Type management for
Service Oriented Computing

Toni Ruokolainen

Dept. of Computer Science
P.O. Box 68 (Gustaf Hallstromin katu 2b)
FI-00014 UNIVERSITY OF HELSINKI, FINLAND

toni.ruokolainen@cs.helsinki.fi

Abstract. One of the most important infrastructure services of tomor-
row’s enterprise computing platforms are the services needed for inter-
operability analysis and management of typing disciplines. This work
will study typing disciplines for business collaboration networks that use
business services and their compositions to reach their business goals. Re-
search will begin with an analysis of interoperability conflicts inherent in
business networks. From these results a typing disciple for business ser-
vices and networks shall be formulated. Resulting type system is applied
in practise as type management functionality in web-Pilarcos project.

1 Introduction

Globalisation of markets, considerably stimulated by the development of ICT
technology, introduces new kinds of demands for enterprises willing to stay com-
petitive. Viability of an enterprise is not determined by its core resources or
competencies but also by its ability to engage business with various partners,
possibly in quite different business domains. An increasing amount of enterprises’
income is made inside varying kinds of business networks or as participants in
inter-enterprise value and supply chains.

Communication technology has matured enough for a shift from technology
driven integration to a more abstract, semantically higher level integration of
business entities. Web Services technology and Service Oriented Computing par-
adigm [1] provides a technological and conceptual framework which can be used
to cross the borders between heterogeneous systems. This enables us to con-
centrate on the foundational problems in enterprise computing environments,
such as service reuse, evolution and composition or interoperability of business
services.

Services in enterprise computing environments are prone to change and evo-
lution. Enterprises must have the possibility to maintain and adapt their own
services while preserving compatibility with business networks they already are
participating. Business services offered by enterprises have independent develop-
ment, cycles and lifetimes. An enterprise wants to exploit technological develop-
ment and refined business processes to retain its competitive edge. To support



these autonomy needs we cannot, presuppose that distinct business services will
be implemented using same technological platforms or that they would always
behave the same.

Concepts and techniques for modeling, establishing and maintaining business
networks must reflect the needs stemming from enterprise computing environ-
ments. Flexible and dynamic collaborations shall be initiated even for short-term
usage and this should be possible without considerable service development or
maintenance costs. Tomorrow’s enterprise information systems and especially
the supporting infrastructure must provide means for efficient establishment and
management of collaboration networks in an environment with autonomic and
heterogeneous participants. In this context the concept of interoperability be-
comes prevalent.

This paper is an introduction to the author’s research to be conducted dur-
ing his PhD-studies. Research takes a type based approach for solving interop-
erability problems stemming from enterprise computing environments and inter-
enterprise collaborations. Section 2 discusses preliminary issues in service inter-
operability. Motivation and an introduction of selected methodology is given in
section 3. Research plan is a discussed briefly in section 4.

2 Service interoperability

Three different models for achieving inter-enterprise collaboration can be identi-
fied: integrated, unified and federated [2]. In practise only integrated and unified
models currently are used. The deficiencies of these two approaches, related to
re-usability, flexibility and interoperability of services in inter-enterprise collab-
orations, make them insufficient models for open systems such as SOC.

In integrated collaboration model all information needed for system interop-
erability is hard-coded implicitly into the system. This makes reuse of services
dedicated to one business network quite impossible in other situations. Use of
unified collaboration models, that is relying on common meta-models, is not suf-
ficient either. For example model-driven development, most notably known in
form of OMG’s MDA approach [3], is a valuable software engineering paradigm
and excellent tool for implementing business applications. However it is not nec-
essarily the best option for enterprise integration. Forcing enterprises to strictly
obey a common meta-model is not applicable in context of inter-enterprise ser-
vice integration where flexibility and reuse of business services are embraced.

Because of deficiencies of integrated and unified collaboration models, a fed-
erated collaboration model should be used for business service integration. In
federated approach no common native meta-model for services is expected. Ser-
vice communities based on a federated collaboration model require that the
information needed for guaranteeing service interoperability is made explicitly
available. To provide this information and associated validation mechanisms we
need formal descriptions for business services and business networks as well as
runtime infrastructure support, such as type management and monitoring facil-
ities [4].



Information contents and requirements for service typing discipline must be
extracted using several aspects and viewpoints on interoperability. A thorough
analysis of service interoperability in federated communities covering all the nec-
essary aspects and viewpoints is however still missing. What kind of information,
what kind of properties it has and what aspects or viewpoints should be covered
by the notion of interoperability and related aspects is not evident.

Several definitions and classifications have been addressed regarding interop-
erability [5-8]. To summarise, interoperability means meaningful co-operation
between entities where information is exchanged, it has several faces and it
emerges in different levels of abstraction. It is an issue that cross-cuts the whole
field of software-engineering, in its all phases and in several levels. Especially
this is true in the context of Service Oriented Computing [1].

Service interoperability can be analysed using different approaches. For ex-
ample different levels of service interoperability (signature, protocol, semantic,
quality and context) have been reported in [8]. Another classification has been
given in [9], dividing the notion of interoperability into messaging, content, busi-
ness protocol and policy layers.

Past studies on object and component interoperability [5, 10], and archi-
tectural compatibility [11] have been concentrating mainly on the static static
aspects of interoperability. However, in enterprise computing environments and
inter-enterprise collaborations another level of interoperability aspects emerge.
These aspects stem from the properties of enterprise computing environments,
namely heterogeneity (freedom of design), autonomy (freedom of action) and
dynamism (freedom of configuration) [12]. Above-mentioned properties make
static interoperability verification insufficient and also impose requirements on
the concepts that are used to formulate the notion of interoperability.

3 Service typing

Service interoperability in federated collaboration model requires a formal char-
acterisation. One formal approach is to use a type based model, where service
typing discipline and explicit type management functionality is used to manage
service interoperability issues. The role of a service typing discipline is on one
hand to guarantee safe use of services (type safety) and on the other hand act as a
structuring concept over the universe of services. Type safety is most apparently
used during community establishment whereas the type based classification of
services is needed during service discovery.

A service type defines functional and non-functional properties for a class of
business services. Non-functional properties of a service type describe for exam-
ple QoS-requirements and policies. Functional part of a service type comprises of
interface signature (service interface syntax), interface protocol and additionally
semantic annotations for exchanged documents (messages). Semantics of service
operations in form of pre- and postconditions are not considered relevant in our
case, since we consider collaborations as document messaging systems and there
are no effects other than the behaviour seen in service and community descrip-



tions. In addition, most types of the both functional and non-functional pre- and
postconditions are implicitly available in descriptions as e.g. causal dependencies
or non-functional constraints.

The typing discipline for services most importantly addresses the behavioural
properties of services: each service type defines its externally visible behaviour
as a process. The process description is called an interface protocol, stressing the
fact that it is not used for process execution and describes only the behaviour
of that specific interface. Especially, an interface protocol describes bilateral
behaviour. This constraint is made to enhance reuse possibilities of services by
increasing the modularity and independence of each interface protocol.

A lot of work has been done on describing the behaviour of services using
formal methods such as finite state machines [13], Petri nets [14], process alge-
bras [15]. Use of process algebras for describing and reasoning about services
is motivated by such properties as elegant and simple constructs to describe
message passing behaviour, natural compositionability of process terms, possi-
bility for operational interpretation for processes, and that they have well-known
theories and methods for behavioural reasoning [15-18].

Interface protocol descriptions are based on a process algebra known as 7-
calculus [17]. Notion of types [19] and possibility to express dynamic, mobile
structures [17] are the main motives to choose m-calculus over other process
algebras, such as CCS [16]. The notion of session types [20] shall be used to
check substitutability (subtyping) and compatibility of interface protocols. Ses-
sion types express behaviour over communication channels by structuring inter-
related communication actions together.

Type repositories are used to enforce verification obligations and to ensure
correct use of typing disciplines, in other words type safety. Type repository
is a persistent storage of type information. Type information includes descrip-
tions about base types (e.g. integer or string), complex types, service types and
relationships between these types. Especially important type relationships for
interoperability are those of compatibility (of interface protocols) and substi-
tutability (e.g. subtyping).

Business network model defines the characteristics of an inter-enterprise com-
munity, such as topology of the community, processes used between participants
(via service types), and community specific functional and non-functional con-
straints and properties. Especially a business network model composes differ-
ent service types into business roles and defines connections between the roles.
During publication of new business network models, behavioural properties and
logical integrity of these descriptions must be verified. Business network model
is also the breeding ground for the community contract.

4 Methods and Research Plan

This research will concentrate on interoperability support and management in
collaborating communities involving autonomic business services. Work shall
start with a categorisation on the nature of interoperability conflicts: what are



their causes and how could they be prevented or observed before they happen.
Results of this analysis will be used in formulation of a typing discipline that is
used for description of business services and networks.

Typed m-calculus [19,20] shall be used as theoretical framework for devel-
opment, of business service typing discipline. Use of process algebra provides a
formal framework for formulating the notion of interoperability. One of the chal-
lenges will be the development of a typing discipline which provides “sufficiently
complete” proof of service interoperability, yet supporting independent service
and business network evolution.

Service typing discipline must allow evolution and reuse of services in a flexi-
ble manner. For this purpose it is necessary to separate aspects of communication
and coordination such that they can be analysed separately and their properties
and structures changed as independently as possible. Communication and co-
ordination should be treated as orthogonal properties, as much as possible, the
first one described in the interfaces of services and the second one described in
business network models as “glue” composing distinct service types into business
roles.

Composition of service types into roles must be supported by the type system
in such a way that verification of composite behaviour remains a relatively light
procedure. A type effect system mechanism similar to correspondence assertions
introduced in [21] could be used to separate the aspects of communication and
coordination in business services and their compositions.

The theoretical framework must support propagation of behavioural effects
from the coordination dimension to the communication dimension and vice versa
such that correct operation of role compositions can be verified. Theories and
mechanisms of typed m-calculus, type and effect systems, and model checking
shall be studied for this purpose. Resulting typing discipline shall be tested in
practise during this work: a type repository functionality is used as part of web-
Pilarcos platform [4] to ensure service interoperability.

References

1. Papazoglou, M.P.; Georgakopoulos, D.: Service-oriented computing. Commun.
ACM 46 (2003) 24-28

2. ISO: ISO 14258 Concepts and rules for enterprise models. ISO TC184 SC5 WG1.
(1999)

3. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. OMG Press (2003)

4. Kutvonen, L., Ruokolainen, T., Metso, J., Haataja, J.: Interoperability middleware
for federated enterprise applications in web-Pilarcos. In: INTEROP-ESA’05. (2005)

5. Konstantas, D.: Object oriented interoperability. In: ECOOP ’93 - Object-Oriented
Programming: 7th European Conference. Volume 707 of LNCS., Springer-Verlag
GmbH (1993) 80-102

6. TEC: TC65/290/DC: Device Profile Guideline. (2002)

7. Vallecillo, A., Troya, J.M., Hernandez, J.: New Issues in Object Interoperability.
In J. Malenfant, S. Moisan, A.M., ed.: Object-Oriented Technology: ECOOP 2000



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Workshops, Panels, and Posters. Volume 1964 of LNCS., Springer-Verlag GmbH
(2000)

Fang, J., Hu, S., Han, Y.: A service interoperability assessment model for service
composition. In: TEEE International Conference on Services Computing (SCC
2004), TEEE (2004) 153-158

Benatallah, B., Nezhad, H.M.: Service oriented computing: Opportunities and
challenges. In: Revised Selected Papers of Semantic Web and Databases: Second
International Workshop, SWDB 2004. Volume 3372 of LNCS., Springer-Verlag
GmbH (2005) 1 8

Vallecillo, A., Hernandez, J., Troya, J.M.: Component Interoperability. Technical
Report ITT-2000-37, University of Malaga (2000)

Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of the
16th international conference on Software engineering, IEEE Computer Society
Press (1994) 71-80

Singh, M.P., Chopra, A.K., Desai, N., Mallya, A.U.: Protocols for processes: pro-
gramming in the large for open systems. SIGPLAN Not. 39 (2004) 73-83
Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Auto-
matic composition of e-services that export their behavior. In: Service-Oriented
Computing - ICSOC 2003. Volume 2910 of LNCS., Springer-Verlag GmbH (2003)
43 58

Hamadji, R., Benatallah, B.: A petri net-based model for web service composition.
In: CRPITS’17: Proceedings of the Fourteenth Australasian database conference on
Database technologies 2003, Darlinghurst, Australia, Australia, Australian Com-
puter Society, Inc. (2003) 191 200

Salaiin, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: ICWS ’04: Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’04), Washington, DC, USA, IEEE Computer Society
(2004) 43

Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II.
Journal of Information and Computation 100 (1992) 1 77

Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8 (1986) 244 263

Kobayashi, N.: Type Systems for Concurrent Programs. In: Formal Methods at
the Crossroads: From Panacea to Foundational Support. Volume 2757 of LNCS.
Springer-Verlag (2003)

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Proceedings of the 7th
European Symposium on Programming, Springer-Verlag (1998) 122 138

Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence assertions for process
synchronization in concurrent communications. In: FOCLASA 2003. Volume 97 of
Electronic Notes in Theoretical Computer Science., Elsevier (2004) 175 195



