Managing Interoperability Knowledge in Open Service Ecosystems

Toni Ruokolainen and Lea Kutvonen
Department of Computer Science
University of Helsinki
Helsinki, FINLAND
{Toni.Ruokolainen,Lea.Kutvonen} @ cs.Helsinki. FI

Abstract—Establishing loosely coupled collaborations be-
tween services provided by autonomous enterprises poses sev-
eral requirements and challenges for the surrounding service
ecosystem. In such context emphasis must be laid especially
on the correctness of available metainformation and its usage.
Towards this purpose, we characterize service ecosystems by a
set of metamodels. The metamodels include domain ontology
metamodels defining the vocabulary and knowledge elements
needed for collaboration establishment and management, and
metamodels relating such domain ontologies with infrastruc-
ture services and service production facilities. In this paper
we describe the metamodels and discuss their application for
interoperability knowledge management.

I. INTRODUCTION

Establishing loosely coupled collaborations between ser-
vices provided by autonomous enterprises poses several
requirements and challenges for the surrounding service
ecosystem. Openness and agility are required from the col-
laboration management infrastructure and service-oriented
software engineering facilities for enabling efficient net-
worked business. These requirements and stressed by the
current business models based on highly specialised core
competencies and outsourcing of secondary functionality.

Loosely coupled nature and openness of a service ecosys-
tem, and autonomy of its participants induce interoperability
problems. Interoperability means the capability of (enter-
prise information) systems to collaborate in such a fashion
that eventually either their mutual goals become fulfilled or
their co-operation is dissolved in a controllable manner in
case of a fault. Interoperability problems can range from
simple technological incompatibilities to conflicts between
business strategies.

We characterize interoperability as having technical, se-
mantic and pragmatic concerns [1]. Technical interoperabil-
ity means that the technological facilities underlying the
services are compatible, such that communication paths can
be established, for example. Semantic interoperability deals
with the meaning of exchanged information and message
exchange patterns. Pragmatic interoperability is achieved if
the intentions, business rules, and organizational policies of
collaborating parties are compatible with each other.

We categorize the means for achieving interoperation to
three approaches, namely integration, unification and federa-
tion [1]. Since integration and unification approaches do not

preserve all relevant information about interoperation [2],
features related to interoperation can not in these approaches
be considered dynamically. In the federated approach in-
teroperability is achieved by utilizing a shared metamodel
and making the relevant information about features affect-
ing interoperation explicit. This information may comprise
different kinds of artifacts, such as prescriptive models,
ontologies or service interface descriptions.

We call the set of artifacts conforming to the shared
metamodel as interoperability knowledge, as its primary
purpose is to provide sufficient grounds for establishing
interoperable collaborations by declaring consistency and
conformance criteria for knowledge elements. Each collab-
oration participant may have their own representations of
the artifacts describing their business domain and services.
The infrastructure services provided by the operational en-
vironment are used for maintaining the consistency of inter-
operability knowledge, and for instrumenting collaboration
establishment processes based on this knowledge.

A service ecosystem comprises three fundamental compo-
nents: /) a service-oriented collaborative computing environ-
ment, 2) service and business process development facilities,
and 3) a conceptual framework conjoining the collaborative
computing environment, development tools and processes,
and all relevant actors within the ecosystem. The collabora-
tive computing environment provides infrastructure services
for establishing loosely coupled collaborations. Openness of
the ecosystem is largely determined by the properties of
the infrastructure services and collaboration establishment
process provided by the computing environment. Devel-
opment facilities provide for agile production of service-
based solutions and utilize the infrastructure services of the
computing environment for enabling global software engi-
neering practices, for example. The conceptual framework
must provide concepts for ensuring correctness of service
and business process development activities, and runtime use
of metainformation. The conceptual framework and the fea-
tures of the collaborative computing environment prescribe
concurrently what kinds of interoperability concerns can be
addressed and managed.

In our previous work (see [1], [3], for example) we
have described the Pilarcos platform for interoperability
management. The consistency of the interoperability knowl-

edge has been maintained in this prototype platform by
manually implemented repository functionality, collabora-
tion establishment protocols and best practices shared by
the system users. Based on the experiences gathered from
the previous work, implementation of the prototype services,
and extensive analysis on collaborative computing and inter-
operability, we are now making this knowledge about open
service ecosystems explicit and formal with metamodels and
domain ontologies.

This paper presents an approach for establishing service
ecosystems where the elements of the ecosystems are char-
acterized by a set of formal models. The models include
domain ontologies defining the vocabulary and knowledge
elements needed for collaboration establishment and man-
agement, and metamodels relating the domain ontologies
with infrastructure services and service production facilities.
From these models we can derive a reference architecture
comprising of knowledge repositories needed for maintain-
ing the corresponding service ecosystem metainformation.
We describe the models, and discuss their role and usability
in defining and implementing service ecosystems. The ap-
proach utilizes principles from model-driven engineering [4]
and service-oriented computing [5], and contributes to the
development of service ecosystems and instrumentation of
service-oriented software engineering [6].

The structure of this paper is as follows. Section II first
identifies the fundamental elements and characteristics of
collaborative computing environments, and introduces the
Pilarcos platform [1], [3]. In Section III we provide a meta-
model defining the conceptual framework we use for estab-
lishing a service ecosystem based on the Pilarcos platform.
More over, linguistic and ontological metamodelling [7], [8]
principles are applied in the construction of the metamodel
for providing foundations for knowledge management. To
further fulfill the requirements and overcoming the chal-
lenges of open and agile service ecosystems, emphasis must
be laid on the correctness of available metainformation and
its usage. In Section IV we describe the foundations for
managing interoperability knowledge in model repositories,
and conclude in Section V with a discussion of related
research.

II. COLLABORATIVE COMPUTING ENVIRONMENTS

Collaboration is a process of shared creation among a
group of entities which share information, resources, re-
sponsibilities and rewards to achieve a common goal [9].
A collaborative computing environment is a distributed
computing system providing facilities for (electronic) col-
laboration. Collaborative computing environment comprises
autonomous collaboration agents and a set of infrastructure
services provided by the operational environment [10].

A collaboration agent provides a technical representation
of an entity, such as an individual or an organization, willing
to collaborate and mediates their activities and decisions

Open Collaboration Collaboration Collaboration
Service Breeding Proposals Contract
O Selection O Population /O Negotiati%r’>]O>O
© o @ [" o~ 1%
Available Dependable Compatible Committed
Services Services Services Services
Figure 1. Illustrating the collaboration establishment process.

towards other entities. Collaboration agents act during col-
laboration establishment and actual operation of the collab-
oration. The agents are loosely coupled and interoperate
with each other to meet the collaboration objective. The
collaboration is facilitated by a set of infrastructure services
provided by the operational environment for establishing and
controlling collaborations. The set of infrastructure services
are exposed to collaboration agents and other actors in the
collaborative computing environment typically in form of a
middleware platform.

Collaborations are formed using a collaboration establish-
ment process which involves service selection, and collab-
oration population and negotiation phases [1], as illustrated
in Figure 1.

During the service selection phase appropriate services
are located and selected from the ones available in open
service markets. The selection is based on criteria set by
the form of the collaboration and the requirements set by
its initiator. The services selected to the breeding environ-
ment are dependable in sense that they fulfill the necessary
technical and semantic interoperability requirements of the
corresponding kind of collaboration and they are provided by
trusted partners. Infrastructure services providing discovery
and selection of services, as well as trust and reputation
management mechanisms [3], are utilized for this purpose.

The collaboration breeding environment acts as a catalysis
platform for potential collaborations. The population phase
produces a set of collaboration proposals from the depend-
able services and a model characterizing the structure and
requirements of the collaboration [1], [3]. Semantic interop-
erability is addressed by the population phase: compatibility
between non-functional property metrics and service usage
policies are addressed at this stage, for example.

The collaboration proposals are further refined using ne-
gotiations taken between the collaboration agents. Especially
the pragmatic aspects of interoperability, such as expression
of the agents’ willingness to collaborate, are considered
during the negotiation phase. The negotiations result in
formulation of a collaboration contract which states the

responsibilities for each participating entity, the structure of
the collaboration, and non-functional features expected from
the corresponding cooperation facilities, such as communi-
cation channels. The collaboration contract is then used for
managing the operation of the collaboration [11].

A. Characteristics of environments

Collaborative computing environments can be classified
and compared with respect to their openness and interop-
erability management mechanisms. These are the primary
properties that determine their usability for enabling loosely
coupled service ecosystems. Properties such as collaboration
agent activity, sociality and level of participant autonomy
supported can also be used as classifying features of collab-
orative computing environments [10].

Environment openness measures the level of dynamism
with respect to the selection of services available for col-
laboration during the establishment process. The degree of
openness can be characterized as /) closed, 2) semi-open, or
3) open [10]. In the closed case, the set of compatible ser-
vices for collaboration proposals is static. That is, the phases
of service selection and collaboration population are pre-
determined. Consequently, the collaboration establishment
process involves only the negotiation phase, typically also
neglected in systems involving a closed environment.

In the semi-open case, the set of dependable services
located in the collaboration breeding environment is static
(closed world), but services can be selected dynamically for
collaborations from this pool (open world with respect to the
actual collaboration). In this scenario, the service selection
phase is pre-determined, but collaboration population can be
done dynamically.

An open collaboration environment provides most flexibil-
ity as the set of services available for collaborations can be
introduced within open service markets. The collaboration
breeding environment matching the requirements and prop-
erties of a specific collaboration is established dynamically
from the available services. However, this freedom needs
to be regulated with feasible infrastructure mechanisms that
provide trusted and interoperable computing support.

Different collaborative computing environments have dis-
tinctive properties and maturity with respect to the degree
of opennenness (closed, semi-open, open) they support and
on the balance between dependence (integrated, unified,
federated) and autonomy of collaborating systems. The
traditional ERP, EAI [12], [13] and other integration systems
belong closed integrated solutions: collaboration is achieved
through tightly coupled integration between pre-determined
subsystems.

Inter-enterprise application integration (I-EAI) refers to
integration of information systems residing in distinct en-
terprises for enabling supply-chain management or sub-
contracting relationships, for example. Standards such as

ebXML [14] and RosettaNet [15] that define domain-
specific business vocabulary and processes are also used for
achieving limited kind of semantic interoperability between
enterprises by means of unification. These kinds of systems
can be classified as closed unified solutions.

Collaborative Networks (CN) [9], such as virtual orga-
nizations, are loosely coupled collaborations between en-
tities bound together by an explicit collaboration contract
for achieving common or compatible goals. They can be
characterized as semi-open, unified solutions comprising a
static breeding environments (VBE) of dependable services
set for dynamic formation of virtual enterprises or organi-
zations [16].

The challenges differ significantly from each other in
each class of systems in the above classification based on
the environment openness and interoperability management
approach. It is relevant to make it clear that an interoper-
ability knowledge base is relevant in federated approaches,
although it might become handy in others as well. The
Pilarcos approach described below belongs to open federated
solutions.

B. Pilarcos framework

The Pilarcos framework [1], [3] for inter-enterprise col-
laboration management comprises a collaborative computing
environment and concepts for managing loosely coupled
B2B collaborations. The framework uses federation for
establishing interoperability between autonomous ecosystem
members, and repositories providing consistency and confor-
mance of interoperability knowledge.

The Pilarcos B2B middleware provides an operational
environment designed for lowering the cost and effort of
collaboration establishment and to facilitate the management
and maintenance of electronic business networks. The infras-
tructure services include [1]:

« services for establishing, modifying, monitoring, and
terminating collaborations, or looking from the business
service point of view, operations for joining and leaving
a collaboration either voluntarily or by community
decision and leaving a trace in the global business world
about the success of the collaboration; and

« a set of repositories for storage of collaboration mod-
els, and ontologies of service types and services, for
example, to support interoperability validation.

The Pilarcos framework proposes a model of inter-
enterprise collaborations as business networks consisting
of independently developed business services. A business
service denotes a set of functionalities provided by an
enterprise to its clientele and partners. It is governed by
the enterprise’s own business rules and policies, as well as
by business contracts and regulatory systems controlling the
business area. A business network is established dynamically
to serve a certain business scenario or opportunity that is
made commonly known by publishing a business network

model (BNM) [1]. The business network model captures the
roles and business processes that are relevant for the business
scenario, for example.

The collaboration agents in the Pilarcos framework are
known as network management agents [11]. A network
management agent (NMA) represents a collaboration mem-
ber in the business network. It handles negotiations with
potential new members and re-negotiations if members are
changed, it up-keeps status information for the collaboration,
and determines the suitable reaction to collaboration events
such as contract termination. Every member of the service
ecosystem has its own network management agent, and they
are considered to be fully trusted local agents [3].

The collaboration establishment process in the Pilarcos
framework is explicit with service selection, population and
negotiation phases. When collaboration is needed, one of the
partners initiates the collaboration establishment process via
its local NMA. This NMA first calls populator [3], an infras-
tructure service of the Pilarcos B2B middleware responsible
for executing collaboration establishment processes.

In the service selection phase service types [17] are
used for discovering service offers compatible with the
corresponding business network roles. A service type defines
the characteristic features for a kind of business services
by expressing its behavioural semantics and non-functional
features. Service types are used to constrain behaviour of
business services, to validate consistency of cooperation
abstractions, and for verifying behavioural substitutability
and compatibility between kinds of services [10].

After service discovery, the populator chooses the most
suitable service offers for each role from the set of de-
pendable services. Conformance with the constraints and
requirements defined by the business network model and
the collaboration initiator are used for selecting the set of
compatible services. Based on the collaboration proposals
given by the populator, the initiating NMA runs a negotiation
with the NMAs of the other proposed partners [3].

The interoperability management approach is a federated
one: all business services are developed independently, and
the provided B2B middleware services are used to ensure
that technical, semantic, and pragmatic interoperability is
maintained in the business network. A shared metamodel
formalizing the concepts of the Pilarcos framework provides
consistency and conformance criteria to be maintained by the
knowledge repositories.

ITI. A METAMODEL FOR SERVICE ECOSYSTEMS

The Pilarcos framework uses federation to establish in-
teroperability by utilizing a metamodel that formalizes the
concepts of the service ecosystem. Such a metamodel must
address especially the openness of the collaboration en-
vironment and provide means for service discovery and
selection, collaboration population, and negotiation. To sup-
port the openness of the environment, the metamodel must

not restrict the kinds of services that can be declared. On
the other hand, for enabling efficient service discovery and
selection, some means for service categorization must be
provided. That is, the service ecosystem metamodel must
involve concepts that allow construction of dynamic and
evolvable ontologies of service categories.

An open and agile service ecosystem necessitates two dif-
ferent kinds of models: prescriptive system models specify-
ing artifacts usable for service-oriented software engineering
purposes and configuration of collaborations, and descriptive
domain ontologies providing the vocabulary for express-
ing the concepts of the ecosystem. The service ecosystem
metamodel must address usage of both system models and
domain ontologies.

These requirements laid for the Pilarcos service ecosystem
metamodel are met by formalizing the elements of the
service ecosystem as a set of models, and providing founda-
tions for managing interoperability knowledge consisting of
domain ontologies and system models [10]. These principles
are discussed in the following subsections.

A. Defining the elements of a service ecosystem

The Pilarcos service ecosystem is formalized by four
inter-related metamodels [10]: a domain ontology meta-
model defining the fundamental concepts in the ecosystem,
a methodology metamodel providing means for defining
service-oriented software engineering facilities, a domain
reference metamodel used for describing the infrastructure
services available, and a knowledge management metamodel
enabling foundations for maintaining interoperability knowl-
edge in the system,

The domain ontology metamodel is an ontological meta-
model defining the vocabulary used in the service ecosys-
tem. In the case of Pilarcos framework, this vocabulary
includes business networks, business services, service types,
etc. Collaboration is defined as a role-based cooperation
taking place between entities. The entities encountered in
cooperations are distinguished to two different kinds, namely
functional and legal entities [10]. Functional entities provide
the facilities for delivering cooperative activities while legal
entities represent the cooperating parties that are bound
by mutual agreements or contracts to deliver the required
commitments. Entities have features that affect their suit-
ability to a certain kind of cooperation. A feature is here
considered as a distinguishable capability or property of an
element of a cooperative community. A functional feature
is a feature that can be directly associated with a functional
entity [10]. A non-functional feature describes a feature of
a legal entity, cooperation facility such as communication
channels, or a service relationship [10]. More specific kinds
of entities and features, such as service types and business
protocols [17], are derived from these foundational concepts
using ontological specialization.

The methodology metamodel is used for defining actors,
artifacts, and processes used in service-oriented software
engineering processes for producing work products. The
metamodel is based on the OPEN Process Framework [18].
Especially, the methodology metamodel defines modelling
artifacts that are used for representing concepts of the
domain ontology.

The domain reference metamodel provides a language for
describing the infrastructure services, collaboration agents
and the collaboration establishment process of a collabora-
tive computing environment. The domain reference meta-
model is an extension [19] of the knowledge management
metamodel; especially, it declares a knowledge repository as
one sort of an infrastructure service.

B. Foundations for interoperability knowledge management

Foundations for interoperability knowledge management
in the Pilarcos service ecosystem are given by metamodels
that formalize a conceptual unification between ontological
and linguistic modelling, concepts defined in domain ontolo-
gies, and knowledge repositories.

For addressing the system engineering and ontological
role of models in a service ecosystem, we separate two
orthogonal dimensions in the Pilarcos service ecosystem
metamodel. A linguistic metamodel is used for defining
modelling languages and their primitives on the metamodel
level and so-called linguistic instantiation [7] is used for
instantiating model elements from the types defined within
a corresponding metamodel. Linguistic instantiation crosses
modelling language abstraction levels and forms the basis for
linguistic metalevels [7]. Typically the number of linguistic
metalevels is restricted to three, which has been witnessed to
be sufficient for providing facilities for development of do-
main specific languages. The MOF [20] standard comprises
linguistic metalevels of metametamodels, metamodels and
models, for example.

Domain concepts are declared by utilizing ontological
metamodels where so-called ontological instantiation [7]
is used for creating domain specific artifacts using the
concepts defined at the upper-level ontology, or an ontology
metamodel [7], [8]. Ontological instantiation takes place
within a linguistic metalevel between two models represent-
ing concepts related by an ontological “is-a” relationship.
Ontological instantiation provides the support for facilitating
dynamic user extensions to modelling concepts, modelling
notation and the models created from them [7]. The number
of ontological metalevels depend on the domain of interest.
A domain ontology describing biological species could
contain 13 ontological metalevels for each of the levels in
the Linnaean taxonomy [21], for example.

The Pilarcos service ecosystem metamodel uses three
linguistic metalevels which follow the MOF [20] approach.
We use two ontological metalevels of ontological types and
instances [10]. In the Pilarcos service ecosystem concepts

Figure 2.

Ontological modelling relationships

are defined by domain ontologies conforming to the domain
ontology metamodel. Ontological type level concepts are
declared for defining new categories of concepts, such as
new kinds of services or collaboration types, for example.
Ontological instance level concepts are declared for repre-
senting member of the concept categories, such as business
services or collaboration usages, for example.

Ontological relationships between type and instance level
concepts are illustrated in Figure 2. While ontological in-
stantiation is probably the primary means for a user to
derive ontological hierarchies, this relationship is actually a
derived relationship induced by conformsTo and elementOf
relationships between an ontological instance level con-
cept and the intensional and extensional meaning of its
ontological type. An ontological instantiation relationship
holds between two concepts if and only if a concept is
conformant to the intentional part of its type and belongs to
the extension of the ontological type [8]. Both at the type and
instance level concepts are considered as representations of
(repOf) of systems, following the principles of model-driven
engineering [8], [22].

Interoperability knowledge management is formalized by
three metamodels: /) a systemic metamodel providing the
foundations for linguistic and ontological metamodelling,
2) a global model management metamodel describing the
modelling artifacts and their inter-relationships, and 3) a
knowledge repository metamodel making explicit the rela-
tionships between ontological concepts, modelling artifacts
and infrastructure services.

The systemic metamodel formalizes the metamodelling
principles introduced in [8], [22], [23]. Three kinds of
systems are identified and differentiated by the metamodel,
following the (incomplete) classification presented in [23]:
PhysicalSystems, DigitalSystems, and AbstractSystems. An
AbstractSystem is the only one associated explicitly with in-
tensional and extensional descriptions, where the extensional
semantics of a system is provided by the concept of Set.
Subsequently, every ontology in this modelling framework
is considered as an abstract system.

The global model management metamodel defines the
meaning of different kinds of models, and especially de-
clares relationships between concept intentions defined in

)

FAN

AbstractSystem | |IntentionaISystem | |Artefact ||DigitaISystem|
+repOf
0.*
+model
+element copcept [system _+intentio Intention| |Mode|
X 0.
+system§ +repOf T
0..* 0..*
0.* +extension +model
"_|ConceptSet +exlerw| ReferenceModel | |TerminaIModeI |
+elementOi 0.*
+model
0.

MetaModel ”MetametaModeI |

Figure 3.
framework.

The global model management metamodel for the Pilarcos

domain ontologies and system models. A simplified illustra-
tion of the metamodel is given in Figure 3. The notion of
a Model and the classification of different kinds of models,
e.g. ReferenceModels and TerminalModels, is based on the
global model management framework described in [22];
we however provide extensions to the notion of Model
that are foundational from the interoperability knowledge
management perspective.

In the global model management metamodel of the Pi-
larcos framework a Model is considered as a digital repre-
sentation of an Artefact. Artifacts are defined as elements
of methodologies by the methodology metamodel [10] and
associated with a corresponding technical space.A techni-
cal space is “a working context with a set of associated
concepts, body of knowledge, tools, required skills and
possibilites” [24]. A technical space determines the kind of
representation format, e.g. MOF model or OWL file, used
for describing the Artefact, for example.

The unification between ontological and linguistic mod-
elling is characterized by the relationship between refer-
ence models and concept intentions: linguistic type level
models represented by the ReferenceModel are considered
as representations of domain concept intentions. Domain
ontologies are in this framework considered as collections
of concepts and their inter-relationships. An ontological
concept is considered as an abstract system. The intensional
meaning of a concept is provided by the Intension element
and extensional meaning by a set of concepts (ConceptSet
element).

The model repository metamodel is part of the domain
reference metamodel. It formalizes the connections between
knowledge repositories, linguistic models and domain con-
cept semantics. These connections provide the foundations
for managing interoperability knowledge in model reposito-
ries and relate service-oriented software engineering facili-
ties with collaborative computing environments. A simpli-

DigitalSystem | |LocatabIeEIement |
+group| ContainerSet lﬁ lﬁ

*

" +extension
0.* 0..1

Container
+element

ModelContainer

InfrastructureService |

1. +repository 4 model 0
+conta|ne: +m*odel 0.* +referenceModel
0.. 0.. ConceptSet
+repOf
0..* +model
+ownedEntities 0..*

Figure 4. The model repository metamodel

fied illustration of model repository metamodel is given in
Figure 4.

A ModelRepository is considered as a locatable digital
system that comprises model containers. A model repository
is associated with a unique ReferenceModel which represents
an intention of a domain ontology concept. The ModelCon-
tainer provided by a repository comprises a set of Model ele-
ments. As defined in the Pilarcos global model management
metamodel, each Model is a representation of a methodology
Artefact; this connection unifies service-oriented software
engineering frameworks with a collaborative computing en-
vironment. Consequently, a ModelContainer is interpreted as
a representation of a set of concepts (we assume transitivity
of the repOf modelling relationship).

As the notion of an Artefact is associated with a tech-
nological space, a model repository may include several
model containers corresponding to each technological space.
A model repository thus may support different technological
representations for the linguistic instances of the reference
model. In this case, mappings between technical spaces
should be provided.

The models that are stored within a model container
conform to the reference model associated with the corre-
sponding repository. Most importantly, a model repository
can be considered as a technological representation of an
ontological concept. The extensional semantics of a type
level concept is declared by using the ContainerSet ele-
ment, which includes all model containers for instance level
repositories that contain instances of the ontological type.
The mechanics of knowledge management, including the
maintenance of the concept extensions, is further discussed
in the next section.

IV. CONTROLLING METAINFORMATION CORRECTNESS
IN KNOWLEDGE REPOSITORIES

A knowledge repository is an infrastructure service that
is responsible for maintaining conformance and consistency
between domain concepts. From a knowledge management

perspective the Pilarcos service ecosystem metamodel in-
volves several kinds of conformance and consistency re-
lationships that have to be addressed. In this section, we
describe how these relationships are maintained during the
operation of a knowledge repository. During the discussion,
we use the Pilarcos service type repository [1], [10], [17] as
an example repository.

Service type is an abstract description of business service
capabilities, behaviour and structure. It is a unit of service
design and composition representing a bilateral, conversa-
tional service-interface. The notion of service type [10], [17]
is provided with a behavioural type system based on the no-
tion of session types [25], [26] that provides a formalization
for behavioural compatibility and subtyping, and behavioural
typing of processes. The ontological instances of service
types in the Pilarcos service ecosystem metamodel are
the business services. A knowledge repository maintaining
service type models is known as a service type repository.

A knowledge repository maintains two kinds of con-
formance relationships between knowledge elements: lin-
guistic conformance between a model and the repository
reference model, and ontological conformance between a
concept instance and its ontological type. The linguistic
conformance relationship is defined as part of the technical
space associated with the corresponding engineering Arte-
fact, which is described by the methodology metamodel.
Most typically, a linguistic conformance relation similar
to the MOF framework [20] will be used. In the case of
the service type repository, linguistic conformance is based
on a metamodel representation of the service type concept
intention. The service type metamodel comprises a set of
service features and a set of business protocols [10], and
is provided concretely as an Eclipse Modelling Framework
model [27].

Ontological conformance is a relationship defined be-
tween two ontological metalevels and typically involves
semantic interpretation. Formulation for the semantic cor-
respondence between a concept at the ontological instance
level and the intention of a concept at ontological type level
must be provided. This semantic correspondence is defined
as part of the domain ontology metamodel. In a modelling
framework comprising two ontological metalevels ontologi-
cal conformance relationship is not declared for ontological
types; for ontological instances the corresponding type has
to be declared. In the case of service types, the ontological
conformance relationship between a business service and the
corresponding service type becomes a behavioural typing
relationship based on the session typing discipline [25], [26].
In addition, service features (e.g. “service price”) declared in
a service type must be provided with conforming properties
(e.g. an amount in a specific currency) in a corresponding
business service.

In addition to the conformance relationships, a knowledge
repository has to maintain several consistency relationships

between ontological concepts. The ontological modelling
relationship of elementOf is represented in the model repos-
itory metamodel by the ownedEntities relationship between
a repository model container and the models it contains.
The model container is the owner of the models it contains,
and is considered responsible for managing their life-cycle,
and especially, naming. Names are fundamental elements in
distributed computing systems as they can be used for ref-
erencing different entities in different contexts [28] and also
because of their ontological relevance. Naming policies, e.g.
use and construction of name spaces and naming conven-
tions, are prescribed by the technical space used for creating
the corresponding engineering artifacts, and by policies of
the business domain and repository authority, for example. In
the Pilarcos model repositories naming is URI-based. Each
repository may declare their own naming policies; federated
name management is not yet supported. For simplicity, we
currently assume that the model URI is derived from the
repository host name such that model name resolution is a
simple process of contacting the corresponding host using
the model URI prefix as a host name.

The extensional semantics of ontological type concepts
is represented in model repositories as references to exter-
nal model containers. When a new instance level concept
is published in a repository (let us call it the “instance
repository”), the repository owning the corresponding type
level concept (the “type repository”) is contacted. The type
repository is used for validating the ontological conformance
of the ontological instance with respect to the type level
concept. If the conformance validation succeeds, the type
repository adds the model container of the instance repos-
itory to the set of containers representing the extension of
the type level concept. That is, a type repository is aware
of the instance repositories that have instance level concepts
conforming to the ontological types that are contained in the
type repository. Consequently, ontological instances can be
queried based on their type from the type repositories. From
administrative perspective, it is a matter of choice between
trust, efficiency, and maintainability related issues if a type
repository and corresponding instance repositories should be
distributed in different administrative domains.

Finally, ontological relationships can be added and re-
moved between concepts by the actors in the ecosystem.
The semantics of the relationships are defined as part of the
domain ontologies. In the case of service types, a service
type can be subtype of another, for example [10], [17].
The semantics of this relationship between two service type
concepts is defined by the session subtyping discipline [25],
[26] and is an intra-repository relationship. Ontological
relationships can be declared between concepts maintained
in different repositories as well. In this case, the owner
of the relationship endpoint is considered responsible for
validating the relationship between the concepts. For the
purpose of validating the domain-specific semantics of onto-

logical relationships transformations are typically needed for
appropriate representation of the concept models. In service
type repositories Prolog is used for representing models
when implementing service subtyping and compatibility
validation.

V. CONCLUSION

For the establishment and runtime control of loosely-
coupled federated collaborations, globally available interop-
erability knowledge is required. Corresponding knowledge
repositories provide vocabulary for business network struc-
tures (aggregations of business processes for named business
scenarios), service types declaring known interface types and
properties relevant for the kind of services in question, and
information about actual services provided by enterprises.

The interoperability knowledge is shared between the
design and production environments for services, and the op-
erational time environment for collaborations. For example,
the service type knowledge can be created at service design
time, and be used for model-driven production techniques.
On the other hand, the same service type knowledge is used
at operational time for determining if an actual service on
the market can be plugged in to a collaboration or not, in
terms of various levels of interoperability.

This twofold use of the same models brings in the
necessity of including both linguistic and ontological con-
siderations to the models. As far as we are aware, Pilarcos
is one of the very few architectures tackling this issue. In
distinction to such work as [29], which use transformations
or annotations to unify ontological and linguistic technical
spaces, our approach provides a more comprehensive uni-
fication between the descriptive ontologies and prescriptive
system models.

Approaches for service interoperability based on shared
metamodels have been taken for example in COSMO [30]
and PIM4SOA [31]. These approaches concentrate on on
providing a unifying metamodel for service modelling and
for validating the consistency and conformance of ser-
vice models during design. In comparison to COSMO and
PIM4SOA, our metamodel is more suitable for acting as a
metamodel for open service ecosystems, since in addition for
defining a metamodel for service descriptions it also makes
explicit the relationships between the different elements of
service ecosystems, and puts emphasis also on the dynamic
nature of service ecosystems.

In the future, a modelling methodology that addresses
both the ontological and linguistic modelling viewpoints
should be given for fully taking advantage of this approach.
Until then, tools and methodologies can be used separately in
their respective modelling domains (e.g. OWL for ontologi-
cal modelling and UML for linguistic modelling) to provide
the modelling framework with domain ontology concepts
and their intentions.

The model repository concept described in this paper
is related to research in model management [32], [33].
The AM3Core metamodel defined by the AMMA frame-
work [32] has been used as a starting point for the global
model management metamodel presented in this paper. More
over, the Pilarcos model repositories are implemented using
model transformations that generate repository interfaces
conformant with the ModelBus [33] framework [10].

ACKNOWLEDGEMENT

This work has been performed within the CINCO group
(Collaborative and Interoperable Computing Group) at the
University of Helsinki, lead by Lea Kutvonen. The group
mission is to forward facilities of service interoperability
and dynamic business networks and has worked through
a number of national projects funded by the Academy
of Finland, the Finnish Funding Agency for Technology
and Innovation (TEKES) and Finnish companies, and the
INTEROP NoE.

REFERENCES

[1] L. Kutvonen, T. Ruokolainen, and J. Metso, “Interoperability
middleware for federated business services in web-Pilarcos,”
International Journal in Enterprise Information Systems, Spe-
cial issue on INTEROP-ESA 2005, vol. 3, no. 1, 2007.

[2] T. Ruokolainen and L. Kutvonen, “Interoperability in Service-
Based Communities,” in Business Process Management
Workshops: BPM 2005 International Workshops, BPI, BPD,
ENEI, BPRM, WSCOBPM, BPS, ser. Lecture Notes in
Computer Science, C. Bussler and A. Haller, Eds., vol. 3812.
Springer-Verlag, 2006, pp. 317-328. [Online]. Available:
http://dx.doi.org/10.1007/11678564_28

[3] L. Kutvonen, J. Metso, and S. Ruohomaa, “From trading
to eCommunity management: Responding to social and
contractual challenges,” Information Systems Frontiers (ISF)
- Special Issue on Enterprise Services Computing: Evolution
and Challenges, vol. 9, no. 2-3, pp. 181-194, Jul. 2007.

[4] D. C. Schmidt, “Model-Driven Engineering,” Computer,
vol. 39, no. 2, pp. 25-31, Feb. 2006.

[5] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented
computing,” Commun. ACM, vol. 46, no. 10, pp. 24-28, 2003.

[6] Z. Stojanovic and A. Dahanayake, Eds., Service-Oriented
Software System Engineering: Challenges and Practices.
Idea Group Publishing, 2005.

[7] C. Atkinson and T. Kiihne, “Model-driven development: A
metamodeling foundation,” IEEE Softw., vol. 20, no. 5, pp.
3641, 2003.

[8] D. Gasevic, N. Kaviani, and M. Hatala, “On Metamodeling in
Megamodels,” in Model Driven Engineering Languages and
Systems, ser. Lecture Notes in Computer Science, vol. 4735.
Springer, 2007, pp. 91-105.

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

L. M. Camarinha-Matos and H. Afsarmanesh, “Collaborative
networks: Value creation in knowledge society,” in PROLA-
MAT 2006, Knowledge Enterprise: Intelligent Strategies in
Product Design, Manufacturing, and Management, vol. 207,
2006, pp. 26-40.

T. Ruokolainen, “Modelling framework for interoperability
management in collaborative computing environments,” Jun.
2009, Licentiate Thesis.

J. Metso and L. Kutvonen, “Managing Virtual Organizations
with Contracts,” in Workshop on Contract Architectures and
Languages (CoALa2005), Enschede, The Netherlands, Sep.
2005.

J. Lee, K. Siau, and S. Hong, “Enterprise integration with
erp and eai,” Commun. ACM, vol. 46, no. 2, pp. 54-60,
2003.

N. Erasala, D. C. Yen, and T. M. Rajkumar, “Enterprise
application integration in the electronic commerce world,”
Comput. Stand. Interfaces, vol. 25, no. 2, pp. 69-82, 2003.

A. Tsalgatidou and T. Pilioura, “An overview of standards
and related technology in web services,” Distrib. Parallel
Databases, vol. 12, no. 2-3, pp. 135-162, 2002.

S. Damodaran, “B2B integration over the Internet with XML:
RosettaNet successes and challenges,” in I3th international
World Wide Web conference on Alternate track papers &
posters. New York, NY, USA: ACM, 2004, pp. 188-195.

L. M. Camarinha-Matos and H. Afsarmanesh, “Elements of
a base VE infrastructure,” Comput. Ind., vol. 51, no. 2, pp.
139-163, 2003.

T. Ruokolainen and L. Kutvonen, “Service Typing in
Collaborative Systems,” in Enterprise Interoperability: New
Challenges and Approaches, G. Doumeingts, J. Miiller,
G. Morel, and B. Vallespir, Eds. Springer, Apr. 2007, pp.
343-354.

B. Henderson-Sellers, “Method engineering for OO systems
development,” Commun. ACM, vol. 46, no. 10, pp. 73-78,
2003.

M. Barbero, F. Jouault, J. Gray, and J. Bézivin, “A Practical
Approach to Model Extension,” in ECMDA-FA 2007, ser.
Lecture Notes in Computer Science, vol. 4530. Springer-
Verlag, 2007, pp. 32-42.

Meta Object Facility (MOF) Core Specification, 2nd ed.,
Object Management Group, Jan. 2006, oMG Available Spec-
ification — formal/06-01-01.

“Wikipedia: Linnaean taxonomy,” http://en.wikipedia.org/
wiki/Linnaean_taxonomy, May 2009.

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

J.-M. Favre, “Foundations of Model (Driven) (Reverse) En-
gineering : Models - Episode I: Stories of The Fidus Papyrus
and of The Solarus,” in Language Engineering for Model-
Driven Software Development, 2004.

J. Favre, “Towards a Basic Theory to Model Model
Driven Engineering,” in 3rd Workshop in Software Model
Engineering in conjunction with UML2004, WiSME, 2004.

I. Kurtev, J. Bézivin, and M. Aksit, “Technological Spaces:
An Initial Appraisal,” 2002, http://www.scientificcommons.
org/27172017 (05.06.2008).

K. Honda, V. T. Vasconcelos, and M. Kubo, “Language
primitives and type discipline for structured communication-
based programming,” in Proceedings of the 7th European
Symposium on Programming. Springer-Verlag, 1998, pp.
122-138.

A. Vallecillo, V. T. Vasconcelos, and A. Ravara, “Typing the
Behavior of Objects and Components using Session Types,”
Electronic Notes in Theoretical Computer Science, vol. 68,
no. 3, 2003, presented at FOCLASA’02.

“Eclipse Modeling Framework website,” http://www.eclipse.
org/modeling/emf/, 2008.

ISO/IEC 10746-1: Information technology — Open Dis-
tributed Processing — Reference model: Overview, ISO/IEC
JTC1/SC7, Dec. 1998.

F. S. Parreiras, S. Staab, and A. Winter, “On marrying on-
tological and metamodeling technical spaces,” in ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. New
York, NY, USA: ACM, 2007, pp. 439-448.

D. A. Quartel, M. W. Steen, S. Pokraev, and M. J. Sinderen,
“COSMO: A conceptual framework for service modelling and
refinement,” Information Systems Frontiers, vol. 9, no. 2-3,
pp- 225-244, 2007.

G. Benguaria, X. Larrucea, B. Elvesaeter, T. Neple,
A. Beardsmore, and M. Friess, “A Platform Independent
Model for Service Oriented Architectures,” in Enterprise In-
teroperability: New Challenges and Approaches, G. Doume-
ingts, J. MAijller, G. Morel, and B. Vallespir, Eds. Springer,
Apr. 2007, pp. 23-32.

H. Bruneliére, F. Allilaire, J. Bézivin, and F. Jouault, “Global
model management in eclipse gmt/am3,” in Eclipse Technol-
ogy eXchange workshop (eTX) at the ECOOP 2006 Confer-
ence, 2006.

X. Blanc, M.-P. Gervais, and P. Sriplakich, “Model Bus:
Towards the Interoperability of Modelling Tools,” in Model
Driven Architecture, ser. Lecture Notes in Computer Science,
vol. 3599. Springer, 2005, pp. 17-32.

