
Interoperability in Service-Based Communities

Toni Ruokolainen and Lea Kutvonen

Department of Computer Science,
P.O. Box 68 (Gustaf Hällströmin katu 2b),
FI-00014 University of Helsinki, Finland

Toni.Ruokolainen@cs.Helsinki.FI, Lea.Kutvonen@cs.Helsinki.FI

Abstract. Interoperability is a multifaceted problem caused by issues
surpassing those of technological incompatibilities. The real interoper-
ability challenges are stemming from various sources, such as organi-
sational incompatibilities buried deeply into the structures of collabo-
rating enterprises, architectural mismatches and defective assumptions
about business application behaviour, or from the inherent properties of
business collaboration models.

To achieve interoperability in enterprise computing environments, the
aspects of interoperability must be identified and their properties
analysed. This paper studies interoperability issues in enterprise com-
puting environments. Enterprise computing environments under analysis
are based on Service Oriented Computing paradigm and enhanced with
necessary infrastructure facilities. Several classes of causes for interoper-
ability problems are identified and the mechanisms for overcoming the
problems in these classes are briefly discussed.

1 Introduction

Interoperability of business applications in enterprise computing environments is
a challenging problem. Work addressed by such projects as INTEROP [15] and
Athena [3] try to grasp the different angles of interoperability issues in enterprise
applications and systems. Issues related to purely technological interoperability
can nowadays be usually handled with use of a common distributed object com-
puting platforms such as CORBA, or by exploiting service oriented architectures
and Web Services.

Interoperability is nevertheless a multifaceted problem caused by issues sur-
passing those of technological incompatibilities. The real interoperability chal-
lenges are stemming from various sources, such as organisational incompatibili-
ties buried deeply into the structures of collaborating enterprises, architectural
mismatches and defective assumptions about business application behaviour, or
from the inherent properties of business collaboration models.

The notion of interoperability has been left quite vague both in the academia
and industry. However, for achieving interoperability in enterprise computing en-
vironments, the aspects of interoperability must be identified and their properties
analysed. This paper studies interoperability issues in enterprise computing en-
vironments. Several classes of causes for interoperability problems are identified

C. Bussler et al. (Eds.): BPM 2005 Workshops, LNCS 3812, pp. 317–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



318 T. Ruokolainen and L. Kutvonen

and the mechanisms for overcoming interoperability problems in these classes
are briefly discussed.

Section 2 discusses interoperability in general and describes different models
of collaboration and typical means of achieving interoperability in these models.
Section 3 introduces a taxonomy for interoperability in context of federated
service communities. After introducing the taxonomy, methods and mechanism
for establishing interoperation with respect to the identified aspects are briefly
discussed in Sections 4, 5 and 6.

2 Interoperability Methods

Interoperability has been defined as the ability of two or more entities to com-
municate and operate together in a meaningful way, such that information gets
exchanged between collaborating parties and it is used in a meaningful way
despite differences in language, interface or operation environments [14, 18, 45].
Interoperability, or capability to collaborate, means effective capability of mutual
communication of information. Interoperability covers technical, semantic and
pragmatic interoperability. Technical interoperability means that messages can
be transported from one application to another. Semantic interoperability means
that the message content becomes understood in the same way by the senders
and the receivers. This may mean both information representation or messag-
ing sequences. Finally, the pragmatic interoperability captures the willingness
of partners for the actions necessary for the collaboration. The willingness to
participate involves both capability of performing a requested action, and poli-
cies dictating whether the potential action is preferable for the enterprise to be
involved in.

Three different forms of model interoperability have been identified in [16].
The identified forms of interoperation, namely integrated, unified and federated
interoperability, can also be identified from enterprise computing environments
as different models for collaboration. These models of collaboration are distin-
guished from each other on the grounds of where information needed for achiev-
ing interoperability is found.

In the integrated model of collaboration the knowledge for ensuring interop-
erability is implicitly injected into different software components of the compu-
tation system. The integrated collaboration model can be furthermore classified
into three different solution methods based on the deployment point of the inter-
operation knowledge. The solution methods are 1) tightly coupled integration,
2) software adaption, and 3) use of common computing environments (middle-
ware).

In tightly coupled integration the knowledge needed for interoperation is
weaved inside the business applications implicitly by software designers and
implementors. This has been a very popular approach to achieve interoper-
ability of intra- and inter-enterprise business applications in the past. The im-
plicit assumptions about other components and operating environment however
make this tightly coupled integration and interoperation model an impermanent



Interoperability in Service-Based Communities 319

solution in general. Tight coupling is however very cost-effective and easy to
implement if there is an absolute certainty that there will never be any changes
in any part of the system.

In software adaption approach interoperation knowledge and functionality
related to interoperation is partly isolated from the application components.
Interoperation knowledge is injected into intermediary software components such
as software adapters and wrappers. Adapters are used to mediate incompatibility
of software entities [45] and they can perform mappings between data values and
schema structures or even adapt the behaviour of services [5]. Wrappers are used
for introducing completely new behaviour that is executed usually before or after
the actual functionality [6].

Third form of integrated collaboration is based on use of a common com-
puting environment. In this method the interoperability knowledge is located in
computation and communication facilities of the system. A common computing
environment provides a homogeneous technology and communication platform
as well as computation model to be used in an enterprise computing environ-
ment. Interoperability is mediated between business applications and the com-
puting platform via an intermediary language, an interface description language
(IDL) [22]. Middleware platforms such as CORBA [28] or J2EE [41] and inter-
face description languages have been used successfully to bridge technological
differences between operation environments.

Second model of collaboration in enterprise computing environments is the
unified model. In unified collaboration model a shared meta-information entity
describes the functionality and responsibilities of each community participant.
Two kinds of meta-information entities can be identified: standards and explicitly
shared meta-information.

Interoperation has been achieved in traditional forms of industry through
standardisation. However, in software engineering, standardisation of software
entities such as components or even communication technology has not been as
successful. First of all, software components and computing systems themselves
are usually highly dynamic entities whereas standardisation processes are slow
with respect to the advances in ICT technology.

Secondly, not even standardisation guarantees interoperation if either stan-
dards are too ambiguous or developers do not comply to the standards. Interop-
erability problems between implementations of the same CORBA service from
different vendors were studied in [4]. The result was that the formal specifica-
tion for OMG’s CORBA Event Service middleware function was too ambiguous
and underspecified for guaranteeing interoperable and substitutable implemen-
tations of the same standard. Interoperability problems stemming from different
interpretations of the same standard or too loose standardisation are found also
from Web Services technology [36].

Unified collaboration can be achieved by use of explicitly shared meta-in-
formation. Meta-information defined using an appropriate modeling language,
such as UML, describe component functionality, their properties and inter-
relationships using computation platform independent notations. Typically the



320 T. Ruokolainen and L. Kutvonen

meta-information, or a model is used for generating the actual business ap-
plication components. As the components implemented by generative methods
are based on the same platform independent conceptual model, interoperation
between components generated by different vendors should be possible, given
appropriate code generation tools. The most renown representative of this ap-
proach is OMG’s Model-Driven Architecture initiative [11].

Federated collaboration means that no shared, native meta-information de-
scribing the operation of a collaboration is presupposed or needed. Each partic-
ipant may have their own models describing their business services. To achieve
interoperability a shared meta-model is exploited. Interoperation is established by
negotiation mechanisms, model verification and monitoring of service behaviour
with respect to the interoperability contract. Meta-information needed for en-
suring interoperability must be explicitly available, especially during operation
of service communities. Federated collaboration model needs additional infras-
tructure facilities for publication and management of meta-information, and for
controlling and monitoring the communities.

The model of integrated application collaboration provides solutions for es-
tablishing technical interoperability. Heterogeneity in technical level is supported
but usually there are a very strict bindings between the collaborating business
applications and underlying computation and communication platform. There-
fore heterogeneity in higher abstraction levels, such as service behaviour or in-
formation representation levels, is not usually tolerated. Integrated collaboration
model does neither tolerate dynamism or autonomy of participants. As the infor-
mation about interoperation prerequisites is hidden inside business application
and infrastructure components, dynamic changes in the system can not be coped
with.

Unified collaboration model provides support for both technical and semantic
interoperability. Heterogeneity of computation and communication platforms is
also supported, assuming that the meta-information is platform independent.
Unified collaboration based on shared models is however inflexible due to the
fact that although the design entities in the models are reusable, the actual
service components are typically specialised for the specific architecture and
use-case described in the model. Model evolution is effectively supported but
real dynamism, that is awareness and adaption to runtime changes is not sup-
ported by the unified collaboration model, unless explicitly modeled in the meta-
information.

Interoperability is an issue which can not be fully realised by homogenising
the execution environment through distribution middleware, or by using unified
meta-languages or some other means of mediation. Object and component in-
teroperability even in a homogeneous computing platform is a multi-faceted
issue with syntactic, semantic and behavioural aspects [44]. When consider-
ing enterprise computing systems with heterogeneous implementation platforms
and autonomous participants, interoperability of software components becomes
even more complicated, since these kind of computing environments are charac-
terised by their heterogeneity (freedom of design), autonomy (freedom of action)



Interoperability in Service-Based Communities 321

and dynamism (freedom of configuration) [38, 39]. Both integrated and unified
collaboration models support at least partially technological heterogeneity in
enterprise computing environments. They however fail to address the autonomy
and dynamism aspects, and do not provide pragmatic interoperability.

To establish pragmatic interoperability needed in enterprise computing en-
vironments, the federated collaboration model should be used. Federated col-
laboration provides support for heterogeneity in technology, computation, com-
munication and information levels via loose coupling of business applications
and contract based co-operation. Negotiation mechanisms and monitoring facil-
ities provide support for runtime dynamism and autonomy over service activity.
Model evolution is also supported, as interoperability between business applica-
tions is achieved via shared meta-model and interoperability validation facilities.
Service Oriented Computing approach [30] is especially suitable framework for
federated collaboration model as it promotes use of self-descriptive, independent
and composable software entities and loosely coupled collaborations based on
the notion of contracts.

3 A Taxonomy of Service Interoperability

To establish and support an open model of interoperability, the different as-
pects of interoperation must be identified and analysed. The notion of interop-
erability must be separated into independent aspects, each aspect grasping a
different need or viewpoint of enterprise computing. A clean separation of as-
pects is important because otherwise it would be very difficult to identify the
requirements interoperability imposes on modeling concepts and infrastructure
facilities.

In this section a taxonomy of interoperability aspects for service based com-
munities using a federated collaboration model is presented. Interoperability is
classified into different abstraction layers, each layer grasping more abstract in-
teroperation concepts than the previous one. Classification is based on previous
studies of interoperability (see for example [9, 44]) and on conceptualisation of
enterprise computing environments made in web-Pilarcos project [21].

Interoperability in federated communities is divided into five abstraction lev-
els: 1) technology, 2) service, 3) community, 4) organisation, and 5) business level.
This division is based on identification of the subjects responsible for deciding
if interoperation can be achieved. Each level is further divided into different
aspects; the classification as a whole is illustrated in Figure 1.

At the technology level, technical interoperability must be achieved between
communication and computation platforms. Interoperation is established by se-
lecting and configuring appropriate middleware services and their parameters.
When we consider only technical interoperability, that is the connectivity, com-
munication and encoding related aspects, incompatibilities between languages,
interfaces or operational environments can be solved quite efficiently. Methods
and techniques like interface description languages [22, 27], adaptors [34, 46],
wrappers [26], middleware [28,41] and middleware bridges [10] have quite success-



322 T. Ruokolainen and L. Kutvonen

Fig. 1. Aspects of interoperability

fully been applied for enterprise integration. However, while providing the neces-
sary means for collaboration, technology level interoperability and the methods
for achieving it are only the basis of the “interoperability stack”.

At the service level, both technical (compatibility between service signatures)
and semantic interoperability (semantics and behaviour of services) between ser-
vice end-points must be established. Service discovery mechanisms are used for
this purpose and the decision making procedures are bilateral. Service level inter-
operability means capability of interoperation between electronic services with
well-defined, self-descriptive interfaces.

Interoperation between distinct services does not guarantee that functionality
of the whole system is consistent and flawless. Requirements and constraints for
application interoperation are induced by the global properties of the community
in question. For establishing community level interoperability the aspects of ar-
chitectural properties, failure handling procedures and compensation processes,
and non-functional aspects of communities must be addressed. Decision making
at the community level is multi-lateral since the properties of all the participants
must be taken into consideration. Negotiation mechanisms are used for pop-
ulating communities with compatible services. Both technical (non-functional
aspects) and semantic interoperability (failure handling and community archi-
tecture) is addressed at the community level.

Pragmatic interoperability is addressed at the organisation and business lev-
els. Business rules and policies must be agreed upon at the organisation level.
Organisation level interoperability deals with issues related to the needs of auto-
nomic enterprises. Policies and business rules are business knowledge which must
be explicitly represented if inter-organisational collaboration should be achieved.
Policies are used to constraint community behaviour such that the common ob-
jective of the community can be achieved [40]. Business rules are declarative
rules that constraint or define some aspects of business [12]. Both policies and
business rules are organisational entities that are independent of community or
service life-cycles; thus it is necessary to separate these aspects from the aspects
related to community and service level interoperability.

Organisation level is the last level of abstraction that is embodied as explicitly
available meta-information. Corporation business strategies and legislation con-



Interoperability in Service-Based Communities 323

cerning for example geographic regions or business domains are typically avail-
able as implicit regulations and constraints at the lower levels. In the following
sections we will discuss three most important levels of the presented taxonomy
in more detail, namely the service level, community level and organisation level
interoperability.

4 Service Level Interoperability

Interoperability at the service level is characterised by three aspects, namely
syntactic, semantic and behavioural properties of service interfaces [43, 44]. An
interface is an abstraction of application functionality which decouples the in-
ternal implementation details from the externally provided service. A service
interface description provides definitions of the service syntax (interface signa-
ture and document structures), semantics and its behaviour.

Service level interoperability has been studied mainly among object oriented
and component based approaches [8, 18, 43, 44]. Object oriented interoperabil-
ity was first addressed in [18]. This work recognised that interoperability con-
flicts in object oriented platforms can not be solved by simple adaption or pro-
cedure parameters between heterogeneous objects with use of unifying type
systems. It is the overall functionality and semantics of an object which is
important [18].

Substitutability and compatibility of software entities can be considered as the
most relevant concepts in this level. When considering syntactic and semantic
aspects we are interested if two entities can be substituted by each other. The
concept of compatibility is relevant only when behavioural aspects are taken into
consideration.

Validation of syntactic interoperability, that is substitutability of syntactic
structures, reduces to type matching. Type matching problem is about finding
and defining bindings and transformations between the interface a client wants
to use and the interface provided by a service [18]. Type matching problem in
general is impossible, since identification of operation semantics and informa-
tion contents used in the operations or attributes can not be fully automated.
However, if two interface signatures are described using the same language (type
system) or the interface descriptions can be unified, and only syntactic proper-
ties of services are considered, efficient type matching methods and algorithms
can be used [17, 29].

When considering type matching in Web Services based environments, the
notion of schema matching emerges (see for example [32, 33]). Schemas define
document structures used for information descriptions. When considering Web
Services based environments, XML-Schemas are used for describing document
structures. The type system behind XML-Schema mixes both structural and
name-based features [37]. This makes XML-Schema matching a bit complicated
and the type system less elegant, since purely structural matching methods can-
not be used.

Semantic aspect of service level interoperability is concerned with the meaning
of service operations and documents. Matching of service interfaces based on



324 T. Ruokolainen and L. Kutvonen

their operational semantics have been addressed for example in [47]. Operational
semantics are usually attached to a service as operation-specific pre- and post-
conditions (or effects). These conditions are definitions given in appropriate logic
describing the assumptions and results of the operations.

Semantics are use also for attaching meaning for information contents ex-
changed between services. In tightly coupled and closed systems interpretation
of semantics is implicitly coded into the applications, since the operational en-
vironment is known during development of the application. Exploiting explicit
shared ontologies for description of operation and information semantics provides
a more loosely coupled approach. Attaching semantics to service operations and
messages for establishing interoperation of services sharing a common ontology
is the approach taken for Semantic Web services [25, 31]

Attaching behavioural descriptions to interface signatures provides stricter
guarantees of service interoperability. When only syntactic and semantic aspects
are considered, we cannot clearly specify how the service should be used. If a
formal specification of behaviour is attached to service interface, compatibility
or equivalence of services behaviours can be verified using formal methods [7,46].

5 Community Level Interoperability

Interoperability at the community level must be guaranteed with respect to
non-functional aspects, failure handling mechanisms and architectural proper-
ties. Interoperation is established by multi-lateral negotiations during commu-
nity breeding process [20]. Interoperation at the community level is a mutual
agreement between all the participants. Community level interoperability grasps
rest of the semantic interoperability aspects in enterprise computing environment
in addition to the semantic and behavioural aspects described at the service level.

Agreement of non-functional properties, such as quality of service, security,
trust, location or availability is an important aspect in community level interop-
eration. Mutually agreed values for non-functional properties are used for con-
figuring communication channels and middleware services, and are supervised
during community operation by the monitoring facilities.

Simple error handling, such as service exception handling, is usually provided
and agreed in the technology and service levels. There are also more abstract
errors related to enterprise computing which manifest themselves as contract
breaches. Failure handling is a community specific activity grasping both kinds
of the previous failure types. Failure handling mechanisms and compensation
processes have to be agreed upon between all the participants of a community.

Architectural aspects contain such properties as topology of community, com-
position of services into business roles and coordination of services across the
community. Mismatches in architectural properties of communities can be caused
by faulty assumptions about other components, connections between compo-
nents or topology of the community [13]. Architecture description languages
such as Wright [1], Darwin [24] or Rapide [23] have been developed for defin-
ing software architectures. These languages formalise architectural properties,
thus making it possible to automate validation of architectural interoperability.



Interoperability in Service-Based Communities 325

Standardisation of business community architectures and business cases has also
been used for providing architectural interoperability. This is the approach taken
for example in ebXML [19] or RosettaNet [35].

6 Organisational Level Interoperability

Pragmatic interoperability is established at the organisational level. Properties
stemming from the business level aspects such as strategies, legislation and inten-
tions of different organisations manifest themselves at the organisational level as
business rules and organisational policies. Organisational level interoperability is
established by negotiation and monitoring facilities during community breeding
and operation.

Business rules are declarative statements that define or constraint some as-
pect of a business [12]. They are part of the organisation’s business knowledge
which direct and influence the behaviour of an organisation [2]. Typical exam-
ples of business rules are different kinds of service pricing policies or regulations
on service availability based on customer classifications. A business rule may
affect the non-functional or behavioural properties of services by constraining
the possible values of attributes or by introducing new kind of behaviour during
service operation. To achieve automated validation of business rule interopera-
tion, the business rules should be expressed using a feasible logical framework.
For example conceptual graphs [42] and defeasible logic [2] have been used for
modeling of business rules.

Organisational policies declare autonomic intentions of organisations and they
are specified through the concepts of obligation, permission and prohibitions [40].
An obligation expresses that certain behaviour is required whereas permissions
and prohibitions express allowable behaviour. Policies may thus modify be-
haviour of services by requiring certain actions to be taken instead of the others,
or by prohibiting certain actions.

When organisational policies of collaborating participants are known be-
forehand, policy conflicts can be identified before community operation. If be-
havioural descriptions are given using an appropriate logic, interoperation of
organisation policies with respect to the behavioural descriptions can be verified
for example with model checking. However, organisational policies are inherently
dynamic entities and not even necessarily published outside the organisations.
Organisational policies are one of the primary causes for the dynamism in en-
terprise computing environments.

7 Conclusion

This paper analysed and identified different aspects of interoperability in ser-
vice oriented enterprise computing environments. Different collaboration models,
namely integrated, unified and federated, have been used for implementing dis-
tributed computation systems. Each of these collaboration models possess char-
acteristic solution methods, such as common computing environments or shared



326 T. Ruokolainen and L. Kutvonen

meta-information. Federated community model was identified as the most appro-
priate collaboration model, as this model supports the heterogeneity, autonomy
and dynamism requirements inherent for this kind of environment. This sup-
port is provided by additional infrastructure services such as meta-information
repositories and monitoring facilities [21], as well as negotiation mechanisms and
collaboration contracts.

Interoperability was analysed using five different levels of abstraction. Division
into different levels was based on the abstraction level of the concepts to be
agreed upon, as well as on the subjects of interoperation. Abstraction levels
were named as technology, service, community, organisation and business levels.
Each of these levels contain several aspects which must be considered when
establishing interoperability. For example when establishing interoperability in
service level, the syntactic, semantic and behavioural properties of services must
be examined. After identification of interoperability aspects, a discussion about
the interoperability aspects in service, community and organisational level was
given. Methods and mechanisms for establishing interoperation with respect to
each aspect were briefly described.

Acknowledgement

This article is based on work performed in the web-Pilarcos project at the De-
partment of Computer Science at the University of Helsinki. Project was funded
by the National Technology Agency TEKES in Finland and Tellabs with active
partners VTT, Elisa and SysOpen. The work much integrates with RM-ODP
standards work, and recently has found an interesting context in INTEROP
NoE collaboration.

References

1. R. Allen and D. Garlan. Formalizing architectural connection. In ICSE ’94, pages
71–80, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

2. G. Antoniou and M. Arief. Executable declarative business rules and their use in
electronic commerce. In SAC ’02: ACM Symposium on Applied computing, pages
6–10, New York, NY, USA, 2002. ACM Press.

3. Athena Integrated Project, EU FP6. http://www.athena-ip.org/index.php.
4. R. Bastide, P. Palanque, O. Sy, and D. Navarre. Formal specification of CORBA

services: experience and lessons learned. In Proceedings of OOPSLA ’00, pages
105–117, New York, NY, USA, 2000. ACM Press.

5. A. Bracciali, A. Brogi, and C. Canal. Dynamically Adapting the Behaviour of
Software Components. In F. Arhab and C. Talcott, editors, COORDINATION
2002, volume 2315 of LNCS, pages 88–95. Springer-Verlag Heidelberg, 2002.

6. J. Brant, B. Foote, R. E. Johnson, and D. Roberts. Wrappers to the rescue. In
ECOOP’98, volume 1445 of LNCS, pages 396–417. Springer-Verlag, 1998.

7. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Extending
CORBA Interfaces with Protocols. The Computer Journal, 44(5):448–462, Oct.
2001.



Interoperability in Service-Based Communities 327

8. New issues in object interoperability. In A. M. J. Malenfant, S. Moisan, editor,
Object-Oriented Technology: ECOOP 2000 Workshops, Panels, and Posters, vol-
ume 1964 of LNCS. Springer-Verlag GmbH, 2000.

9. J. Fang, S. Hu, and Y. Han. A service interoperability assessment model for ser-
vice composition. In IEEE International Conference on Services Computing (SCC
2004), pages 153–158. IEEE, 2004.

10. R. Fatoohi, V. Gunwani, Q. Wang, and C. Zheng. Performance evaluation of
middleware bridging technologies. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 34–39. IEEE, 2000.

11. D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
OMG Press, 2003.

12. G. Fu, J. Shao, S. Embury, W. Gray, and X. Liu. A framework for business rule
presentation. In 12th International Workshop on Database and Expert Systems
Applications, pages 922–926, 2001.

13. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why it’s hard
to build systems out of existing parts. In ICSE ’95, pages 179–185, New York, NY,
USA, 1995. ACM Press.

14. IEC. TC65/290/DC: Device Profile Guideline, Mar. 2002.
15. INTEROP NoE, EU FP6. http://tmitwww.tm.tue.nl/research/Interop-NoE.html.
16. ISO. ISO 14258 – Concepts and rules for enterprise models. ISO TC184 SC5 WG1,

Apr. 1999.
17. S. Jha, J. Palsberg, and T. Zhao. Efficient Type Matching. Lecture Notes in

Computer Science, 2303:187–206, 2002.
18. D. Konstantas. Object oriented interoperability. In ECOOP ’93 - Object-Oriented

Programming: 7th European Conference, volume 707 of LNCS, pages 80–102.
Springer-Verlag GmbH, 1993.

19. A. Kotok and D. R. R. Webber. ebXML: The New Global Standard for Doing
Business Over the Internet. New Riders, Boston, 2001.

20. L. Kutvonen, J. Metso, and T. Ruokolainen. Inter-enterprise collaboration man-
agement in dynamic business networks. In CoopIS 2005 conference, Agya Napa,
Cyprus, Oct. 2005. To be published.

21. L. Kutvonen, T. Ruokolainen, J. Metso, and J. Haataja. Interoperability middle-
ware for federated enterprise applications in web-Pilarcos. In INTEROP-ESA’05,
2005.

22. D. A. Lamb. IDL: sharing intermediate representations. ACM Trans. Program.
Lang. Syst., 9(3):297–318, 1987.

23. D. Luckham and J. Vera. An event-based architecture definition language. IEEE
Transactions on Software Engineering, 21(9):717–734, sep 1995.

24. J. Magee, N. Dulay, and J. Kramer. Structuring parallel and distributed programs.
Software Engineering, 8(2):73–82, Mar. 1993.

25. S. McIlraith, T. Son, and H. Zeng. Semantic Web services. Intelligent Systems,
16(2):46–53, 2001.

26. M. Mecella and B. Pernici. Designing wrapper components for e-services in inte-
grating heterogeneous systems. The VLDB Journal, 10(1):2–15, 2001.

27. Object Management Group. CORBA 3.0 - OMG IDL Syntax and Semantics chap-
ter, jul 2002.

28. R. Orfali, D. Harkey, and J. Edwards. Instant CORBA. John Wiley & Sons, Inc.,
1997.

29. J. Palsberg and T. Zhao. Efficient and flexible matching of recursive types. In
Logic in Computer Science, pages 388–398, 2000.



328 T. Ruokolainen and L. Kutvonen

30. M. P. Papazoglou and D. Georgakopoulos. Introduction. Commun. ACM,
46(10):24–28, 2003. Special issue on Service-Oriented Computing.

31. J. Peer. Bringing together semantic web and web services. In The Semantic Web -
ISWC 2002: First International Semantic Web Conference, volume 2342 of Lecture
Notes in Computer Science, pages 279–291. Springer-Verlag Heidelberg, 2002.

32. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10(4):334–350, 2001.

33. E. Rahm, H.-H. Do, and S. Massmann. Matching large XML schemas. SIGMOD
Rec., 33(4):26–31, 2004.

34. D. Rine, N. Nada, and K. Jaber. Using adapters to reduce interaction complexity
in reusable component-based software development. In SSR ’99: Symposium on
Software Reusability, pages 37–43, New York, NY, USA, 1999. ACM Press.

35. RosettaNet Consortium. Rosettanet implementation framework: Core specification
v02.00.00, 2004. http://www.rosettanet.org/.

36. P. Siddhartha and S. Sengupta. Web services interoperability: A practitioner’s
experience. In CoopIS/DOA/ODBASE, pages 587–601, 2002.

37. J. Siméon and P. Wadler. The essence of XML. In POPL ’03: Proceedings of
the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 1–13, New York, NY, USA, 2003. ACM Press.

38. M. P. Singh, A. K. Chopra, N. Desai, and A. U. Mallya. Protocols for processes:
programming in the large for open systems. SIGPLAN Not., 39(12):73–83, 2004.

39. M. P. Singh and M. N. Huhns. Service-Oriented Computing: Semantic, Processes,
Agents. John Wiley & Sons, Ltd., 2005.

40. M. Steen and J. Derrick. Formalising ODP enterprise policies. In EDOC’99, pages
84–93. IEEE, 1999.

41. Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE), 1.4 Specification,
2002.

42. I. Valatkaite and O. Vasilecas. A conceptual graphs approach for business rules
modeling. In Advances in Databases and Information Systems, volume 2798 of
LNCS, pages 178–189, Sept. 2003.

43. A. Vallecillo, J. Hernandez, and J. M. Troya. Component Interoperability. Tech-
nical Report ITI-2000-37, University of Malaga, July 2000.

44. A. Vallecillo, J. Hernández, and J. M. Troya. Object Interoperability. In Object-
Oriented Technology. ECOOP’99 Workshop, volume 1743 of LNCS, pages 1–21.
Springer-Verlag Heidelberg, 1999.

45. P. Wegner. Interoperability. ACM Computing Surveys (CSUR), 28(1):285–287,
1996.

46. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

47. A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM Transactions on Software Engineering and Methodology (TOSEM), 6(4):333–
369, 1997.


	Introduction
	Interoperability Methods
	A Taxonomy of Service Interoperability
	Service Level Interoperability
	Community Level Interoperability
	Organisational Level Interoperability
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




