Ontology for Federated Management of
Business Networks

Toni Ruokolainen, Lea Kutvonen, and Janne Metso

Department of Computer Science, University of Helsinki, Finland
{Toni.Ruokolainen|Lea.Kutvonen|Janne.Metso}@cs.Helsinki.FI

Abstract. The present trend towards inter-enterprise computing relies
on model-driven engineering solutions, but further progress calls for de-
velopment of theoretically solid management infrastructure with a fed-
erated architecture approach. For this purpose, federated architectures
and their target concepts have to be elaborated and formalized. This
paper introduces the ontologies that are fundamental for the Pilarcos
middleware and express the semantic background of the federated archi-
tecture and the issues to be addressed. The presented ontologies define
the metamodels needed for representing the target concepts and semantic
restrictions between them in the proposed middleware.

1 Introduction

The present trend towards inter-enterprise computing relies on model-driven en-
gineering solutions, but further progress calls for development of theoretically
solid management infrastructure with a federated architecture approach. Exam-
ples of this kind of trend can be found in the new FP7 work program [5] and for
example NESSI consortia [16] goals. The Pilarcos middleware [10, 12] provides
federated support for inter-enterprise collaboration management by utilising a
commonly available knowledge base that includes information about available
services and collaboration structures understandable for potential peers. As the
knowledge base is formed by multiple autonomous knowledge providers, there
is a definite need for addressing issues of interoperability, evolution, trust, and
availability.

The interoperability issues focus around the semantics of the services and
collaborations, and therefore, our goal is to provide a middleware that provides
service type safety, i.e., only services with technical, semantic, and pragmatic
interoperability are joined into collaborations. To provide this, we need to have
well-defined semantics for service declarations, verification of the fulfillment of
these, and verified relationships between service definitions. The evolution issues
address the need of enterprises to develop their services and of the business to
develop the collaboration forms commonly accepted. Therefore, we provide a
way to introduce new models to the system in a consistency-preserving way.
The trust issues and the availability issues are not discussed in this paper.

In the Pilarcos framework, metainformation is used to manage the collabo-
rations (using contracts) and their members (represented by service offers). The

41

semantics of these metainformation items is restricted by further models, such
as business network models [12] and service types [22]. As this metainformation
and model knowledge is used both a) at the service production time and at the
service use time, and b) by the service providers, by the service users, and by the
collaboration management infrastructure services, it is necessary to draw that
knowledge into the common middleware. Therefore, the Pilarcos middleware
provides three kinds of repositories: business network model repositories, service
type repositories, and service offer repositories. The role of these repositories has
been described elsewhere [9].

In addition, we have envisioned a tool-chain to support model-oriented devel-
opment [12,22] of service-oriented systems, where models and other metainfor-
mation are published in the repositories as part of a software-engineering process.
First, service type descriptions are required: service types can be used as mod-
els from which a MDA-based service implementation can be generated. More
over, the service type allows services actually provided to be mapped to roles in
business networks. Second, the business network models (BNM) can be verified
and published: the BNMs express the structure for collaborations in terms of
roles, interactions, and restricting policies. The BNMs provide the structure for
the contracts used for operational time management of the collaboration. Third,
the service implementations developed can be provided as business services by
some enterprise: the enterprise publishes the service offer to a corresponding
repository as it wishes to become a member in some collaborations. Finally, the
communities are formed semi-automatically as a partner initiates the establish-
ment: a BNM is selected, populated by service offers using a populator service,
the potential contract is tested for interoperability between member services,
and finally pushed through a refining negotiation cycle between the suggested
members.

The metainformation in the repositories is structured and semantically re-
stricted according to an ontology that is the main contribution of this paper. This
ontology addresses two issues. First, it expresses the semantic background of the
federated architecture: how collaborations are structured and knowledge about
interoperability obtained. Second, the ontology presented defines the target con-
cepts required for capturing the collaborations, their contracts, behaviour and
progress. The paper is structured as follows. Section 2 introduces the four-level
modelling hierarchy for defining federated service communities. Sections 3 and 4
go further and describe the metamodels that restrict the form and relationships
between the ontology elements. Section 5 discusses the consistency criteria that
need to be maintained in the dynamic ontology that is built. We conclude by a
short summary of the potential created by this contribution.

2 Ontological approach to knowledge

In the Pilarcos framework [11,12] collaborative systems and especially federated
service communities are described using metamodels. The resulting Pilarcos on-
tology for federated service communities comprises four layers of metamodels in

42

a hierarchy that is illustrated in Figure 1. The highest layer consists of the MOF
constructs [17] applicable for defining actual metamodels.

MOF Class,
OF Attribute, etc)

Language for defining

MOF metamodel metamodels

Collaborative systems / collaboration, Coordination,

metamodel Service, ServiceDescription, Target concepts
Repository, InformationModel, etc.

Federated service

o eCommunity, eContract, Typing discipline
communities BusinessNetworkModel, (type system, structure,
metamodel Service types & offers semantics, facilities)
BankingCommunity, Information describing
BankingBNM, specific communities,
Models CashierServiceType, kinds of services, and
CashierServiceX provided services.

Fig. 1. A four-level modelling hierarchy for describing federated service communities.

The collaborative systems metamodel provides the target concepts for specific
kinds of collaborative systems. The set of concepts include notions for collabo-
ration, interaction, service-oriented computing etc. In addition, the metamodel
provides a set of generic consistency rules that must be respected, and given
domain specific interpretations by the specializations of this metamodel.

The concepts defined at the federated service communities metamodel de-
scribe such notions as service types [22], business network models, eCommuni-
ties [12], and electronic contracts [14]. In addition for defining modelling con-
structs for creating the knowledge required, the corresponding metamodel defines
an abstract platform. The abstract platform definition characterizes the essen-
tial infrastructure services for establishing federated service communities. The
metamodel has associated consistency rules and correspondences to be main-
tained between knowledge elements, such as service types and services offers, in
form of a service typing discipline [22].

Finally, the domain models are represented at the lowest level of abstraction.
The set of knowledge elements at this level include information describing for
example business communities, definitions for different kinds of business services,
service descriptions adhering to the service definitions, and electronic contracts.

3 Describing collaborative systems
Collaboration is an act of joint operation between a group of entities (such as

individuals, organizations, or enterprises) that share a common interest or ob-
jective. Collaboration transcends the notion of co-operation [3] which is found

43

typically in scenarios that contain subcontracting or resource sharing, such as
in the context of supply-chains or Grid-computing. The family of collaborative
systems include for example multi-agent systems and federated service commu-
nities. In collaboration, the work of an individual constitutes an indispensable
effort towards the objective. Sometimes the objective cannot even be achieved
without the corresponding form of collaboration. Consequently, collaboration
may be necessary for the existence of the entities. The Pilarcos framework takes
the concept of collaboration as the basic tenet for achieving loosely coupled busi-
ness networking in inter-enterprise environments. The corresponding metamodel
for collaborative software systems comprises characterizations for the concepts
of collaboration, interaction and service-oriented computing. These metamodels
are elaborated below.

3.1 Collaboration metamodel

As illustrated in Figure 2, a Collaboration comprises a set of roles and coordina-
tion facilities to achieve some shared interest or objective which is represented
as a set of more specific goals. A Role identifies the set of responsibilities and
duties related to the realization of the collaboration goals that can be assigned
to an entity taking part in the collaboration. Each Role has a unique identifier
within a collaboration such that entities can be referred to indirectly through
the role names. The concept of Role is also used in other metamodels for describ-
ing types of actors, their responsibilities and expected contributions towards the
collaboration.

+coordination —

{ordered}
1.

* | +transformation
Transformation +type
0.*
I +goal 1.x
Goal +interaction
+reification +realizes Interaction Activity
0.* 0.*
role +activity
Role 1.
- role
name : String +ullfilledBy {ordered}
+role +behavior
+governs = 1.
Resource 9 Entity 1> _ +role lBehavior -~ 5| BehavioralPattern
0.* +entity tﬁemnw I] +pattern 1

Fig. 2. Metamodel for collaboration.

A role is primarily a declaration of the behaviour expected from an entity.
Behaviour in this context refers to the externally observable manifestation of
the internal activities or processes of an entity or an individual. A role’s be-
haviour consists of a set of behavioural patterns which are explicit descriptions
of the activities belonging to the role’s repertoire of behaviour. For example, a

“Cashier™role’s behaviour may comprise different behavioural patterns depend-
ing on the method of payment (e.g. cash or credit card) preferred by the client.

Collaboration is a form of coordinated co-operation where coordination is
used for managing the dependencies among activities [13] of the collaborating
entities. Coordination provides a fabric between the activities of entities to join
the individual behavioural patterns forming a joint behaviour required by the
collaboration. The metamodel for coordination is elaborated in Section 3.2. A
Goal is an explicit declaration of some duty that contributes to the objective of
the collaboration. The objective of a collaboration can then be represented as a
set, of goals. Goals can be allocated explicitly to role behaviours to monitor the
fulfillment of goals during collaboration operation.

When a group of entities decide to collaborate, they form a loosely coupled
community where each of the entities are given a certain role in the collaboration.
This role binding is described in the collaboration metamodel using the Collab-
orationUse ! concept, which comprises a set of role bindings. The RoleBinding
concept associates the responsibilities and behaviour prescribed in a certain role
with a given entity. An entity fulfills the duties of a role by utilizing the resources
it governs.

We identify an important category of collaboration as a subconcept of the
Collaboration, namely phased collaborations. The PhasedCollaboration concept
is described using a life-cycle which is comprised of a sequence of distinct phases;
each phase constitutes a collaboration in itself. For example, in the context of
virtual enterprises the phases of a collaboration consist of virtual enterprise for-
mation, operation and dissolution (see for example [15]), each phase having its
specific roles and entities. In the collaboration metamodel illustrated in Figure 2,
the life-cycle is represented as the concept LifeCycle which comprises an ordered
set of transformations between collaboration phases. Each Transformation com-
prises an optional set of transformation rules which define the correspondences
between roles in subsequent collaboration phases. Source and destination col-
laborations for the transformation are represented with lhs (for left-hand side)
and rhs (for right-hand side) associations, respectively. The right-hand side of a
collaboration can be empty; this is needed for representing single-phased collabo-
ration. Transformations without explicit transformation rules represent collabo-
rations where the life-cycles consist of distinct phases that are related implicitly.
A typical example of this kind of collaboration is a supply-chain or supply net-
work scenario where the phases of the collaboration are related by the physical
material flow. In this case the transformations are conditioned by the completion
of phases as well as relocation of goods.

3.2 Interaction metamodel

Interoperation between collaborating participants is established via interactions.
As collaborative systems consist of autonomous entities, the interactions are

! The naming convention with pattern XXX and XXX Use is taken from the UML 2.0
standardization. It manifests a correspondence between a type and its instance.

45

considered as subjective acts of behaviour conducted by an entity towards a set,
of other entities. Interactions are defined by prescribing the Roles involved in the
interaction and by declaring the subjective model of behaviour comprising the
actual inter-activities. The corresponding metamodel for interaction is illustrated
in Figure 3.

ol +subject +interaction — +interaction 1. [BeliavioralRatieln
name : String +pattern 1
:) ! +
+role +object +interaction 1 type

1.*

{unique}
. . . trinteractionUse
+interactionPoint U i Y
" - ¥ +interactionUse - i nteractionMedium
InteractionPoint InteractionUse |o. +medium

+interactionPoint

+interactionPoint [| [l+interaction

Fig. 3. Metamodel for interaction.

The InteractionUse concept is used to bind entities into the roles defined
in an Interaction and defines the type of medium for realizing the interaction.
The InteractionPoint defines and identifies an entity of interaction and binds it
to a specific interaction role. The information provided by an interaction point
enables directly or indirectly (via resolution mechanisms or mediators) the ability
to perform activities corresponding to the behaviour defined in the provided
interaction with respect to the entity identified by the interaction point.

Tt is important to notice that the set of BehavioralPattern elements referenced
in an interaction must exists in the definition of the subject Role. However, the
objects of interactions do not have to directly support the kinds of behaviour
requested as long as they can be considered compatible in some way. This is
regarded as an important aspect of interoperation in collaborative systems and
necessitates the existence of validation procedures for behavioural compatibility.
Compatibility of behaviours is elaborated in Section 5.

There are two important categories of interactions that require their own
metamodels, namely coordination and communication. Coordination is used for
regulating and directing the operation of a collaboration in such a way that the
dependencies between activities become completed. Coordination functions can
be either centralised or distributed (location of control), static or dynamic with
respect to permanence of coordination medium and topology, endogenous (im-
plicit coordination) or exogenous (explicit coordination), and based on a different
technological mechanisms such as messaging, event notifications, or distributed
tuple spaces. The metamodel that is applied for modeling coordination in the
Pilarcos framework is given in Figure 4.

Communication is a kind of interaction which involves exchange of informa-
tion through an explicit communication channel. Consequently, the behaviour
applied for communication consists of activities for receiving and sending infor-
mation. The corresponding metamodel is not illustrated in this paper; briefly, it

46

Role CoordinationRole |+object
name : String +role +interaction
A +subject
" 1.% Coordination |0.* +manages | pependency +dependency
. . L l+coordination 1 1
+interaction
*ype +dependency +activity
Entity L 0.* | +reffication Activity
+coordinationUse [coordinationUse I_DllmeractionUse +dependsOn
[| [|
+artifact +coordination
CoordinatedEntity o |Coord|nat|onMed|um InteractionMedium |
) +medium [] []
- +artifact
+entity 0.* N
0.* {CoordinationArtifact Coordinationinterface Servicelnterface
+artifact I I

Fig. 4. Metamodel for coordination.

is essentially a specialization of the interaction concepts, such as roles, behaviour
and interaction media for communication purposes.

3.3 Service-oriented computing metamodel

In the Pilarcos framework, service-oriented computing (SOC) [20] is consid-
ered as an essential mechanism for attaining loosely coupled collaborations. The
service-oriented computing paradigm consists basically of four conceptual ele-
ments: services, service descriptions, service-oriented architectures (SOA), and
service composition. Corresponding metamodels are needed for making the el-
ements of service-oriented computing and their inter-relationships explicit. For
this purpose, the Pilarcos framework defines a service-oriented computing meta-
model that comprises metamodels for 1) service declarations, 2) service-oriented
architectures, and 3) service collaborations. These metamodels are elaborated
below.

The Pilarcos framework makes a distinction between two kinds of service
declarations, namely service definitions and service descriptions [21] as defined
by the the service declarations metamodel illustrated in Figure 5. A ServiceDec-
laration has two sub-concepts, namely ServiceDefinition and ServiceDescription.
Service definitions are formal specifications of services capabilities; their primary
purpose is to introduce means for attaining service interoperability and to cat-
egorize available services. Service descriptions are more technical declarations
used for advertising service properties and for establishing communication paths
between service endpoints. For example in the OWL-S [19] the ServiceProfile
and ServiceModel can be considered as service definitions whereas the Service-
Grounding provides a description for a concrete service.

A conformance relationship (conformsTo) between instances of ServiceDescrip-
tion and ServiceDefinition concepts is assumed to hold. Furthermore, two addi-
tional roles are prescribed: service designers that provide service definitions, and
service providers that advertise their services using the service descriptions.

47

Servicelnterface

+interface
1.*

ServiceDeclaration

ServiceDefinition 0.* +description

+conformsTo ServiceDescription

1.% +description ,
: +provides
0..* | +provides
0.*
ServiceDesigner | |ServiceProvider 1.
+designer |] [I +description +endpoint
EndPoint
ServiceCollaborationRole Role o

name : String

L P name : String ¥ address : String

Fig. 5. Metamodel for service declarations.

Service-Oriented Architecture (SOA) is an architectural style for establishing
loosely coupled distributed systems. The corresponding metamodel defines three
roles, namely service provider, service consumer, and a service broker, and their
inter-relationships. In addition, the metamodel relates services, corresponding
metainformation elements (service declarations), and metainformation reposito-
ries. The resulting metamodel for service-oriented architectures is illustrated in
Figure 6.

In the SOA metamodel a concrete service represented by the Serwvice con-
cept is a kind of an Entity. This relationship is needed such that collaborations
consisting of different services as co-operating entities can be declared. Each ser-
vice is attached with an endpoint which identifies the point of interaction. An
EndPoint has a name and an address; the former can be used for example to
maintain the binding between a service and it’s client during service migration
while the latter provides the actual “physical” handle to be used for communi-
cating with the service. A service endpoint conforms to an Interface given in a
corresponding service definition.

A Repository is a shared database of information which is used to store
common models and information contents of a certain (engineering) domain. In
the SOA metamodel, a Repository constitutes a unique namespace which con-
tains a collection of Repositoryltem elements (especially service declarations).
A repository item may contain information for example about document struc-
tures, interface definitions or ontologies Each Repositoryltem has a unique name
within its repository’s namespace. A repository maintains an information model
which specifies semantics and structure for the repository’s functionality and
information contents. The InformationModel is defined using invariant, static,
and dynamic schemata similarly to ODP information viewpoint specification [7].
Invariant schemata are defined as a set of predicates which must hold for knowl-
edge elements at any point of time during the whole life-time of the correspond-
ing information [7]. The invariant schemata describe immutable structures and
rules, such as ontologies and typing disciplines that the knowledge elements are
subject to. Static schemata describe the state of knowledge maintained in repos-

48

. EadRoint +endpoint 1 Servicelnterface
+endpoint | ame String 0.* +conformsTo
address : String
Ri itor: +consum * n
2EToT) consumes 9" [ServiceConsumer | [Role
r : String .. +consumer —
+ch teri . | tconsumer IELIE 8 SN
+repository characterizes 0..
o +provides 5
+maintains +provider
A 0.1
InformationModel +provider
+ i * +medi "
0.% |+invariantschema dynamicschema | 0. mediates o ServiceBroker
InvariantSchema DynamicSchema 0.*
0.* +broker
1
N +item . 0.1
+staticschema 0..* - 1.* | +declaration
taticSchema Rep yltem ServiceDeclaration +utilizes +publishes +stores
name : String 0.4

Fig. 6. Service-Oriented Architecture (SOA) metamodel.

itories at some point of time and are subject to constraints set by the invariant
schemata [7]. Finally, dynamic schemata represent allowable knowledge trans-
formations. Typically static schemata are used in the description of dynamic
schemata, describing the state of knowledge before and after an transformation.
Also dynamic schemata are subject to the constraints declared by the invariant
schemata.

Finally, the SOA metamodel defines three roles. The ServiceConsumer-role
represents an entity that acts as the “client” in a service provision scenario. A
consumer utilises the service brokering infrastructure for finding appropriate ser-
vices and service providers. The service brokering infrastructure is maintained
by an entity in the ServiceBroker role. Such an entity stores service declara-
tions in an appropriate repository which provides the functionality for query-
ing, matching and locating the services. Consequently, a service broker mediates
the services between providers and consumers. The ServiceProvider role states
that corresponding entities provide services and publish their declarations. The
inter-relationships between these roles can be elaborated using the collaboration
metamodel.

In the context of service-oriented computing two different kinds of service
collaborations can be identified: service composition and service choreographies.
Service collaborations are defined between service definitions using the collab-
oration metamodel described in Section 3.1. To serve this purpose, each Ser-
viceDefinition is also a subconcept of ServiceCollaborationRole as illustrated in
Figure 5.

4 Describing federated service communities

In this Section we briefly introduce a specialization of the collaborative system
metamodel, namely the one for federated service communities. A federated ser-
vice community [12,22] is a business collaboration between organizations that

49

export their business functionality as business services. The approach for es-
tablishing interoperability is a federated one and builds on foundations such
as multilateral community population [10], interoperability validation based on
shared metamodels [22], and eContracting [14].

Collaborations between business partners in the Pilarcos framework are called
eCommunities. The corresponding metamodel is illustrated in Figure 7. The en-
tities engaging in an eCommunity are called Partners and they represent orga-
nizations providing business services to the eCommunity as a legal entity. An
Organization actually has a metamodel itself, but due to lack of space it can-
not be described here. Nevertheless, the metamodel for organizations relates the
business services provided by the Partners with the autonomic intentions of or-
ganizations, such as business rules and organizational policies, and also relate
the business services to local resources.

islati Legislation eCommunity | 0.1 +governedBy JleContract
+legislation I -
- | [|+community
o L. +compliesTo 0. ¥, varticinates
+law" | g * 1 participatesin L treification

Rule +binding v
7 jrpartner
0.* |+regulates P BusinessRole CollaborationUse
LegalEntity Partner |(_y_+ent|t Binding
+role

+binding

*
+represents 0-* | +role +type

\Vi
Entity Organization BusinessRole |BusinessNetw0rkModeI
L] [1

Fig. 7. Metamodel for eCommunities.

An eCommunity is not a direct subconcept of the collaboration concepts de-
scribed in Section 3.1 but is instead regulated by a specialization of the Collabo-
rationUse, namely an eContract which is the outcome of a successful population
process [10]. The structure of an eConiract is given by a BusinessNetworkModel.
A simplified illustration of the Business Network Model (BNM) is given in Fig-
ure 8. A BNM defines a phased collaboration consisting of one or more epochs in
the life-cycle. Each epoch is a phase of collaboration whose properties and struc-
ture are defined by a BusinessNetworkArchitecture. The architecture defines a
configuration of BusinessRoles and BusinessRoleConnectors. Business roles are
compositions of BusinessRolePorts which again are formalized by corresponding
Service Type concepts. Service type [22] provides the service definitions prescribed
by the service declarations metamodel.

The Pilarcos approach aligns with the exogenous coordination model [1].
This is manifested in Figure 8 by the fact that it is actually the connectors
that are responsible for coordinating the business network operation (they are

50

Repositoryltem PhasedCollaboration

name : String

BusinessNetworkModel

Coordination BNCoordination BNMRepository

+coordination
— 0.1 Collaboration
CoordinationRole - 1 "
A +lifecycle

]
rths BNMLifeCycle !_D! LifeCycle !

0.* +repository

A

BusinessNetwork [- [
RoleConnector | 1, * Architecture 0.1
— +connector
{ordered} 4 port +lhs 1.* |+transformation
1.% EpochTransformation
1.* jtrole

REACIRO *port BusinessRole

name : String | 1.*

v
Role A
*port ServiceDefinition -
— pamekioting I
+type B v
ServiceType ServiceTypeRepository | RERCSIon
| — - = namespace : String
0. +item

Fig. 8. A simplified top-level illustration of Business Network Models.

bound with CoordinationRoles), not the business roles. Furthermore, Figure 8
accentuates the existence of two Pilarcos metainformation repositories: a BNM
repository [12] and a service type repository [22].

5 Introducing consistency criteria

Metamodels as represented in the previous sections are useful as such for de-
scribing and identifying the concepts and constructs needed for realizing col-
laborative systems. However, to establish a true ontology, the dependencies and
consistency criteria between the different concepts have to be identified and more
over, formalized. In the following, we briefly discuss some of the most obvious
correspondences found in the metamodels.

One of the most fundamental correspondence relationships to fulfill is be-
tween concepts related by naming patterns XXX and XXX Use, such as Collabo-
ration and CollaborationUse. The naming convention manifests a correspondence
between specifications and their instances. The type-association from concept,
XXX to concept XXXUse implies that the properties given in the specification
XXX are transfered through some reification process to its instance XXX Use.
Especially this means that the responsibilities and behaviours specified in roles
are transfered to the actual entities bound to them. The reification and the
semantics of the correspondence relationship are specific for a kind of a collab-
orative system. For example in the case of federated service communities, the
reification comprises a process with population and negotiation phases [10,14] to

51

refine a BusinessNetworkModel into an eContract (see Section 4). The correct-
ness of this reification is provided by the semantics declared for the concepts in
the federated service communities metamodel, information models maintained
by the repositories and runtime monitoring of the community operation.

A collaboration’s Goal is fulfilled by some role Behaviour. This relationship
binds the activities taken by the entities directly to the objectives of the cor-
responding collaboration, thus giving mechanisms for monitoring the advance
of the collaboration above the operational level. However, this correspondence
relationship is not formalizable in the general case, but requires domain specific
knowledge about best practices of the corresponding domain. In some cases,
the correspondence between goals and behaviour of entities is more evident and
concrete. For example in multi-agent systems high-level declarative goals can be
used to induce the corresponding behavioural patterns for the participating en-
tities using e.g. goal-based planning [23]. In federated service communities, the
goals are represented as business rules and policies. When these rules are formal-
ized using for example deontic logic, the conformance relationship can be made
concrete and validated with methods such as model checking (see e.g. [18]).

The service declarations have a conformance relationship between Service-
Description and Service Definition concepts. The conformance criterion given by
a definition must be met by the service description used for advertising such a
service. In the context of the Pilarcos framework, the correspondences between
service types and service offers are formalized using the session typing disci-
pline [6, 24]. Session typing also provides means for categorization of services
and interoperability validation through the notions of behavioural subtyping
and compatibility [24].

The interaction metamodel describes a subjective model of interaction where
behaviour of an interaction is solely determined by its subject. To achieve an
interoperable interaction between two entities, their subjective views on the in-
teraction behaviour have to be compatible. The notion of behavioural compati-
bility defined by the session typing discipline [24] is used for this purpose in the
Pilarcos framework.

The correspondences between coordination and the dependencies it man-
ages are not in general formalizable. Instead Coordination specifications rep-
resent, “best practises” of a certain domain which are known to complete the
corresponding Dependencies. Validation of such correspondences are provided
by human actors, either a priori or a posteriori. The coordination metamodel
describes coordination as a kind of interaction that affects the overall behaviour
of a collaboration. Consequently, the behaviour declared by coordination may
conflict with the behaviour of the collaboration roles. While coordination and
role behaviour may by themselves be consistent, their collective behaviour may
lead to inconsistencies, such as deadlocks. For this reason, it is important to for-
malize the coordination model and its relationships to the coordinated entities;
such work has been done for example in [25].

52

6 Conclusion

This paper has introduced the metamodels used in the Pilarcos framework [10,12]
for the dynamic ontology management system where interoperability related
knowledge about business services and possible collaboration types can be man-
aged. The metamodels propose a constructive approach to service-oriented com-
puting suitable for establishing open service markets and service-oriented soft-
ware engineering. This constructiveness emerges from the utilization of service
types as the elementary concept which provides the typing discipline required
for interoperable service delivery, consistency criteria for service offers and im-
plementations, and a modular design artifact to be used in collaboration designs
(BNMs). Promoting the separation of communication and coordination concerns
already at the conceptual level, the metamodels in effect advocate a development
model which cleanly separates “in-the-small” from the “in-the-large” [4].

The Pilarcos approach is based on a strong idea of preserving autonomy
among community participants. This necessitates a federated approach, where
the exact model of collaboration is constructed on-demand and checked dynam-
ically across partners. For this purpose, a very detailed ontology defining the
target concepts and their inter-relationships is needed. To maintain the consis-
tency of knowledge needed during operation of a federated system, repositories
use the semantic consistency criteria attached to the metamodels to restrict the
publication of new models and to validate their correctness.

In comparison to related work, such as PIM4SOA [2] or WS-CDL [§], the
constructiveness and federated approach are the most evident differences. Both
PIM4SOA and WS-CDL are top-down approaches based on semantic unification
where the capabilities of individual services are predetermined by the collabo-
ration models. In the approach represented in this paper, individual services
can exist independently of any collaboration forms. However, this does not, rule
out generative MDA-like approaches where services and their declarations are
derived from collaboration descriptions.

References

1. F. Arbab. What do you mean, coordination? Appeared in the Bulletin of the
Dutch Association for Theoretical Computer Science (NVTI), Mar. 1998.

2. G. Benguaria, X. Larrucea, B. Elvesaeter, T. Neple, A. Beardsmore, and M. Friess.
A Platform Independent Model for Service Oriented Architectures. In G. Doume-
ingts, J. Miiller, G. Morel, and B. Vallespir, editors, Enterprise Interoperability:
New Challenges and Approaches. Springer, Apr. 2007.

3. L. M. Camarinha-Matos and H. Afsarmanesh. Collaborative networks: Value cre-
ation in knowledge society. In Knowledge Enterprise: Intelligent Strategies in Prod-
uct Design, Manufacturing, and Management, volume 207, pages 26 40, 2006.

4. F. DeRemer and H. Kron. Programming-in-the large versus programming-in-the-
small. In Proceedings of the international conference on Reliable software, pages
114 121, New York, NY, USA, 1975. ACM Press.

5. FP7 European Commission 7th Framework Program. http://ec.europa.eu/
research/fp7, Apr. 2006.

53

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-

pline for structured communication-based programming. In Proceedings of the 7th
European Symposium on Programming, pages 122 138. Springer-Verlag, 1998.
ISO/IEC JTC1. Information Technology Open Systems Interconnection, Data
Management and Open Distributed Processing. Reference Model of Open Dis-
tributed Processing. Part 1: Overview, 1996. 1S10746-1.

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto.
Web Services Choreography Description language, Nov. 2005. W3C Candidate
Recommendation.

L. Kutvonen. Building B2B interoperability middleware knowledge management
issues. In I-ESA’07, Mar. 2007.

L. Kutvonen, J. Metso, and S. Ruohomaa. From trading to eCommunity popula-
tion: Responding to social and contractual challenges. In EDOC 2006. IEEE.

L. Kutvonen, J. Metso, and T. Ruokolainen. Inter-enterprise collaboration man-
agement in dynamic business networks. In OTM Confederated International Con-
ferences, CooplS, DOA, and ODBASE, volume 3760 of Lecture Notes in Computer
Science, Nov. 2005.

L. Kutvonen, T. Ruokolainen, and J. Metso. Interoperability middleware for fed-
erated business services in web-Pilarcos. International Journal in Enterprise In-
formation Systems, 3(1):1 21, Jan. 2007.

T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Comput. Surv., 26(1):87-119, 1994.

J. Metso and L. Kutvonen. Managing Virtual Organizations with Contracts. In
Workshop on Contract Architectures and Languages (CoALa2005), Enschede, The
Netherlands, Sept. 2005.

N. Nayak, K. Bhaskaran, and R. Das. Virtual enterprises: building blocks for
dynamic e-business. In Proceedings of the workshop on Information technology for
virtual enterprises, pages 80-87. IEEE Computer Society, 2001.

NESSI. Strategic Research Agenda, Feb. 2006. Public Draft 1.

Object Management Group. Meta Object Facility (MOF) Core Specification, 2.0
edition, Jan. 2006. OMG Available Specification — formal/06-01-01.

N. Osman, D. Robertson, and C. Walton. Run-time model checking of interaction
and deontic models for multi-agent systems. In 5th International joint conference
on Autonomous Agents and Multiagent Systems (AAMAS’06), pages 238-240, New
York, NY, USA, 2006. ACM Press.

OWL-S Coalition. OWL-S 1.1 Release, Nov. 2004.

M. P. Papazoglou and D. Georgakopoulos. Special issue on Service-Oriented Com-
puting. Commun. ACM, 46(10), 2003.

T. Ruokolainen and L. Kutvonen. Service Definitions and Binding Processes: De-
livering the Promise of Service-Oriented Computing. Manuscript, Nov. 2006.

T. Ruokolainen and L. Kutvonen. Service Typing in Collaborative Systems. In
G. Doumeingts, J. Miiller, G. Morel, and B. Vallespir, editors, Enterprise Interop-
erability: New Challenges and Approaches. Springer, Apr. 2007.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, 2nd edition, 2002.

A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the Behavior of Objects
and Components using Session Types. Electronic Notes in Computer Science, 68,
2003.

M. Viroli, G. Moro, and A. Omicini. On observation as a coordination paradigm:
an ontology and a formal framework. In ACM Symposium on Applied computing,
pages 166-175, New York, NY, USA, 2001. ACM Press.

