chosen,
the main challenge in evaluating the system is bound to finding a realistic
cost model. In the work of Margolin et al., measuring cost is relatively
easy: it is fixed to the cost of a new identity, which is fully determined by
the system policy. The measurements then specify how highly the attacker
must value a successful attack in order to choose to attempt it. Achieving
this level of deterministic accuracy is less likely for reputation attacks, but
as we have seen, it can still allow effective comparison of different policies
within a chosen cost model. Developing a cost model for minimax analysis
which can simultaneously model the losses from attacks, lost business due
an overly strict decision policy and a form of ecosystem-enforced cost for
failing to correctly punish misbehaviour is an interesting path of future
research.

While the marketplace simulation approaches adopted in related work
are reasonably well suited for studying statistical failures, i.e. reliabil-
ity [Gol11], they are unsuited for evaluating the capability of specific ac-
tors to defend themselves against attacks. As a side effect of focusing on
statistically modeled events in the marketplace as a whole, the simulated
attackers do not behave rationally in these simulations, and as a result, the
results do not reflect whether the chosen marketplace mechanism actually
cuts down the incentive for a particular sort of attack. Our proposed ap-
proach of optimal attacker analysis is designed specifically for this attack
deterrence point of view: how easy it is for an attacker to benefit from ma-
licious behaviour. This kind of method could be applied to the marketplace
as a whole as well, but would require considerable additional simplifications
to model.

In this work, we apply our method locally for the purposes of agent
design: selecting local policy of one agent so as to not be an attractive target
for attacks. As we must respect the autonomy of all service providers, we

6.4 Related work on simulation experiments 183

cannot enforce a single decision policy upon all, and as a result, we can
only assume that each agent acts primarily to further their own interests.
In the next section, we contrast our approach to the state of the art in
simulations focusing on the agent design point of view.

6.4.2 Competitive agents in the ART testbed

The Agent Reputation and Trust (ART) testbed initiative aims to establish
a testbed for agent reputation and trust-related technologies [ART11]. It
represents a competition-based approach to the evaluation of agent designs.
The testbed serves both as a competition forum and an experimental tool.
For further examples, the ART testbed specification lists similar, although
generally simpler, experimentation environments [FKM+05].

The ART testbed simulates a marketplace of service providers compet-
ing to sell their services [FKM+05]. The provided service is art evaluation
for a customer; in practice producing a real number as close to the unknown
correct answer as possible. The service providers have a limited competency
in the requested service, achieving different-quality results from their eval-
uations of art from specific eras. In addition, the correctness of the result
depends on how much resources they decide to invest in producing the esti-
mate themselves. They can also improve the quality of their own service by
requesting help from other service providers that are more knowledgeable.
The other providers have no innate interest in providing correct informa-
tion, however. To exchange experiences, the actors can also ask each other
for reputation information on other providers.

The testbed takes an important step forward in the work to provide
benchmarking tools for trust and reputation systems. It is directed to-
wards learning agents, with the goal to maximize their measured utility. In
other words, each individual aims to maximize its own gains. The testbed
specifies fixed prices for how much customers pay for an evaluation ($100),
the cost of asking for an evaluation from another actor ($10), and the cost
of asking for a reputation value (a real number between 0 and 1) from an-
other actor ($1) [THD+07]. In addition, the agent can spend an arbitrary
amount of money for its own evaluation, with the quality of information
depending on the money spent. Teacy et al. provide further analysis of the
ART testbed [THD+07, TCRJ08].

There are a few limitations that make ART insufficient as a benchmark
environment for systems like TuBE. The testbed’s background assump-
tions, low number (10-20) of actors in the marketplace, the uninformative
reputation representation and the limited measurability of the quality of
service are not compatible with the basic assumptions made in TuBE. Due

184 6 Evaluation and experimentation

to various factors in the testbed design, reputation information has actu-
ally not been particularly useful for an agent trying to perform well within
the given bounds, and research focus has rather been misdirected towards
secondary features of the game [GSMM08]. As an example, rather than use
reputation information particularly wisely, the winning strategy directed its
effort towards determining the most profitable amount of money to invest
in opinions [THD+07]. Discussing different ways to improve the testbed,
Gomez et al. propose eliminating the use of money, and through it the
power imbalance and secondary effects caused by it, and consider different
approaches to make reputation information more valuable [GSMM08]. The
testbed is currently unmaintained.

On a high level, the idea of making different policies compete in a mar-
ketplace fits the idea of measuring the competitiveness of different decision
policy approaches very well: we can compare which specific policies help
the agents applying them gain the most profit, and even study some emer-
gent behaviour, such as whether the marketplace dies out as a result of too
paranoid decision-making. The downside of this approach is that modelling
a realistic marketplace is very different from modelling, say, an environment
with realistic laws of physics. A marketplace economy is regulated to some
degree by laws similar to those in natural sciences, but a large part of the
outcome depends solely on subjective valuations, experience and interpre-
tation, where there are no actual laws that can be deduced4. As noted
in the evaluations of ART [THD+07], we cannot conclude that an agent’s
competitiveness in the simulated marketplace necessarily has anything to
do with the policy performing well for a real enterprise operating in a real
marketplace.

When the service providers’ goals and valuations are subjective, and
their preferences unpredictable, what remains for a reasonable simulation
target is to return to stereotypical actors, as applied in mechanism design.
Instead of trying to second-guess what a service provider trustor would
reasonably want to do, in our optimal attacker analysis for this work we pick
a behaviour pattern that would generally not be desirable for a trustor to see
a trustee exhibit in the marketplace: a collaboration partner deliberately
violating contracts in a way that is clearly detrimental to the trustor.

We model this actor as an attacker whose internal rewards (its goals
and valuations) are chosen to encourage contract violations, and set it out
to maximize its rewards using rational selection within the set of actions
made available to it. While this attacker may to a degree act as a reasonable

4This dual nature of the study of human action, or praxeology, is emphasized by e.g.
von Mises in his work [vM98].

6.5 Towards a benchmark for trust management systems 185

approximation of a real, antagonistic service provider with no intention to
commit to a marketplace, it is important to realize that the goal of this
artificial optimal attacker is not to represent a realistic actor as such, but a
class of behaviour patterns that the trustor, i.e. the policy-setter, would by
definition not want to attract or support. This is also why it is fruitful to
give the attacker more power and knowledge than any realistic actor would
have: it is used to evaluate how the trustor’s defences succeed in increasing
the cost of some attacks, not what drives a particular real attacker to be
malicious.

In summary, we have identified common elements between our simula-
tion and optimal attacker analysis and existing marketplace simulations for
both mechanism design and agent design. We conclude that our approach,
combining elements of the prevalent approaches and minimax analysis used
in computer security evaluation, has more potential to produce fruitful re-
sults for policy-based systems.

6.5 Towards a benchmark for trust management
systems

The experiments in this chapter have studied the role of simulations in
the evaluation of trust management systems. Simulation experiments, like
most measurement, are essentially methods of visualization. They are not
proofs of the existence of desirable high-level characteristics, and definitely
not tests for the system’s resistance against anything but the specialized
behaviour patterns chosen for simulations. As the ART testbed competi-
tions show, even pitting different algorithms against each other in a testbed
will teach us very little about their relative fitness in the world outside the
testbed. Similarly, test loads from actual ecosystems, once they become
available, remain selected datasets for visualization purposes.

What, then, should an automated test load, or “benchmark”, consist of
for a trust management system in the context of inter-enterprise collabora-
tions? Given the above arguments, should the entire idea be abandoned as
uninteresting? It is clear that the value of benchmarks lies outside attacker
analysis, and relies on stereotypical behaviour patterns rather than realistic
actors. We find that some characteristics are more fitting to demonstrate
through simulations than others:

• Constructive behaviour: A simulation containing traces of rea-
sonable behaviour, samples of “users want to do this”, can be used to
test that such behaviour is indeed supported by the system. Exam-

186 6 Evaluation and experimentation

ples of interesting behaviour to simulate would include a few different
types of reasonably reliable (albeit not perfect) service providers with
different capabilities for service provision, or a newcomer with no rep-
utation entering the ecosystem and finding partners that are willing
to collaborate with it.

• Efficiency: For those parts of the systems that have non-trivial com-
plexity, a more traditional benchmark load can be used to check the
processing, network and storage load caused by decision-making and
reputation processes. Different frequencies of decisions as well as in-
coming and outgoing reputation updates can be used to search for
the limits of the scalability of the system. If no limits are found as
the system handles all tested loads excellently, the load selection is
too uninteresting for the system.

• Recovery from problems: A recovery simulation falls under the
domain of reliability; it demonstrates how well the system tolerates
expectable problems that can be modelled statistically. In the context
of fixed loads, these include a service suddenly malfunctioning and
becoming temporarily unreliable, a well-behaved user suffering and
recovering from a defamation attempt against it (similarly to our
stream 3 in the second experiment), or even a service being overloaded
when its high reputation makes it too attractive to other actors in the
ecosystem, for example.

Analyzing the gains of attackers is not included in the recovery from
problems, even though they are one of the most important targets to study
right after ensuring constructive behaviour towards benevolent actors. In
the domain of security, attacks and defences form a continuous reaction
loop, where new attacker attempts and new protections alternate. In com-
parison, simulating a non-rational, fixed-behaviour attacker holds very little
interest, as it is more akin to malfunction patterns.

Malfunctions may produce an even stream of negative behaviour, and
it is positive that a reputation system notices this change and eliminates
the service until it recovers. However, it is important to note that in terms
of providing a social control mechanism, the reputation system does not
really deter random malfunctions; it simply detects them. A hope of good
reputation can of course motivate a service provider to try to provide a
more reliable service, but few providers will find it worth the investment
to completely eliminate downtime for the purpose of gaining a spotless
reputation.

6.5 Towards a benchmark for trust management systems 187

On the other hand, the threat of reputation loss should deter deliberate
attacks by making them more costly. For that to happen, attackers must
be rational, aiming to maximize gains and minimize costs.

Rational attackers therefore form the final and particularly interest-
ing target for analysis. Due to their dynamic behaviour, they are unsuit-
able for automated benchmarks, as they by necessity cannot be bound by
fixed behaviour patterns. Rational attackers must choose their strategies
based on what seems to work in and against a specific environment and
policy setting. They should have a reasonable set of available strategies
to choose from, together with defined cost and value for different actions
and outcomes. In a contest-like setting, researchers could compete with
two actors: an actor who gets things done while resisting attacks and re-
covering from problems, and an attacker approximating a “blind” attacker,
who aims to defect in ways beneficial to itself against the other actors with-
out full knowledge of the systems it tries to subvert. For a single system,
however, it is rather more informative to analyze the optimal strategy for
an attacker who has access to its reputation information. With this ap-
proach, we do not pollute the output with chance and assumptions about
the difficulty of deducing the information.

As a dynamic attacker is poorly suited for simulated benchmarks, the
attack resistance of different policies against such actors is better compared
through minimax analysis, utilizing shared cost models and study of the
resulting gained attacker utility points.

Rationality is not limited to attackers. Benevolent actors are also sus-
ceptible to different incentives created by a trust management system.
Some of these incentives may encourage behavioural strategies that are
unfortunate for the ecosystem, which should be considered when evaluat-
ing a system. For example, an important challenge raised in the context of
reputation systems has been the lack of incentive to spontaneously share
experiences.

A proposed solution has been to provide rewards for participation, but
if rewards are based on quantity rather than quality, it creates an incen-
tive to generate sloppy or random feedback as well. Similar issues lie in
defining quality as a basis of rewards: if feedback quality is measured by
defining statistical agreement with other feedback sources to be “correct”
and rewardable, whistleblowers trying to alert the community of sudden
misbehaviour will be punished rather than rewarded, and actual new and
useful information is discouraged. Like optimal attackers, we find that
these kinds of reward models must be analyzed for each system separately.

The objective reputation system proposed in Section 4.1.4 punishes ac-

188 6 Evaluation and experimentation

tors for trying to defame their transaction partners as well as allows them
to punish omission of positive experiences. This creates a contract-based
incentive to submit experiences correctly, and also reduces the fear of re-
taliatory negative reports observed in electronic marketplaces [RZ02]. This
approach provides a promising basis for a model of costs and benefits, where
the three branches of attack resistance and risk aversion, desire to do busi-
ness and maximize personal gains, and ecosystem sustainability through
correct punishment of misbehaviour can all be taken into account.

6.6 Chapter summary

In this chapter, we have evaluated the trust management system based
on six criteria: conceptual usability of trust aspects in decision making,
support for autonomy, adjustability for different business situations, imple-
mentation of social control, scalability and feasibility, and attack resistance.

Related to the evaluation for adjustability and attack resistance, we
have illustrated the behaviour of example trust decision and reputation
update policies in connection with different experience streams. The com-
pared policies have been chosen to represent different approaches to trust
decisions and the reputation update process. Each policy forms its own
balance between partially conflicting goals, such as avoiding information
sparsity and accepting only quality information. As a result, the policies
suit different environments and business needs, and demonstrate different
levels of robustness against malicious behaviour.

We have also performed a game-theoretical analysis of the policies’ re-
sistance against optimal attackers, who have full knowledge of their own
reputation in order to find the limits of the system’s attack resistance. The
policies performing best against these damage-maximizing attacks take ad-
vantage of central features in the TuBE information model: separation be-
tween minor and major effects of actions, and a measure of the credibility
of the information source.

Finally, as a part of evaluating our evaluation methods, we have dis-
cussed the state of the art on simulation experiments in this field, and
gauged the potential for building a benchmark for trust management in
the inter-enterprise collaboration setting. We conclude that benchmarks
could be set up for measuring some aspects of the collaboration, while
actual attack resistance is best measured by other means. Our analysis
of optimal attackers provides a new angle into this kind of evaluation in
comparison to the prevalent methods in the field.

Chapter 7

Conclusion

Reputation-based trust management allows service providers to flexibly dis-
cover new partners for inter-enterprise collaborations, and react to changes
in the behaviour of previously known partners. This thesis has presented a
trust management system for automating routine trust decisions on joining
and continuing in inter-enterprise collaborations. The trust decisions made
by the system are based on continuously updated reputation information,
and can be easily adjusted to different and changing business situations.
The trust decisions are semi-automated, making an explicit division be-
tween routine cases, where automated decisions can be made with high
certainty, and situations where the available information indicates a need
for human intervention.

Trust decisions are based on an evaluation of the risks and benefits of a
collaboration, as these are what constitutes the basis of rational decision-
making. To capture the realistic considerations of the human decision-
maker, we model these risks and benefits so that they cover different types
of assets that are essential for the enterprise. This ensures that human users
can accept and trust the system to make routine decisions for them. The
TuBE trust management system implements an information model that
provides better asset coverage than existing single-dimensional risk models,
and allows the system to adjust to changes in the business situation as well
as in the valuations of the enterprise.

Reputation-based trust management enforces social control in open ser-
vice ecosystems. Without social control, service ecosystems are limited
to closed communities of carefully selected and already familiar partners,
while with the help of reputation systems, these ecosystems can evolve and
grow in size more freely. The TuBE system combines both decisions based
on shared experiences, which reward good behaviour and sanction mis-
behaviour across the ecosystem, and credibility evaluations of the shared

189

190 7 Conclusion

experience information, in order to deter misbehaviour in reputation shar-
ing.

7.1 Results

The TuBE trust management system combines the flexibility of policy-
based decision systems with the learning capabilities of reputation-based
systems. It can therefore be easily adjusted to different and changing busi-
ness situations in inter-enterprise collaborations. The contributions of this
work are fourfold: a multi-dimensional information model for computa-
tional trust decisions, the algorithms for making trust decisions privately
within each enterprise, the aggregation algorithms for receiving, interpret-
ing, evaluating and consuming experience information through reputation
systems, and support for the enterprise to adjust to different business sit-
uations through private policies and metapolicies.

The trust information model we have presented extends the currently
prevalent models in two directions. First, introducing asset-awareness into
the model provides more expressive power in order to support meaningful
risk estimations in a range of different business scenarios. Second, comple-
menting the reputation factor with explicit trustor-dependent risk, impor-
tance, risk tolerance and context factors makes it possible to define flexible
decision policies that reflect the valuations and needs of the enterprise, and
use business-relevant concepts directly.

The processes for updating trust information and for producing trust
decisions can be modified as required by local policy, at defined points.
These points make it possible to easily adjust the behaviour of the trust
management system. The basic algorithms are simple, understandable and
scalable, and the separation between policy and implementation makes it
possible to easily adjust the system to different and changing business situ-
ations. These attributes are essential in forming a system which enterprise
users can rely on to make automated trust decisions for them.

The TuBE trust management system forms a part of the Pilarcos in-
frastructure for inter-enterprise collaboration management, and stands to
gain significant supporting information from other management activities
needed to establish and operate collaborations. With our prototype imple-
menting the core trust management system and a set of example policies,
we have been able to demonstrate that the system is feasible to imple-
ment, and the simulations show its adaptability in both trust decisions and
reputation updating.

We have evaluated the trust management architecture based on six

7.1 Results 191

criteria: the conceptual usability of the trust decision making, support for
autonomy, adjustability for different business situations, implementation
of social control in the ecosystem, scalability and feasibility, and attack
resistance. Through an analysis of the roles of different policies within the
trust management system through the full arc of information processing
and decisions, we have identified strengths and weaknesses in the example
policies. These characteristics reflect the tradeoffs between for example
fortifying the system against false reputation information, or being more
accepting in order to have access to a broader input.

The results of this work can be utilized on three different levels. On the
first level, we expect that small and medium-sized enterprises particularly
can benefit from computational support to reduce the cost of collaboration
management, enabling them to expand their networks beyond depending
on a fixed contractor-subcontractor relationship. On the second level, we
foresee that operators can benefit from offering services such as service offer
storage and population, reputation information distribution or risk mod-
elling of collaboration types. On the third level, entire domains of business,
such as the forest industry, could benefit from the proposed infrastructure,
including standardization of best practices in collaborations and reputation
information, which allows very heterogeneous actors in the field to overcome
their interoperability issues and enter into inter-enterprise collaborations.

In order to be applicable in practice for collaborations between indi-
vidual enterprises, we have made two important design choices: First, we
follow the principles of loose coupling and accept heterogeneity in order to
ensure that the Pilarcos interoperability middleware and the trust man-
agement and reputation systems in it can be adopted without binding all
enterprises under a single hub provider. Proposals based on everyone using
the same system are unrealistic because enterprise size, assets and goals
vary greatly. Consistent with this theme, TuBE can be configured to use
the exact parts of the trust information model that bring value to a specific
enterprise. The majority of solutions currently available focus on local-
ized problems, and very few look for supporting information from backend
infrastructure, such as TuBE gains from Pilarcos.

Second, we aim to preserve the autonomy of the participants, and in-
stead design a degree of inherent distrust into the system in the form of con-
tinuous monitoring and trust decisions, because this allows service providers
to collaborate without having to fully trust their collaborators. Enterprises
that are competitors in one field can work together in another, for example,
while they will naturally remain guarded about their privacy and internal
business practices. This sets our work apart from e.g. traditional virtual

192 7 Conclusion

enterprises and choreography-based collaboration models, which are based
on more rigid pre-formed trust relationships, and hub actors running a
collaboration over the other actors’ systems.

7.2 Future work

Future work within TuBE can be split within three central goals: reputation
interoperability, formal policy languages and trust information annotation
within relevant modelling contexts.

Interoperability between reputation networks is essential in making rel-
evant experience information available for trust decisions. TuBE acknowl-
edges the need for multiple reputation systems, and is designed to consol-
idate information from several different systems. It is highly unlikely that
the market should globally converge into a single reputation system, even if
a sudden “killer app” of enterprise reputation information were to emerge
at the right time. For this reason, reputation systems will have to be able
to share information. The reputation information formats, processing and
dissemination methods, the identities of trustees and recommenders, and
the necessary division between first-hand and third-party information are
all points of divergence between proposed systems [RKK07].

Interoperability is best supported by standardization. It is important
that such a process is timed correctly; currently, the field is not yet mature
enough for a credible proposal to have emerged for inter-enterprise col-
laborations. In the meanwhile, studying means of translating reputation
information from one network to another forms a basis for using multi-
ple reputation networks as information sources for the trust management
system within an enterprise.

Another point of future work is in raising the abstraction level of poli-
cies further in order to merge trust management policies into the larger
whole of collaboration management policies. Policies directing trust man-
agement must be expressed in a formal policy language in order to support
configurability at runtime. In the current prototype, they are implemented
as Java objects, which is a small, although significant, step away from fully
hard-coded policies. This close to the implementation level, policy defini-
tion resembles scripting the trust management system, and therefore the
language for these policies is less likely to be particularly useful outside the
system. The information model also sets limits to what kinds of policies
can be expressed.

Policy refinement makes it possible to provide higher-level configura-
tion options using business concepts in one policy language, which is then

7.2 Future work 193

translated to the more detailed and specialized policy language that can
directly interface with the TuBE implementation. Selecting or designing
suitable policy languages must be based on a requirement analysis of what
kinds of things need to be possible to express.

Annotating trust information into relevant models of e.g. inter-enterprise
collaboration and enterprise risk management makes the information avail-
able to automated processing. Producing the information relevant to trust
management should not require a separate modelling round within each
enterprise; it should be an integral part of modelling the situations trust
information is needed in.

Modelling information relevant to trust decisions as a part of for ex-
ample business network modelling makes it possible to enrich the trust
decisions without having to manually feed in the same information in mul-
tiple places. Annotations in business network models should prove to be a
useful first step in this direction.

194 7 Conclusion

References

[AH81] Axelrod, R. and Hamilton, W. D., The evolution of cooperation.
Science, 211,4489(1981), pages 1390–1396. URL http://www.

sciencemag.org/cgi/reprint/211/4489/1390.pdf.

[Alc10] Alcade, B., Trusted third party, who are you? Short Paper
Proceedings of the Fourth IFIP WG11.11 International Confer-
ence on Trust Management (IFIPTM 2010), Morioka, Iwate,
Japan, jun 2010, pages 49–59, URL http://www.ifip-tm2010.

org/lib/exe/fetch.php?media=shortpaper07.pdf.

[ARH00] Abdul-Rahman, A. and Hailes, S., Supporting trust in virtual
communities. Hawaii International Conference on System Sci-
ences HICSS 2000, January 2000, URL http://citeseer.ist.

psu.edu/article/abdul-rahman00supporting.html.

[ART11] The agent reputation and trust (ART) testbed, August
2011. http://megatron.iiia.csic.es/art-testbed/index.

html. [6.8.2010]

[Bay63] Bayes, T., An essay towards solving a problem in the doctrine
of chances, by the late Rev. Mr. Bayes, F.R.S. communicated by
Mr. Price in a letter to John Canton, A.M.F.R.S. Philosophical
Transactions of the Royal Society of London, 53, pages 370–418.
URL http://www.stat.ucla.edu/history/essay.pdf.

[BB05] Buchegger, S. and Boudec, J.-Y. L., Self-policing mobile ad hoc
networks by reputation systems. Communications Magazine,
pages 101–107. URL http://dx.doi.org/10.1109/MCOM.2005.

1470831.

[BCE+02] Bellwood, T., Clment, L., Ehnebuske, D., Hately, A.,
Hondo, M., Husband, Y. L., Januszewski, K., Lee, S., Mc-
Kee, B., Munter, J. and von Riegen, C., UDDI Version 3.0.

195

196 References

UDDI Spec Technical Committee Specification, 19 July 2002.
UDDI.org, July 2002. URL http://uddi.org/pubs/uddi-v3.

00-published-20020719.htm.

[Bet10] Better Business Bureau, 2010. http://www.bbb.org/. [29.4.2008]

[BFK98] Blaze, M., Feigenbaum, J. and Keromytis, A. D., KeyNote: Trust
management for public-key infrastructures (position paper). Pro-
ceedings of Security Protocols: 6th International Workshop, Cam-
bridge, UK, April 1998. Springer-Verlag, LNCS 1550/1998, April
1998, pages 59–63, URL http://www.springerlink.com/link.

asp?id=6ku13fr5jt3mgdxk.

[BFL96] Blaze, M., Feigenbaum, J. and Lacy, J., Decentralized trust
management. Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, California, May 1996, IEEE, pages 164–
173, URL http://ieeexplore.ieee.org/iel3/3742/10940/

00502679.pdf.

[BHM+04] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,
M., Ferris, C. and (Eds), D. O., Web Services architecture. W3C
Working Group Note 11 February 2004. Technical Report, World
Wide Web Consortium, February 2004. URL http://www.w3.

org/TR/ws-arch/.

[BS04] Brændeland, G. and Stølen, K., Using risk analysis to as-
sess user trust - a net-bank scenario. Proceedings of Trust
Management: Second International Conference, iTrust
2004, Oxford, UK, March 29–April 1, 2004. Springer-
Verlag, LCNS 2995/2004, March 2004, pages 146–160, URL
http://springerlink.metapress.com/openurl.asp?genre=

article&issn=0302-9743&volume=2995&spage=146.

[C+03] Cahill, V. et al., Using trust for secure collaboration in un-
certain environments. Pervasive Computing, 2,3(2003), pages
52–61. URL http://ieeexplore.ieee.org/iel5/7756/27556/

01228527.pdf.

[CFL+97] Chu, Y.-H., Feigenbaum, J., LaMacchia, B., Resnick, P. and
Strauss, M., REFEREE: Trust management for Web applications.
Computer Networks and ISDN Systems, 29,8–13(1997), pages
953–964. URL http://dx.doi.org/10.1016/S0169-7552(97)

00009-3.

References 197

[CKK02] Clements, P., Kazman, R. and Klein, M., Evaluating Software
Architectures: Methods and Case Studies. Addison Wesley, 2002.

[CW+08] Carlsson, C., Weissmann, O. et al., AssessGrid D4.1: Advanced
risk assessment, version 2.5. Technical Report, IST Informa-
tion Society, Sixth Framework Programme, September 2008.
URL http://www.assessgrid.eu/fileadmin/AssessGrid/

usermounts/publications/deliverables/ASSESSGRID_D4.1_

Advanced_Risk_Assessment.pdf.

[DDLS01] Damianou, N., Dulay, N., Lupu, E. and Sloman, M., The Pon-
der policy specification language. Workshop on Policies for Dis-
tributed Systems and Networks (Policy2001), HP Labs Bristol, 29-
31 Jan 2001, volume 1995 of LNCS, January 2001, pages 18–38,
URL http://citeseer.ist.psu.edu/damianou01ponder.html.

[DFM00] Dingledine, R., Freedman, M. and Molnar, D. Accountability
measures for peer-to-peer systems, chapter 16. O’Reilly Pub-
lishers, 2000. URL http://www.freehaven.net/doc/oreilly/

accountability-ch16.html.

[DLB08] Dondio, P., Longo, L. and Barrett, S., A translation
mechanism for recommendations. In Karabulut, Y. et al.
[KMHJ08], pages 87–102, URL http://dx.doi.org/10.1007/

978-0-387-09428-1_6.

[Dou02] Douceur, J. R., The sybil attack. Electronic Proceedings of the
1st International Workshop on Peer-to-Peer systems (IPTPS’02),
Cambridge, MA, USA, March 2002, page 101, URL http://www.

cs.rice.edu/Conferences/IPTPS02/101.pdf.

[eBa11] The eBay online marketplace, 2011. http://www.ebay.com/.
[1.12.2008]

[Ell99] Ellison, C. M., The nature of a useable PKI. Computer Net-
works, 31, pages 823–830. URL http://dx.doi.org/10.1016/

S1389-1286(98)00018-8.

[Ell04] Ellison, C. M., SPKI/SDSI certificate documentation, Novem-
ber 2004. http://world.std.com/~cme/html/spki.html.
[31.7.2007]

[Eur07] European Commission, EC FP7 ICTWork Programme. Technical
Report, EC, June 2007. URL http://cordis.europa.eu/fp7/

ict/.

198 References

[EWN+03] English, C., Wagealla, W., Nixon, P., Terzis, S., McGettrick,
A. and Lowe, H., Trusting collaboration in global computing sys-
tems. First International Conference on Trust Management, May
2003, pages 136–149, URL http://springerlink.metapress.

com/link.asp?id=yfhe8gg1398w088e.

[FAB+06] Fitzgerald, B., Achatz, R., Bosch, J., Rombach, D., Beauvais,
T., Fuggetta, A., Banâtre, J.-P., Banchilon, F., De Panfilis, S.,
Bomarius, F., Saikkonen, H., Kuilder, H., Boeckle, G. and Olsson,
C. M., The software and services challenge. Technical Report,
NESSI, January 2006. URL ftp://ftp.cordis.europa.eu/pub/

ist/docs/directorate_d/st-ds/fp7-report_en.pdf.

[FF03] Fehr, E. and Fischbacher, U., The nature of human altruism.
Nature, 425. URL http://dx.doi.org/10.1038/nature02043.

[FKM+05] Fullam, K. K., Klos, T. B., Muller, G., Sabater, J., Schlosser,
A., Topol, Z., Barber, K. S., Rosenschein, J. S., Vercouter, L.
and Voss, M., A specification of the Agent Reputation and Trust
(ART) testbed: experimentation and competition for trust in
agent societies. Proceedings of the fourth international joint con-
ference on Autonomous agents and multiagent systems, 2005,
pages 512–518, URL http://doi.acm.org/10.1145/1082473.

1082551.

[FKÖD04] Fernandes, A., Kotsovinos, E., Östring, S. and Dragovic, B.,
Pinocchio: Incentives for honest participation in distributed trust
management. Proceedings of Trust Management: Second Interna-
tional Conference, iTrust 2004, Oxford, UK, March 29–April 1,
2004. Springer-Verlag, LNCS 2995/2004, March 2004, pages 64–
77, URL http://springerlink.metapress.com/openurl.asp?

genre=article&issn=0302-9743&volume=2995&spage=63.

[GOGGF10] Gal-Oz, N., Grinshpoun, T., Gudes, E. and Friese, I., TRIC:
An infrastructure for trust and reputation across virtual com-
munities. Proceedings of the Fifth International Conference
on Internet and Web Applications and Services (ICIW 2010),
Barcelona, Spain, May 2010, IEEE, pages 43–50, URL http:

//doi.ieeecomputersociety.org/10.1109/ICIW.2010.14.

[GOGH08] Gal-Oz, N., Gudes, E. and Hendler, D., A robust and knot-
aware trust-based reputation model. In Karabulut, Y. et al.

References 199

[KMHJ08], pages 167–182, URL http://dx.doi.org/10.1007/

978-0-387-09428-1_11.

[Gol11] Gollmann, D., From access control to trust management, and
back — a petition. Trust Management V; 5th IFIP WG 11.11
International Conference, IFIPTM 2011; Proceedings, volume 358
of IFIP AICT, Copenhagen, Denmark, June/July 2011, Springer,
pages 1–8.

[GS01] Grandison, T. W. and Sloman, M., Sultan - a language
for trust specification and analysis. Eighth Workshop of
the HP OpenView University Association, Berlin, June 24-
27, 2001. HP OpenView University Association, June 2001.
http://www.hpovua.org/PUBLICATIONS/PROCEEDINGS/8_

HPOVUAWS/Papers/Paper01.2-Grandison-Sultan.pdf.
[15.8.2005]

[GS02] Grandison, T. and Sloman, M., Specifying and analysing trust
for Internet applications. Proceedings of 2nd IFIP Confer-
ence on e-Commerce, e-Business, e-Government I3e2002, Lisbon,
Portugal, October 2002, URL http://citeseer.ist.psu.edu/

grandison02specifying.html.

[GSMM08] Gomez, M., Sabater-Mir, J. and Muller, G., Improving the
ART-testbed, thoughts and reflections. Workshop on com-
petitive agents in ”Agent Reputation and Trust Testbed, Sala-
manca, 2008, pages 1–15, URL http://megatron.iiia.csic.

es/art-testbed/pdf/2007ArtCaepiaWS.pdf.

[Hei08] Heikkinen, S., Applicability of host identities to imple-
ment non-repudiable service usage. International Journal
on Advances in Systems and Measurements, 1,1(2008), pages
14–28. URL http://www.iariajournals.org/systems_and_

measurements/sysmea_v1_n1_2008_paged.pdf.

[HJS06a] Huynh, T. D., Jennings, N. R. and Shadbolt, N. R., Certi-
fied reputation: how an agent can trust a stranger. Fifth In-
ternational Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-06), Hakodate, Japan, May 2006, URL
http://eprints.ecs.soton.ac.uk/12587/.

[HJS06b] Huynh, T. D., Jennings, N. R. and Shadbolt, N. R., An in-
tegrated trust and reputation model for open multi-agent sys-
tems. Journal of Autonomous Agents and Multi-Agent Systems,

200 References

13,2(2006), pages 119–154. URL http://eprints.ecs.soton.

ac.uk/12593/.

[HKL+04] Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P. F.,
Sahuguet, A., Varadarajan, S. and Vyas, A., Enabling context-
aware and privacy-conscious user data sharing. Proceedings of
the 2004 IEEE International Conference on Mobile Data Man-
agement (MDM’04), Berkeley, California, USA, 2004, IEEE,
pages 187–198, URL http://dx.doi.org/10.1109/MDM.2004.

1263065.

[Huh06] Huhns, M. N., A research agenda for agent-based service-oriented
architectures. Cooperative Information Agents X, volume 4149
of Lecture Notes in Computer Science, 2006, pages 8–22, URL
http://dx.doi.org/10.1007/11839354_2.

[INT05] INTEROP-NoE Task Group 7, Roadmap for TG7: Interoperabil-
ity challenges of trust, confidence, security and policies. Techni-
cal Report, EU IST Information Society, 2005. Available through
http://interop-vlab.eu/.

[INT07a] INTEROP-NoE Task Group 7, Deliverable DTG7.2 — Report
on the horizontal issues and task group final report M36 includ-
ing subtask research results following the five task group topics.
Technical Report, EU IST Information Society, 2007. Available
through http://interop-vlab.eu/.

[INT07b] INTEROP-NoE Task Group 7, Deliverable DTG7.3 — Research
into non-functional aspects of interoperability. Technical Report,
EU IST Information Society, 2007. Available through http://

interop-vlab.eu/.

[ITU97] ITU/ISO, ODP Trading Function – Part 1: Specification, 1997.
ITU/T Draft Rec X950–1.

[JH07] Jøsang, A. and Haller, J., Dirichlet reputation systems. Proceed-
ings of the Second International Conference on Availability, Re-
liability and Security (ARES 2007), Vienna, Austria, April 2007,
IEEE Computer Society, pages 112–119, URL http://dx.doi.

org/10.1109/ARES.2007.71.

[JHF03] Jøsang, A., Hird, S. and Faccer, E., Simulating the ef-
fect of reputation systems on e-markets. Trust Manage-
ment: First International Conference, iTrust 2003, Her-

References 201

aklion, Crete, Greece, May 28–30, 2003. Proceedings, vol-
ume LNCS 2692/2003, May 2003, pages 179–194, URL
http://springerlink.metapress.com/openurl.asp?genre=

article&issn=0302-9743&volume=2692&spage=179.

[JI02] Jøsang, A. and Ismail, R., The beta reputation system.
Proceedings of the 15h Bled Electronic Commerce Confer-
ence, Bled, Slovenia, June 2002, pages 324–337, URL http:

//ecom.fov.uni-mb.si/proceedings.nsf/Proceedings/

D9E48B66F32A7DFFC1256E9F00355B37/$File/josang.pdf.

[JIB07] Jøsang, A., Ismail, R. and Boyd, C., A survey of trust and
reputation systems for online service provision. Decision Sup-
port Systems: Emerging Issues in Collaborative Commerce,
43,2(2007), pages 618–644. URL http://dx.doi.org/10.1016/

j.dss.2005.05.019.

[JMP06] Jøsang, A., Marsh, S. and Pope, S., Exploring different types
of trust propagation. Trust management, LNCS 3986, 2006,
pages 179–192, URL http://folk.uio.no/josang/papers/

JPM2006-iTrust.pdf.

[JP04] Jøsang, A. and Presti, S. L., Analysing the relationship be-
tween risk and trust. Proceedings of Trust Management: Sec-
ond International Conference, iTrust 2004, Oxford, UK, March
29–April 1, 2004. Springer-Verlag, LNCS 2995/2004, March
2004, pages 135–145, URL http://springerlink.metapress.

com/link.asp?id=mklyh19x5yb1c8n9.

[JPBB04] Jung, J., Paxson, V., Berger, A. W. and Balakrishnan, H.,
Fast portscan detection using sequential hypothesis testing. Pro-
ceedings of the IEEE Symposium on Security and Privacy,
May 2004, pages 211–225, URL http://dx.doi.org/10.1109/

SECPRI.2004.1301325.

[Kar03] Karabulut, Y., Implementation of an agent-oriented trust
management infrastructure based on a hybrid PKI model.
Proceedings of Trust Management: First International Confer-
ence, iTrust 2003, Heraklion, Crete, Greece, May 28–30, 2003.
Springer-Verlag, LNCS 2692/2003, May 2003, pages 318–331,
URL http://springerlink.metapress.com/openurl.asp?

genre=article&issn=0302-9743&volume=2692&spage=318.

202 References

[Kau11] Kaur, P., Users’ trust decisions on inter-enterprise collaborations.
Master’s thesis, Aalto University, Computer Science and Engi-
neering, September 2011.

[KBAW94] Kazman, R., Bass, L., Abowd, G. and Webb, M., Saam: A
method for analyzing the properties of software architectures.
Proceedings of the 16th International Conference on Software En-
gineering, Sorrento, Italy, 1994, pages 81–90.

[KBR05] Kinateder, M., Baschny, E. and Rothermel, K., Towards a generic
trust model - comparison of various trust update algorithms.
Proceedings of Trust Management: Third International Confer-
ence, iTrust 2005, Paris, France, May 23–26, 2005, Herrmann,
P., Issarny, V. and Shiu, S., editors, volume 3477 of LNCS.
Springer-Verlag, April 2005, pages 177–192, URL http://www.

springerlink.com/link.asp?id=qh7db1k6uqr3bl76.

[KHKR06] Kerschbaum, F., Haller, J., Karabulut, Y. and Robinson, P.,
PathTrust: A trust-based reputation service for virtual organi-
zation formation. Proceedings of Trust Management: 4th Inter-
national Conference, iTrust 2006, Pisa, Italy, May 16–19, 2006,
volume 3986 of LNCS. Springer-Verlag, May 2006, pages 193–205,
URL http://dx.doi.org/10.1007/11755593_15.

[KKC00] Kazman, R., Klein, M. and Clements, P., ATAM: Method for ar-
chitecture evaluation. Technical Report CMU/SEI-2000-TR-004,
ESC-TR-2000-004, Carnegie Mellon Software Engineering Insti-
tute, August 2000. URL http://www.sei.cmu.edu/reports/

00tr004.pdf.

[KLMR07] Kutvonen, L., Linington, P., Morin, J.-H. and Ruohomaa, S.,
editors, Pre-proceedings of IS-TSPQ 2007 — The 2nd interna-
tional workshop on Interoperability solutions to Trust, Security,
Policies and QoS for Enhanced Enterprise Systems. University of
Helsinki, Department of Computer Science Publications Series B,
Report B-2007-3, March 2007.

[KMHJ08] Karabulut, Y., Mitchell, J., Herrmann, P. and Jensen, C. D.,
editors. Trust Management II, volume 263 of IFIP International
Federation for Information Processing, Pisa, Italy, May 2008.
Springer.

[KMR05] Kutvonen, L., Metso, J. and Ruokolainen, T., Inter-enterprise
collaboration management in dynamic business networks. On

References 203

the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE, volume 3760 of Lecture Notes
in Computer Science, Agia Napa, Cyprus, November 2005,
Springer-Verlag, pages 593–611, URL http://dx.doi.org/10.

1007/11575771_37.

[KMR07] Kutvonen, L., Metso, J. and Ruohomaa, S., From trading to
eCommunity management: Responding to social and contrac-
tual challenges. Information Systems Frontiers (ISF) - Special
Issue on Enterprise Services Computing: Evolution and Chal-
lenges, 9,2–3(2007), pages 181–194. URL http://dx.doi.org/

10.1007/s10796-007-9031-x.

[KP03] Kinateder, M. and Pearson, S., A privacy-enhanced peer-to-peer
reputation system. Proceedings of E-Commerce and Web Tech-
nologies: 4th International Conference, EC-Web Prague, Czech
Repbulic, September 2-5, 2003, volume 2738 of LNCS. Springer-
Verlag GmbH, September 2003, pages 206–215, URL http://

www.springerlink.com/link.asp?id=yd15xa1pf68g9jmx.

[KR03] Kinateder, M. and Rothermel, K., Architecture and algorithms
for a distributed reputation system. Proceedings of Trust Man-
agement: First International Conference, iTrust 2003, Herak-
lion, Crete, Greece, May 28-30, 2003, Nixon, P. and Terzis,
S., editors, volume 2692 of LNCS. Springer-Verlag, May 2003,
pages 1–16, URL http://www.springerlink.com/link.asp?

id=1e11b5pcvww3qvuf.

[KRM07] Kutvonen, L., Ruokolainen, T. and Metso, J., Interoperabil-
ity middleware for federated business services in web-Pilarcos.
International Journal of Enterprise Information Systems, Spe-
cial issue on Interoperability of Enterprise Systems and Appli-
cations, 3,1(2007), pages 1–21. URL http://www.idea-group.

com/articles/details.asp?id=6597.

[KRM08] Kutvonen, L., Ruohomaa, S. and Metso, J., Automat-
ing decisions for inter-enterprise collaboration management.
Proceedings of the 9th IFIP Working Conference on Vir-
tual Enterprises (PRO-VE 2008), Poznan, Poland, Septem-
ber 2008, URL http://www.cs.helsinki.fi/group/cinco/

publications/public_pdfs/kutvonen08automating.pdf.

204 References

[KRRM08] Kutvonen, L., Ruokolainen, T., Ruohomaa, S. and Metso, J.,
Service-oriented middleware for managing inter-enterprise collab-
orations. Global Implications of Modern Enterprise Informa-
tion Systems: Technologies and Applications, Advances in Enter-
prise Information Systems (AEIS). IGI Global, December 2008,
pages 209–241, URL http://www.igi-global.com/reference/

details.asp?id=9648.

[KSGM03] Kamvar, S., Schlosser, M. and Garcia-Molina, H., The
EigenTrust algorithm for reputation management in P2P net-
works. Proceedings of the Twelfth International World-Wide Web
Conference (WWW03), Budapest, Hungary, May 2003, pages
446–458, URL http://www2003.org/cdrom/papers/refereed/

p446/p446-kamvar/index.html.

[Kut02] Kutvonen, L., Automated management of interorganisa-
tional applications. Sixth International Enterprise Dis-
tributed Object Computing Conference (EDOC ’02), Lau-
sanne, Switzerland, September 2002, IEEE, pages 27–38, URL
http://www.cs.helsinki.fi/group/pilarcos/deliverables/

kutvonen_management_edoc_2002.pdf.

[Lam81] Lamport, L., Password authentication with insecure communica-
tion. Communications of the ACM, 24. URL http://dx.doi.

org/10.1145/358790.358797.

[LCDP06] Li, M.-S., Cabral, R., Doumeingts, G. and Popplewell, K.,
Enterprise interoperability. Research Roadmap. Technical Re-
port, EC, July 2006. URL http://cordis.europa.eu/ist/

ict-ent-net/ei-roadmap_en.htm.

[LdBSV04] Lund, M. S., den Braber, F., Stølen, K. and Vraalsen, F.,
An UML profile for the identification and analysis of security
risks during structured brainstorming. Technical Report, SIN-
TEF ICT, May 2004. URL http://coras.sourceforge.net/

documents/uml-sa-report2.pdf.

[LM10] Li, Q. and Martin, K. M., A secure marketplace for online services
that induces good conduct. Short Paper Proceedings of the Fourth
IFIP WG11.11 International Conference on Trust Management
(IFIPTM 2010), Morioka, Iwate, Japan, jun 2010, pages 65–
72, URL http://www.ifip-tm2010.org/lib/exe/fetch.php?

media=shortpaper09.pdf.

References 205

[LMS+07] Lysemose, T., Mahler, T., Solhaug, B., Bing, J., Elgesem, D. and
Stølen, K., ENFORCE conceptual framework. Technical Report,
SINTEF ICT, 2007. URL http://www.uib.no/People/bso002/

reports/A1209_enforceCF.pdf.

[LS+05] Lutz Schubert, M. W. et al., TrustCoM reference architecture, De-
liverable D09. Technical Report, TrustCoM WP27, August 2005.
URL http://www.eu-trustcom.com/DownDocumentation.php?

tipo=docu&id=208.

[LSB03] Lee, S., Sherwood, R. and Bhattacharjee, B., Cooperative peer
groups in NICE. Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
2003), volume 2. IEEE, April 2003, pages 1272–1282, URL http:

//ieeexplore.ieee.org/iel5/8585/27206/01208963.pdf.

[M+06] MacKenzie, C. M. et al., Oasis reference model for ser-
vice oriented architecture 1.0. Technical Report, OASIS,
July 2006. URL http://www.oasis-open.org/committees/

download.php/19361/soa-rm-cs.pdf.

[MA07] Msanjila, S. S. and Afsarmanesh, H., HICI: An approach for iden-
tifying trust elements — the case of technological trust perspective
in VBEs. Proceedings of the Second International Conference on
Availability, Reliability and Security (ARES 2007), Vienna, Aus-
tria, April 2007, IEEE Computer Society, pages 757–764, URL
http://dx.doi.org/10.1109/ARES.2007.94.

[MAH+06] Msanijla, S. S., Afsarmanesh, H., Hodik, J., Rehk, M. and
Camarinha-Matos, L. M., ECOLEAD deliverable D21.4b: Creat-
ing and supporting trust culture in VBEs. Technical Report, EC
Information Society, March 2006. URL http://www.ve-forum.

org/projects/284/Deliverables/D21.4b_Final.pdf.

[MC96] McKnight, D. H. and Chervany, N. L., The meanings of
trust. Technical Report, University of Minnesota, MIS Research
Center, 1996. URL http://misrc.umn.edu/workingpapers/

fullPapers/1996/9604_040100.pdf.

[MG06] Mens, T. and Gorp, P. V., A taxonomy of model transforma-
tion. Proceedings of the International Workshop on Graph and
Model Transformation (GraMoT 2005), volume 152 of Electronic
Notes in Theoretical Computer Science. Elsevier, March 2006,

206 References

pages 125–142, URL http://dx.doi.org/10.1016/j.entcs.

2005.10.021.

[MG10] Mehandiev, N. and Grefen, P., editors, Dynamic Business Process
Formation for Instant Virtual Enterprises. Advanced Information
and Knowledge Processing. Springer, June 2010.

[ML08] Margolin, N. B. and Levine, B. N., Quantifying resistance
to the Sybil attack. Proceedings of Financial Cryptogra-
phy and Data Security (FC 2008), Cozumel, Mexico, January
2008, Springer, pages 1–15, URL http://dx.doi.org/10.1007/

978-3-540-85230-8_1.

[MMH02] Mui, L., Mohtashemi, M. and Halberstadt, A., A computa-
tional model of trust and reputation. 35th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’02), volume 7.
IEEE Computer Society, January 2002, page 188, URL http://

doi.ieeecomputersociety.org/10.1109/HICSS.2002.994181.

[MRVK10] Moen, P., Ruohomaa, S., Viljanen, L. and Kutvonen, L., Safe-
guarding against new privacy threats in inter-enterprise collabo-
ration environments. Technical Report C-2010-56, University of
Helsinki, Department of Computer Science, 2010.

[Nat10] National consumer agency of Ireland, 2010. http://www.

consumerconnect.ie/. [14.1.2010]

[NDA+07] Nachira, F., Dini, P., A.Nicolai, Louarn, M. and Léon,
L., Digital Business Ecosystems. European Commission,
2007. URL http://www.digital-ecosystems.org/book/

de-book2007.html.

[NPC+04] Norman, T. J., Preece, A. D., Chalmers, S., Jennings, N. R.,
Luck, M., Dang, V. D., Nguyen, T. D., Deora, V., Shao, J., Gray,
W. A. and Fiddian, N. J., Agent-based formation of virtual organ-
isations. Knowledge-based systems, 17,2–4(2004), pages 103–111.
URL http://dx.doi.org/10.1016/j.knosys.2004.03.005.

[Nur06] Nurmi, P., A Bayesian framework for online reputation sys-
tems. Proceedings of the Advanced International Conference on
Telecommunications and International Conference on Internet
and Web Applications and Services AICT/ICIW ’06). IEEE Com-
puter Society, February 2006, page 121, URL http://dx.doi.

org/10.1109/AICT-ICIW.2006.2.

References 207

[Nur07] Nurmi, P., Perseus – a personalized reputation system. Proceed-
ings of the IEEE/WIC/ACM International Conference on Web
Intelligence. IEEE Computer Society, 2007, pages 798–804, URL
http://dx.doi.org/10.1109/WI.2007.121.

[OAS07] OASIS Web Service Secure Exchange TC, WS-Trust 1.3 OASIS
Standard. OASIS, March 2007. URL http://docs.oasis-open.

org/ws-sx/ws-trust/v1.3/ws-trust.pdf.

[Obr04] Obreiter, P., A case for evidence-aware distributed reputation
systems overcoming the limitations of plausibility considerations.
Proceedings of Trust Management: Second International Confer-
ence, iTrust 2004, Oxford, UK, March 29–April 1, 2004. Springer-
Verlag, LNCS 2995/2004, March 2004, pages 33–47, URL http:

//www.springerlink.com/link.asp?id=ucc149f215dhyj0y.

[Pap03] Papazoglou, M. P., Service-oriented computing: Concepts, char-
acteristics, and directions. Proceedings of the 4th International
Conference on Web Information Systems Engineering (WISE
2003). IEEE Computer Society, December 2003, URL http:

//infolab.uvt.nl/pub/papazogloump-2003-51.pdf.

[PTD+06] Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F. and
Krämer, B. J., Service-oriented computing: A research roadmap.
Service Oriented Computing (SOC), Cubera, F., Krämer, B. J.
and Papazoglou, M. P., editors, number 05462 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2006, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, URL http://drops.dagstuhl.de/

opus/volltexte/2006/524/.

[PTJ+06] Patel, J., Teacy, W. T. L., Jennings, N. R., Luck, M., Chalmers,
S., Oren, N., Norman, T. J., Preece, A. D., Gray, P. M. D.,
Shercliff, G., Stockreisser, P. J., Shao, J., Gray, W. A., Fiddian,
N. J. and Thompson, S. G., CONOISE-G: agent-based virtual
organisations. Proceedings of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2006), Hakodate, Japan, 2006, ACM, pages 1459–1460, URL
http://doi.acm.org/10.1145/1160633.1160914.

[RGAN06] Rabelo, R. J., Gusmeroli, S., Arana, C. and Nagellen, T., The
ECOLEAD ICT infrastructure for collaborative networked orga-

208 References

nizations. Network-Centric Collaboration and Supporting Frame-
works, volume 224. Springer, 2006, pages 451–460.

[RHK11] Ruohomaa, S., Hankalahti, A. and Kutvonen, L., Detecting and
reacting to changes in reputation flows. Trust Management V,
volume 358 of IFIP Advances in Information and Communication
Technology, Copenhagen, Denmark, June 2011, pages 19–34, URL
http://dx.doi.org/10.1007/978-3-642-22200-9_5.

[RJ96] Rasmusson, L. and Jansson, S., Simulated social control for secure
Internet commerce. Proceedings of the 1996 workshop on New
Security Paradigms. ACM Press, 1996, pages 18–25, URL http:

//doi.acm.org/10.1145/304851.304857.

[RK05] Ruohomaa, S. and Kutvonen, L., Trust management survey. Pro-
ceedings of the iTrust 3rd International Conference on Trust Man-
agement, 23–26, May, 2005, Rocquencourt, France, volume 3477
of Lecture Notes in Computer Science. Springer-Verlag, May 2005,
pages 77–92, URL http://dx.doi.org/10.1007/11429760_6.

[RK06] Ruohomaa, S. and Kutvonen, L., Luottamuksenhallinta avoimissa
palveluverkoissa. Tietojenkäsittelytiede, 25, pages 51–60. In
Finnish.

[RK07] Ruokolainen, T. and Kutvonen, L., Service Typing in Collabo-
rative Systems. Enterprise Interoperability: New Challenges and
Approaches, Doumeingts, G., Müller, J., Morel, G. and Vallespir,
B., editors. Springer, April 2007, pages 343–354.

[RK10] Ruohomaa, S. and Kutvonen, L., Trust and distrust in adaptive
inter-enterprise collaboration management. Journal of Theoreti-
cal and Applied Electronic Commerce Research, 5,2(2010), pages
118–136. URL http://www.jtaer.com/aug2010/ruohomaa_

kutvonen_p7.pdf.

[RK11] Ruohomaa, S. and Kutvonen, L., From subjective reputation to
verifiable experiences - implementing social control in open service
ecosystems. Technical Report, University of Helsinki, Department
of Computer Science, 2011. Internal technical report.

[RKK07] Ruohomaa, S., Kutvonen, L. and Koutrouli, E., Reputation man-
agement survey. Proceedings of the 2nd International Conference
on Availability, Reliability and Security (ARES 2007), Vienna,

References 209

Austria, April 2007, IEEE Computer Society, pages 103–111, URL
http://dx.doi.org/10.1109/ARES.2007.123.

[RN03] Russell, S. and Norvig, P. Artificial Intelligence — A Modern
Approach, chapter 6: Adversarial search. Prentice Hall, second
edition, 2003.

[RRRJ07a] Reece, S., Roberts, S., Rogers, A. and Jennings, N. R., A multi-
dimensional trust model for heterogeneous conract observations.
Twenty-second AAAI conference on artificial intelligence, Van-
couver, Canada, July 2007, URL http://eprints.ecs.soton.

ac.uk/13867/.

[RRRJ07b] Reece, S., Rogers, A., Roberts, S. and Jennings, N. R.,
Rumours and reputation: evaluating multi-dimensional trust
within a decentralized reputation system. The sixth international
joint conference on autonomous agents and multi-agent systems
(AAMAS-07), Honolulu, Hawaii, USA, May 2007, pages 1063–
1070, URL http://eprints.ecs.soton.ac.uk/13260/.

[RSS08] Refsdahl, A., Solhaug, B. and Stølen, K., An UML-based method
for the development of policies to support trust management. In
Karabulut, Y. et al. [KMHJ08], pages 33–50, URL http://dx.

doi.org/10.1007/978-0-387-09428-1_3.

[Ruo06] Ruohomaa, S., Trust management concepts and methodology.
Proceedings of FDPW’2005—Advances in Methods of Modern In-
formation Technology, volume 7. Petrozavodsk State University,
2006, pages 180–193.

[RZ02] Resnick, P. and Zeckhauser, R., Trust among strangers in in-
ternet transactions: Empirical analysis of eBay’s reputation sys-
tem. The Economics of the Internet and E-Commerce, volume 11
of Advances in Applied Microeconomics. Elsevier Science, Ams-
terdam, 2002, pages 127–157, URL http://www.si.umich.edu/

~presnick/papers/ebayNBER/RZNBERBodegaBay.pdf.

[RZFK00] Resnick, P., Zeckhauser, R., Friedman, E. and Kuwabara, K.,
Reputation systems. Communications of the ACM, 43,12(2000),
pages 45–48. URL http://doi.acm.org/10.1145/355112.

355122.

210 References

[Sch06] Schmidt, D. C., Model-driven engineering. IEEE Computer, 39,
pages 25–31. URL http://www.cs.wustl.edu/~schmidt/GEI.

pdf.

[SES07] Solhaug, B., Elgesem, D. and Stølen, K., Specifying policies us-
ing UML sequence diagrams: An evaluation based on a case
study. Proceedings of the Eigth IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY’07).
IEEE Computer Society, June 2007, pages 19–28, URL http:

//dx.doi.org/10.1109/POLICY.2007.42.

[SFJ+03] Seigneur, J.-M., Farrell, S., Jensen, C. D., Gray, E.
and Yong, C., End-to-end trust starts with recognition.
Technical Report, Trinity College Dublin, 2003. URL
http://www.cs.tcd.ie/publications/tech-reports/

reports.03/TCD-CS-2003-05.pdf.

[Sol06] Solove, D. J., A taxonomy of privacy. University of Pennsylvania
Law Review, 154,3(2006), pages 477–560. URL http://ssrn.

com/abstract=667622. GWU Law School Public Law Research
Paper No. 129.

[Sol09] Solhaug, B., Policy Specification Using Sequence Diagrams. Ap-
plied to Trust Management. Ph.D. thesis, University of Bergen,
Bergen, Norway, October 2009. URL https://bora.uib.no/

handle/1956/3723.

[SS02] Sabater, J. and Sierra, C., Reputation and social network anal-
ysis in multi-agent systems. AAMAS ’02: Proceedings of the
First International Joint Conference on Autonomous Agents and
MultiAgent Systems, Bologna, Italy, 2002, pages 475–482, URL
http://doi.acm.org/10.1145/544741.544854.

[Sta10] Standard & Poor’s website, 2010. http://www.

standardandpoors.com. [25.7.2007]

[SVB06] Schlosser, A., Voss, M. and Brückner, L., On the simulation of
global reputation systems. Journal of Artificial Societies and So-
cial Simulation, 9,1(2006). URL http://jasss.soc.surrey.ac.

uk/9/1/4/4.pdf.

[SXL05] Srivatsa, M., Xiong, L. and Liu, L., TrustGuard: countering
vulnerabilities in reputation management for decentralized over-
lay networks. WWW ’05: Proceedings of the 14th International

References 211

Conference on the World Wide Web, New York, USA, May
2005, ACM Press, pages 422–431, URL http://doi.acm.org/

10.1145/1060745.1060808.

[TCRJ08] Teacy, W. L., Chalkiadakis, G., Rogers, A. and Jennings, N. R.,
Sequential decision making with untrustworthy service providers.
Proceedings of the 7th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2008), Estoril, Portu-
gal, 2008, URL http://eprints.ecs.soton.ac.uk/15168/.

[THD+07] Teacy, W. L., Huynh, T. D., Dash, R. K., Jennings, N. R.,
Luck, M. and Patel, J., The ART of IAM: The winning strategy
for the 2006 competition. Proceedings of the AAMAS Workshop
on Trust in Agent Societies, Hawaii, USA, 2007, URL http://

eprints.ecs.soton.ac.uk/13718/.

[The05] The Athena project, Deliverable D.A2.1: Cross-organisational
business process requirements and the state of the art in research,
technology and standards; version 2.0. Technical Report, Athena
project, November 2005. URL http://interop-vlab.eu/ei_

public_deliverables/athena-deliverables/A2/d-a2.1.

[TPJL06] Teacy, W. T. L., Patel, J., Jennings, N. R. and Luck, M.,
TRAVOS: Trust and reputation in the context of inaccurate rep-
utation sources. Autonomous Agents and Multi-agent Systems,
12,2(2006), pages 183–198. URL http://www.springerlink.

com/content/2h56k13n37qk0274/.

[Tru10] Trustmark tradesman certification, 2010. http://www.

trustmark.org.uk/. [14.1.2010]

[UBJ04] Uszok, A., Bradshaw, J. M. and Jeffers, R., KAoS: A policy and
domain services framework for grid computing and Semantic Web
services. Proceedings of Trust Management: Second International
Conference, iTrust 2004, Oxford, UK, March 29–April 1, 2004,
volume Springer-Verlag, LNCS 2995/2004, March 2004, pages 16–
26, URL http://dx.doi.org/10.1007/b96545.

[Vil05a] Viljanen, L., A survey on application level intrusion detection.
Technical Report, University of Helsinki, Department of Com-
puter Science, 2005.

[Vil05b] Viljanen, L., Towards an ontology of trust. Trust, Privacy, and
Security in Digital Business. Second International Conference,

212 References

TrustBus 2005, volume 3592 of Lecture Notes in Computer Sci-
ence, Copenhagen, Denmark, 2005, Springer-Verlag, pages 175–
184, URL http://dx.doi.org/10.1007/11537878_18.

[Vil11] Viljanen, L., Trust and mistrust management in enterprise sys-
tems, 2011. Licentiate thesis, University of Helsinki, Department
of Computer Science.

[vLAV05] von Laszewski, G., Alunkal, B. and Velikovic, I., Toward rep-
utable Grids. Scalable Computing: Practice and Experience,
6,3(2005). URL http://www.scpe.org/vols/vol06/no3/SCPE_

6_3_09.pdf.

[vM98] von Mises, L., Human Action — A Treatise on Economics; The
Scholar’s Edition. Ludvig von Mises Institute, Auburn, Alabama,
US, 1998. URL http://mises.org/resources/3250.

[W+06] Wilson, M. et al., The TrustCoM approach to enforcing
agreements between interoperating enterprises. Enterprise
Interoperability. New Challenges and Approaches, Bordeaux,
France, March 2006, Springer-Verlag, pages 365–376, URL
http://epubs.cclrc.ac.uk/bitstream/898/Trustcom_

Interoperability_France.pdf.

[Wal45] Wald, A., Sequential tests of statistical hypotheses. The Annals of
Mathematical Statistics, 16,2(1945), pages 117–186. URL http:

//dx.doi.org/10.1214%2Faoms%2F1177731118.

[WCE+03] Wagealla, W., Carbone, M., English, C., Terzis, S. and Nixon,
P., A formal model on trust lifecycle management. In Work-
shop on Formal Aspects of Security and Trust (FAST2003) at
FM2003, volume IIT TR-10/2003, IIT-CNR, Italy, September
2003, pages 184–195. URL http://www.iit.cnr.it/FAST2003/

fast-proc-final.pdf (TR-10/2003).

[Win03] Winslett, M., An introduction to trust negotiation. Trust Man-
agement: First International Conference, iTrust 2003, Her-
aklion, Crete, Greece, May 28–30, 2003. Proceedings, volume
LNCS 2692/2003, May 2003, pages 275–283, URL http://www.

springerlink.com/link.asp?id=ufuj17106khufcj2.

[WSJ00] Winsborough, W. H., Seamons, K. E. and Jones, V. E., Auto-
mated trust negotiation. Proceedings of the DARPA Information
Survivability Conference and Exposition DISCEX ’00, volume 1.

References 213

IEEE, January 2000, pages 88–102, URL http://ieeexplore.

ieee.org/iel5/6658/17862/00824965.pdf.

[YIP+00] Yavatkar, R., Intel, Pendarakis, D., IBM, Guerin, R. and U. of
Pennsylvania, A Framework for Policy-based Admission Control,
January 2000. URL http://www.ietf.org/rfc/rfc2753.txt.

[YRX12] Yao, Y., Ruohomaa, S. and Xu, F., Addressing common vulnera-
bilities of reputation systems for electronic commerce. Journal of
Theoretical and Applied Electronic Commerce Research, 7, pages
1–15. To appear.

[YS03] Yu, B. and Singh, M. P., Searching social networks. Proceedings of
the second international joint conference on Autonomous agents
and multiagent systems, Melbourne, Australia, 2003, ACM, pages
65–72, URL http://doi.acm.org/10.1145/860575.860587.

214 References

I

Appendix I

Glossary

This glossary defines terms related to the Pilarcos middleware and TuBE
trust management system in particular. Some of the terms are not used in
this thesis directly, but appear repeatedly in earlier publications.

action: The activities in a collaboration are divided into actions, and
a trust decision is made for each action rather than only once for the entire
collaboration. On a technical level, an action is represented by the exchange
of one or more messages between the service provider and user, and each
action has a point where the commitment requiring a trust decision is made.
See also task.

actor: The actors (trustors and trustees) in TuBE are business services.
Services are globally identifiable, while for example the enterprise offering
a service may in fact be an entire business network. This said, if reputation
information is provided of an enterprise, it can be propagated into the
services, and similarly reports made to that network based on the behaviour
of the services of a given service provider. This conversion is done at the
border of the reputation network, however, and remains invisible to the
rest of the trust management system.

asset: An asset is an abstract or concrete resource an enterprise aims to
protect and strengthen in a collaboration. In TuBE, the wide range of dif-
ferent assets is represented by high-level concepts; for example, any asset
with a simply defined monetary value is considered a part of the mone-
tary asset in decision-making. The four defined TuBE assets are monetary,
reputation, control and fulfilment (also denoted as satisfaction in later pub-
lications to allow a broader interpretation than fulfilment of agreements).
Other, more specific or completely different assets can be added to a lo-
cal TuBE implementation, but at the cost of reduced interoperability in
experience sharing.

base risk: A part of the implementation of risk evaluation in TuBE, the
base risk is a function to trim the probabilities of impossible outcomes from
a generic vector of probabilities, which is calculated based on reputation.
It is formally defined in Section 3.2.

1

2 Glossary

business-to-business (B2B) collaboration: In Pilarcos, business-
to-business collaboration is used synonymously to inter-enterprise collabo-
ration.

business network: A business network is the concrete instance of a
business network model; to form a business network, service providers have
been assigned into their respective roles defined in the model by a popu-
lator. A business network consists of the service providers, represented by
their service offers selected for the network; the activity taking place in an
operational business network is referred to as an inter-enterprise collabora-
tion.

business network initiator: A business network initiator is a service
provider who wishes to set up a business network. The initiator calls the
populator service to find suitable partners to fill the roles in a business
network model, and directs the contract negotiation process.

business network model: A business network model (BNM) defines
the roles of a business network, interactions between them, and policy on
how the network is supposed to operate, for example the allowed orderings
of messages [KRRM08].

business service: A business service is the combination of a compu-
tational service application with monitoring facilities, which enforce local
policy. The computational service can have capabilities for varying be-
haviour, not all of which are desirable in all contexts, while the monitor
can be configured to allow only certain subsets of the behaviour in a given
operating context, such as within a collaboration or towards a specific actor.
See also service.

certainty: Certainty is a measure of the quality of information used
for a trust decision, representing the trustor’s confidence in that a deci-
sion based on the information will be well-informed. While credibility
focuses specifically on the expected accuracy of information from exter-
nal sources, certainty also measures the amount of information available.
In the literature, certainty is occasionally referred to via its opposite, un-
certainty [C+03], to emphasize that trust decisions are always based on
estimates and incomplete information.

CINCO: The Collaborative and Interoperable Computing (CINCO)
group is an umbrella project under which the different parts of the Pilarcos
middleware, including the TuBE trust management system, are developed
at University of Helsinki.

cold start problem: See newcomer.

collaboration: An inter-enterprise collaboration involves a group of
enterprises in a contractually regulated, cooperative project. The technical
implementation of a collaboration is referred to as a business network.

Glossary 3

collaboration epoch: In Pilarcos, an epoch refers to a phase in a
collaboration. The behaviour of the business network may vary between
epochs; for example, when a supply-chain type of collaboration moves from
preparations to actual production and on towards dissolution, different
kinds of activities become relevant. Epochs are defined in the business
network model. See also reputation epoch.

collaboration management: Collaboration management refers to ac-
tivities to support setting up, operating and terminating a collaboration.
Pilarcos is a collaboration management middleware, providing support for
setting up collaborations, runtime monitoring and breach management, and
dissolution, including the exchange of experience information.

computational service: A computational service application provides
the functionality of a business service. See also service.

cooperation: Fulfilling an agreement. The terms of cooperation and
defection have been adopted from game theory, where in a famous example
of the Prisoner’s Dilemma game [AH81] two imprisoned culprits’ options
are limited to testifying for the prosecution to receive a shorter sentence
themselves (defect) or remaining silent in the hopes that the other does
as well, in which case both get away on a minor charge (cooperate). In a
game-theoretical sense, a cooperating actor fulfils its duties, in the hopes
of a greater mutual gain. This includes an assumption that the other actor
cooperates as well; otherwise the cooperating actor typically suffers losses,
while the defecting party is the only one to gain. See also defection.

contract: In this thesis, contract is used synonymously to eContract;
see also eContract.

control: Control is a TuBE asset used to represent the enterprise’s
ability to protect itself from outside influences and to maintain its security,
privacy and other aspects of its autonomy. The control asset is based on
the autonomy and self-control of the enterprise.

credibility: Credibility is a form of information source “trustworthi-
ness” and applicability in a given context. In TuBE, external reputation in-
formation is assigned a credibility value to indicate how strongly the trustor
subjectively believes the source to be accurate and useful; the credibility
value does not indicate the accuracy of the particular item of information.
When referring to the credibility of external experience information, we
mean the credibility value attached to it based on its sources’ credibility at
the time of receiving the information. See also certainty.

defection: When an actor does not fulfil its duties, it is said to defect.
In the Pilarcos context, an actor’s duties are defined by the eContract;
full defection means breaking the contract and not providing compensa-

4 Glossary

tion. Stretching the contract for personal gains is considered a “partial”
defection, which may or may not pass unpunished in an inter-enterprise
collaboration. Defection and cooperation are game-theoretical terms; see
cooperation for further background.

eCollaboration: A synonym for collaboration as defined in this thesis;
the e is used in some of the literature to emphasize this specific type of
collaborative activity.

eCommunity: In Pilarcos, eCommunity is used synonymously to a
business network.

eContract: Electronic contract, encompassing both a legal agreement
and technical governance elements for an inter-enterprise collaboration. In
Pilarcos, an eContract is an stateful object controlling the business net-
work. It contains a reference to the business network model that defines
the structure of the business network, negotiated service offers fulfilling
the roles defined in the network, negotiated configuration for any policies
governing the network behaviour, and support for keeping track of the col-
laboration state, with checks for allowed state transitions.

enterprise: Enterprise is used to refer to any for-profit or non-profit
organization which would participate in a collaboration. For example, an
enterprise could be a single-person logistics business running a small server
process that is able to interface with the Pilarcos collaboration middleware,
but implements all management routines itself. At the other size extreme,
it could be a multinational software support corporation which uses the
Pilarcos middleware to fully automate its collaboration management rou-
tines. There are no limitations by enterprise size or domain inherent in
the middleware itself, although not all collaborations can be expected to
benefit from automated management tools.

epoch: A phase or a period. See reputation epoch and collaboration
epoch.

evidence: In TuBE, evidence of an actor’s past behaviour takes the
form of local observations or external reputation information; the latter
is evaluated for credibility. In trust management literature, the term is
occasionally used to indicate a special case of irrefutable evidence, such as
cryptographically formed, signed and nonrepudiable receipts of successful
transactions, which the trustee can store itself and use them to convince
the trustor of its good behaviour in the past [Obr04, LSB03].

experience: Experiences about a trustor’s past behaviour form the
base for its reputation. In TuBE, experiences follow a specific format; see
outcome for details. Local experiences are first-hand information based on
the output of local monitors, while external experiences are received from

Glossary 5

reputation networks. When stored in the TuBE reputation data storage,
local experiences can be either open, i.e. preliminary and still modifiable,
or closed, based on whether the action they are connected to has been fully
completed or not. Closed experiences do not technically exist as indepen-
dent objects, and therefore cannot be changed.

fulfilment: Fulfilment is a TuBE asset used to represent how well the
trustor’s expectations have been met. While the base of the monetary
asset is the wealth of an enterprise, the base of fulfilment is the trend of
respected agreements, which reflects on its success. In later publications,
this asset has also been referred to as satisfaction, when the literal fulfilment
of contracts may need to be complemented with more subjective measures
of meeting expectations.

guard: This term is used synonymously to the TuBE trust decision
subsystem. The TuBE guard makes trust decisions on whether messages
should be allowed through to a computational service. Technically, the
guard unit consists of the guard monitor plugin, which is a part of the
Pilarcos monitor, and the evaluator class, which also connects to various
data sources within TuBE to produce the decision.

impact: The undirected scale of an effect: major, minor or none. See
also outcome.

importance: As a factor of a trust decision, importance represents
the effect a positive trust decision has, independent of the trustee’s be-
haviour. It represents an a priori incentive to collaborate, which is based
on considerations such as not wanting to miss a business opportunity, avoid-
ing compensation required for possibly violating the collaboration contract
with a negative decision, or simply gaining positive reputation through co-
operation. The factor emulates the business value or business importance
of an action.

inter-enterprise collaboration: See collaboration.

interoperability: Interoperability, or the capability to collaborate, is
the effective capability to mutually communicate information in order to
exchange proposals, requests, results, and commitments (i.e., to exchange
speech acts common in business) [KRRM08]. Interoperability can be di-
vided into technical, semantic and pragmatic interoperability. Technical
interoperability is concerned with connectivity between the computational
services, allowing messages to be transported from one application to an-
other. Semantic interoperability means that the message content becomes
understood in the same way by the senders and receivers, both in the sense
of information representation and messaging sequences. Pragmatic interop-
erability captures the willingness of partners to perform the actions needed

6 Glossary

for the collaboration, both in the sense of capability of and in preferability
to the enterprise.

malicious: A malicious actor is highly likely to defect from a collabo-
ration, and may aim to circumvent the trust and reputation management
system in order to get away with this. In computer security, malicious ac-
tors are traditionally attackers aiming to subvert the targeted system for
undefined reasons. In inter-enterprise collaboration, malicious behaviour
by rational attackers primarily aims at personal gain at the cost of others,
while causing damage to the target is not necessarily a primary goal. The
division between cooperative and malicious actors is not black and white in
business; instead, the focus is on the incentives for desired and undesired
behaviour from the point of view of the designed system.

monetary: A TuBE asset used to represent the financially measur-
able effects of actions. The monetary asset is based on the wealth of the
enterprise.

monitor: A Pilarcos collaboration management service for operational
time interoperability checking, breach detection and experience gather-
ing [KMR05].

monitor event: Local experience gathering in TuBE is done by inter-
preting monitor events into outcomes of actions, based on the local experi-
ence analysis policy. For example, a monitor event of the form “sales trans-
action completed” with a parameter “price” and a value “50” indicates,
assuming an appropriate policy, that the action was successfully completed
and had a minor positive effect on the monetary and fulfilment assets, and
no effect on other assets.

newcomer: A new actor joining a reputation network is referred to as
a newcomer. Providing adequate support for newcomers is often the weak
spot for reputation and recommender systems, which leads to so-called cold
start problems: on one hand, newcomers have trouble gaining a reputation
themselves when there is no one around to recommend them, and on the
other hand they have to determine what information and what sources in
the reputation network itself are reliable and useful to them.

open service ecosystem: The open service ecosystem is the envi-
ronment where Pilarcos and TuBE operate: the ecosystem consists of the
offered services and multiple ongoing collaborations in different phases of
their operation, the infrastructure services to support their management,
and the repositories of metainformation, such as service offers, business
network models and reputation information. The openness refers to the
fact that the participants are not fixed or predetermined in any way: a new
service provider can enter the ecosystem and collaborate with the actors

Glossary 7

by publishing a service offer. In addition, new service types and business
network models can be defined to change the way the participants collab-
orate altogether, which means that the ecosystem is constantly evolving.
See also: open service market.

open service market: The open service market is essentially a very
basic open service ecosystem: it covers the services offered and collabo-
rations taking place, while not indicating the existence (or nonexistence)
of a supporting infrastructure. In the TuBE context, this term is used to
refer to the market in the general economic sense, while the open service
ecosystem is a more specific term for Pilarcos-style environments.

opinion-based reputation system: A category of reputation sys-
tems where information is shared as an overall opinion rather than ratings
of single transactions [RKK07]. For more information and a comparison of
opinion-based and rating-based reputation systems, see rating-based repu-
tation system.

outcome (experience): In TuBE, the completion of an action has
an effect on each asset. These effects are represented for each asset on
the scale of major negative effect, minor negative effect, no effect, minor
positive effect, major positive effect, or unknown effect in cases where the
effect cannot be measured. The outcome of an action is the combination
of these asset-specific effects.

partner: In this thesis, we use “partner” to refer to actors interacting
within a collaboration; it does not refer to long-term business partnerships.
A potential partner being evaluated for collaboration becomes the target
of a first trust decision. It is generally not yet accepted into the same
business network by the trustor, although in some cases a trustor may
decide to join a business network and decide only during the operation of
the collaboration on whether it will actually allow the other collaborators
access to its services.

Pilarcos: Pilarcos is a collection of interconnected infrastructure ser-
vices for inter-enterprise collaboration management and interoperability,
developed by the CINCO group. It can also be described as collaboration
management middleware, but the concept of “middleware” should not be
interpreted in the narrow sense of a layer between an operating system and
applications, but rather as an extension to the enterprise service bus.

policy: A policy is a plan of action guiding decisions; a higher-level pol-
icy may consist of a number of more detailed policies. In the TuBE context,
the configurable, decision-influencing parts of of the trust management sys-
tem are referred to as policies, such as the policy for translating monitor
events to outcomes, or the policy for how risk tolerance is adjusted accord-

8 Glossary

ing to different importance values. Policies vary between different actors,
and are generally referred to as local policies to emphasize this. On the
other hand, policies agreed on by collaborating actors are shared through
contracts. In contrast, fixed logic designed to be equal across all TuBE
instances is not referred to as a policy.

population: In the population process, service offers are matched to
roles in a business network model as well as to each other in order to perform
static interoperability checking. The product of a population process is
a business network proposal containing a draft eContract, which is then
negotiated on and refined among the potential participants in the following
negotiation process. The population process is typically performed by a
populator service.

populator: A populator is an infrastructure service for populating the
roles in a business network with service offers. It can be provided by an
independent third party or implemented by the business network initiator
itself. The populator connects to different repositories to retrieve service
offers and service type information, and can be passed partially populated
business networks: for example, the initiator calling the populator may
have already set its own service offer to fulfil a role in the business network.
See also trader for a comparison.

privacy: In Pilarcos, enterprise privacy is defined broadly as the enter-
prise’s ability to control and track information about itself, and information
created by or within it.

rating-based reputation system: We divide reputation systems into
rating-based and opinion-based systems [RKK07]. In a rating-based sys-
tem, the reputation information is shared as set of experiences or similar
transaction-bound units. In eBay [eBa11], for example, every transaction
is rated separately. In an opinion-based system, the reputation may still
be based on experiences, but the peers only share their overall gathered
opinion of the trustee without reporting single experiences separately; Re-
gret [SS02], EigenTrust [KSGM03] and Unitec [KR03] are examples of such
systems. Reputation shared in opinion-based systems cannot always be
converted directly into experiences.

reciprocation: The mutual exchange of deeds, such as favour or re-
venge [MMH02]. Reciprocity norms drive people to return positive and
negative actions in kind.

reputation: 1. As a general term, we define reputation as the per-
ception an actor creates through past actions about its intentions and
norms [MMH02].

2. As a factor of a trust decision, reputation represents information

Glossary 9

about the past actions of an actor. It is a combination of local experi-
ences, gathered through first-hand observations, and external, third-party
experiences. Reputation is stored in reputation views.

3. As a TuBE asset, reputation is used to represent the public opinion
concerning the enterprise, including its rating in any reputation networks,
appearance in the media, and the attitudes of its partners and customers
toward it. The reputation asset is based on the good public relations of the
enterprise.

reputation epoch: A TuBE reputation epoch denotes a set of experi-
ences from a continuous period of time during which a trustee’s behaviour
is considered consistent. If the trustee’s behaviour changes considerably, a
new reputation epoch is started in order to be able to react swiftly to the
change on a trust decision policy level, while holding on to the full history
of old experiences.

reputation management: Reputation management is the activity
of collecting, storing, updating and distributing reputation information on
other actors.

reputation network: A reputation network is a source of external
reputation information: a network of actors using a reputation system to
share their experiences. Typically, reputation sources are networks of peers
providing information to each other through various means; however, we
include also fully centralized, single-organization information sources, such
as credit rating organizations, in our definition. TuBE is designed to be
able to connect to multiple reputation networks for gathering information.
See also reputation system.

reputation system: A reputation system consists of an information
model and a set of algorithms to collect, process and distribute reputation
information. A reputation system instance with a given user base and
information content is referred to as a reputation network. A distinction
is made between the two because the same reputation system, i.e. the
core models and algorithms, can be deployed independently in multiple
domains, resulting in separate communities acting as reputation sources.
The information conversion needed between the reputation network and
TuBE depends on the reputation system in use.

reputation update policy: A reputation update policy determines
how to integrate new experiences (or entire reputation views) into the exist-
ing, locally stored reputation view. In TuBE, the policy for processing local
experiences is fixed: once monitor events and other local, trusted informa-
tion is interpreted into an experience, it is stored without further policy
evaluation in the local reputation view. The policy for processing external

10 Glossary

experiences (or the one for processing full reputation views) can change;
the the parameters for the policy are the locally assigned credibility of the
new experience, the new experience and the current external reputation
view. Further policies control how monitor events and other information
are translated to local experiences, and how data from an external reputa-
tion system is translated to external experiences in the TuBE format. See
also trust decision policy.

reputation view: A reputation view is a data structure that stores
experiences in a compressed form that can be quickly processed for making
trust decisions. There are two types of reputation views in TuBE: one for
storing local experiences, and another for storing external experiences. The
local and external reputation views are stored separately and merged for
trust decisions only. Their main difference is philosophical: local experi-
ences are more valuable than external experiences, so they are stored in a
more stable storage, while an external experience view can be updated to
a state that has less (but typically more credible) information. In addition,
a local reputation view can temporarily store open experiences, which can
be updated while an action is progressing.

risk: As a trust decision factor, risk is the cost-benefit estimate of an
action. It is represented as the subjective probabilities of different kinds of
outcomes, which affect the trustor’s assets. The estimate is built on earlier
information represented by reputation. In contrast, the importance factor
represents the known, certain outcomes of the action.

risk tolerance: As a trust decision factor, risk tolerance is a policy
representing the trustor’s willingness to accept the risk involved with the
action, both in the sense of finding the probabilities in the risk estimate
reasonable and in the sense of considering the risk estimate itself to be
composed of sufficient and high-quality information sources. Besides pro-
viding a division between acceptable and unacceptable risk, risk tolerance
can divide risk estimates into multiple tolerance classes, such as clearly
unacceptable, clearly acceptable and gray area. These classes can also be
used to provide a subjective, risk-based partial ordering between different
trustees or actions, when other factors remain fixed.

role: A role is a part of a business network model, defining the duties
of a collaborator in the business network. A role can consist of multiple
service types, and can be fulfilled by one business service or by another
business network of multiple services, which together provide the service
required of the role.

service: A service is a network-accessible object with a published inter-
face and attributes corresponding to one or more service types. A service

Glossary 11

may consist entirely of software, or it may be a software interface to a phys-
ical system. For example, a logistics service can use the standard interface
to get the information of what needs to be delivered and where, implement
the actual goods transfer with a truck, and deliver a message confirming the
delivery electronically. A computational grid service, on the other hand,
may be entirely software-based. The current Pilarcos implementation sup-
ports Web Services. See also business service.

service ecosystem: See open service ecosystem.

service offer: A service offer advertises a business service that fulfils a
particular service type. A service offer consists of a reference to the service
type as well as acceptable values to different possible parameters defined
in the type, such as quality of service provision or the price of the service.

service provider: A service provider is an enterprise offering a busi-
ness service. In a legal sense, it is represented as the actor in a contract,
but in a technical and trust management sense, the business service acts
independently on behalf of, or representing its provider. See also actor.

service type: A formal representation of a specific kind of service. A
service type defines the interface of a single service, its inputs and outputs.
See also service, role, business network model.

subjective probability: Subjective probability is the probability of
an event as estimated based on the information available to the estimator.
In the case of TuBE, the estimator is the trustor. Subjective and objective
probabilities of positive outcomes are commonly used in trust and repu-
tation modelling within multi-agent systems, particularly with Bayesian
reputation models. In contrast to agent-dependent subjective probabili-
ties, objective probability represents the “actual” probability of the event,
which in the case of simulated agents is well-defined as it is programmed
into the simulator. This kind of internal programming emulates the agent’s
inherent trustworthiness, which is not as readily measurable in the case of
unpredictable human actors.

tolerance: See risk tolerance.

task: In Pilarcos, a task consists of the exchange of one or more mes-
sages. While a task and the TuBE concept of action are independent as
they serve different purposes, tasks may often prove to be a suitable gran-
ularity for trust decisions as well, in which case they can be defined to be
equal.

trader: A trader can be seen as a simplified populator that only popu-
lates a single role by matching an offer to it, and does no matching between
different service offers in the same business network. The trader concept
is used in currently existing standards, such as UDDI [BCE+02], and in
ODP [ITU97]. In Pilarcos, the trader is replaced by the populator service.

12 Glossary

trust: In TuBE, trust is defined as the extent to which an actor is
willing to participate in a given action with a given partner, considering
the risks and incentives involved. In TuBE, we focus on computational
trust used in trust decisions.

trust management: In TuBE, trust management is the activity of
upkeeping and processing information which trust decisions are based on.

trustee: The actor target of a trust decision.
trustor: The actor making a trust decision.
trust decision: A trust decision determines whether the trustor con-

siders the involved risks tolerable for a given commitment. A trust decision
is based on seven factors: the trustor, trustee and action involved, and the
calculated risk, risk tolerance, reputation and importance. The four latter
factors are further adjusted by context filters.

trust decision policy: The trust decision policy directs how a trust
decision is produced from the information available at decision time. Com-
pare to reputation update policy.

TuBE: TuBE (Trust Based on Evidence) is a trust management system
automating routine trust decisions and upkeeping information needed for
them. It is a part of the Pilarcos middleware for inter-enterprise collabora-
tion management.

uncertainty: See certainty.
utility (measure): Refers to the utility measurements prevalent in the

research on decision-making for rational agents. In this thesis, we use utility
synonymously to mean the costs and benefits from an action: negative
utility refers to an overall cost, while positive utility means an overall gain.
It is originally a game-theoretic term, a measure of satisfaction. Intelligent
agents use utility functions to subjectively measure the goodness or badness
of specific outcomes, and then aim to make decisions that maximize the
values of these functions, i.e. “maximize utility”.

web-Pilarcos: Synonym for Pilarcos. For a period of time, web-
Pilarcos served as the name of the Web Services based version of the mid-
dleware to distinguish it from the old version. The Pilarcos middleware has
been previously implemented for e.g. CORBA.

Web Services: The Web Services architecture represents the web-
accessible equivalent of Service Oriented Computing (SOA) [BHM+04, Pap03].
The architecture description by W3C defines common elements needed to
support interoperability between services. The focus is on standardizing
access interfaces to the services, while the architecture sets no limits to the
actual implementation of the services or on combining them.

II

Appendix II

Sini Ruohomaa and Lea Kutvonen

Trust Management Survey

In Proceedings of the iTrust 3rd International Conference on Trust
Management, 23–26, May, 2005, Rocquencourt, France (iTrust 2005), May
2005, pages 77–92.

Copyright © Springer-Verlag Berlin Heidelberg 2005.

Available online: http://dx.doi.org/10.1007/11429760_6

Appendix III

Sini Ruohomaa, Lea Kutvonen and Eleni Koutrouli

Reputation Management Survey

In Second International Conference on Availability, Reliability and
Security (ARES’07), April 2007, pages 103–111.

Copyright © IEEE 2007.

III

Available online: http://dx.doi.org/10.1109/ARES.2007.123

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 University of
Helsinki, Finland.

A-2005-1 T. Mielikäinen: Summarization Techniques for Pattern Collections in Data Mining.
201 pp. (Ph.D. Thesis)

A-2005-2 A. Doucet: Advanced Document Description, a Sequential Approach. 161 pp. (Ph.D.
Thesis)

A-2006-1 A. Viljamaa: Specifying Reuse Interfaces for Task-Oriented Framework Specialization.
285 pp. (Ph.D. Thesis)

A-2006-2 S. Tarkoma: Efficient Content-based Routing, Mobility-aware Topologies, and Tempo-
ral Subspace Matching. 198 pp. (Ph.D. Thesis)

A-2006-3 M. Lehtonen: Indexing Heterogeneous XML for Full-Text Search. 185+3 pp. (Ph.D.
Thesis)

A-2006-4 A. Rantanen: Algorithms for 13C Metabolic Flux Analysis. 92+73 pp. (Ph.D. Thesis)

A-2006-5 E. Terzi: Problems and Algorithms for Sequence Segmentations. 141 pp. (Ph.D.
Thesis)

A-2007-1 P. Sarolahti: TCP Performance in Heterogeneous Wireless Networks. (Ph.D. Thesis)

A-2007-2 M. Raento: Exploring privacy for ubiquitous computing: Tools, methods and experi-
ments. (Ph.D. Thesis)

A-2007-3 L. Aunimo: Methods for Answer Extraction in Textual Question Answering. 127+18
pp. (Ph.D. Thesis)

A-2007-4 T. Roos: Statistical and Information-Theoretic Methods for Data Analysis. 82+75 pp.
(Ph.D. Thesis)

A-2007-5 S. Leggio: A Decentralized Session Management Framework for Heterogeneous Ad-Hoc
and Fixed Networks. 230 pp. (Ph.D. Thesis)

A-2007-6 O. Riva: Middleware for Mobile Sensing Applications in Urban Environments. 195 pp.
(Ph.D. Thesis)

A-2007-7 K. Palin: Computational Methods for Locating and Analyzing Conserved Gene Regu-
latory DNA Elements. 130 pp. (Ph.D. Thesis)

A-2008-1 I. Autio: Modeling Efficient Classification as a Process of Confidence Assessment and
Delegation. 212 pp. (Ph.D. Thesis)

A-2008-2 J. Kangasharju: XML Messaging for Mobile Devices. 24+255 pp. (Ph.D. Thesis).

A-2008-3 N. Haiminen: Mining Sequential Data – in Search of Segmental Structures. 60+78 pp.
(Ph.D. Thesis)

A-2008-4 J. Korhonen: IP Mobility in Wireless Operator Networks. (Ph.D. Thesis)

A-2008-5 J.T. Lindgren: Learning nonlinear visual processing from natural images. 100+64 pp.
(Ph.D. Thesis)

A-2009-1 K. Hätönen: Data mining for telecommunications network log analysis. 153 pp. (Ph.D.
Thesis)

A-2009-2 T. Silander: The Most Probable Bayesian Network and Beyond. (Ph.D. Thesis)

A-2009-3 K. Laasonen: Mining Cell Transition Data. 148 pp. (Ph.D. Thesis)

A-2009-4 P. Miettinen: Matrix Decomposition Methods for Data Mining: Computational Com-
plexity and Algorithms. 164+6 pp. (Ph.D. Thesis)

A-2009-5 J. Suomela: Optimisation Problems in Wireless Sensor Networks: Local Algorithms
and Local Graphs. 106+96 pp. (Ph.D. Thesis)

A-2009-6 U. Köster: A Probabilistic Approach to the Primary Visual Cortex. 168 pp. (Ph.D.
Thesis)

A-2009-7 P. Nurmi: Identifying Meaningful Places. 83 pp. (Ph.D. Thesis)

A-2009-8 J. Makkonen: Semantic Classes in Topic Detection and Tracking. 155 pp. (Ph.D.
Thesis)

A-2009-9 P. Rastas: Computational Techniques for Haplotype Inference and for Local Alignment
Significance. 64+50 pp. (Ph.D. Thesis)

A-2009-10 T. Mononen: Computing the Stochastic Complexity of Simple Probabilistic Graphical
Models. 60+46 pp. (Ph.D. Thesis)

A-2009-11 P. Kontkanen: Computationally Effcient Methods for MDL-Optimal Density Estima-
tion and Data Clustering. 75+64 pp. (Ph.D. Thesis)

A-2010-1 M. Lukk: Construction of a global map of human gene expression - the process, tools
and analysis. 120 pp. (Ph.D. Thesis)

A-2010-2 W. Hämäläinen: Efficient search for statistically significant dependency rules in binary
data. 163 pp. (Ph.D. Thesis)

A-2010-3 J. Kollin: Computational Methods for Detecting Large-Scale Chromosome Rearrange-
ments in SNP Data. 197 pp. (Ph.D. Thesis)

A-2010-4 E. Pitkänen: Computational Methods for Reconstruction and Analysis of Genome-
Scale Metabolic Networks. 115+88 pp. (Ph.D. Thesis)

A-2010-5 A. Lukyanenko: Multi-User Resource-Sharing Problem for the Internet. 168 pp. (Ph.D.
Thesis)

A-2010-6 L. Daniel: Cross-layer Assisted TCP Algorithms for Vertical Handoff. 84+72 pp.
(Ph.D. Thesis)

A-2011-1 A. Tripathi: Data Fusion and Matching by Maximizing Statistical Dependencies. 89+109 pp.
(Ph.D. Thesis)

A-2011-2 E. Junttila: Patterns in Permuted Binary Matrices. 155 pp. (Ph.D. Thesis)

A-2011-3 P. Hintsanen: Simulation and Graph Mining Tools for Improving Gene Mapping Effi-
ciency. 136 pp. (Ph.D. Thesis)

A-2011-4 M. Ikonen: Lean Thinking in Software Development: Impacts of Kanban on Projects.
104+90 pp. (Ph.D. Thesis)

A-2012-1 P. Parviainen: Algorithms for Exact Structure Discovery in Bayesian Networks. 132 pp.
(Ph.D. Thesis)

A-2012-2 J. Wessman: Mixture Model Clustering in the Analysis of Complex Diseases. 119 pp.
(Ph.D. Thesis)

A-2012-3 P. Pöyhönen: Access Selection Methods in Cooperative Multi-operator Environments
to Improve End-user and Operator Satisfaction. 211 pp. (Ph.D. Thesis)

