DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
REPORT A-2013-3

A Model-Driven Approach to Service Ecosystem
Engineering

Toni Ruokolainen

To be presented, with the permission of the Faculty of Science of the
University of Helsinki, for public criticism in Auditorium XIV, Univer-
sity of Helsinki Main Building, on 22 February 2013 at noon.

UNIVERSITY OF HELSINKI
FINLAND

Supervisor
Lea Kutvonen, University of Helsinki, Finland

Pre-examiners
Jodo Paulo A. Almeida, Federal University of Espirito Santo, Brazil
Antonio Vallecillo, Universidad de Malaga, Spain

Opponent
Marten van Sinderen, University of Twente, Netherlands

Custos
Sasu Tarkoma, University of Helsinki, Finland

Contact information

Department of Computer Science

P.O. Box 68 (Gustaf Hillstromin katu 2b)
FI-00014 University of Helsinki

Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright (¢) 2013 Toni Ruokolainen

ISSN 1238-8645

ISBN 978-952-10-8620-5 (paperback)

ISBN 978-952-10-8621-2 (PDF)

Computing Reviews (1998) Classification: D.2.1, D.2.11, D.2.12, 1.6.5
Helsinki 2013

Unigrafia

A Model-Driven Approach to Service Ecosystem Engineering
Toni Ruokolainen

Department of Computer Science

P.O. Box 68, FI-00014 University of Helsinki, Finland
Toni.Ruokolainen @cs.Helsinki.FI
http://www.cs.helsinki.fi/Toni.Ruokolainen

PhD Thesis, Series of Publications A, Report A-2013-3
Helsinki, February 2013, 232 pages

ISSN 1238-8645

ISBN 978-952-10-8620-5 (paperback)

ISBN 978-952-10-8621-2 (PDF)

Abstract

The passage from monolithic, product-driven business models to networked and
service-based business has given rise to the emergence of service ecosystems. A
service ecosystem is a socio-technical complex system that enables service-based
collaborations between entities such as enterprises, institutions or individuals.
Service ecosystems may emerge spontaneously due to a common interest or de-
mand, or as a result of long-term strategic planning. Examples of service ecosys-
tems include software ecosystems, electronic business networks, cloud computing
platforms and social networking platforms. The emergence of service ecosystems
has been driven especially by technological developments and innovations. Ad-
vancement in areas such as service-oriented computing and cloud computing has
provided foundations for implementation and operation of contemporary service
ecosystems.

Contemporary service ecosystems are now challenged especially on two fronts.
On one hand, networked business and networked business models require sup-
port especially for efficient business decision making, opportunistic and flexible
business networking and service ecosystem governance. Such activities require
explicit knowledge about the capabilities and other characteristics of service eco-
systems. On the other hand, the visions of Internet of Things and Internet of Ser-
vices necessitate means for efficient, on-demand establishment of domain-specific
service ecosystems, as well as loosely coupled connectivity and interoperability
both in and between distinct service ecosystems. Due to the implicit nature of
contemporary service ecosystem architectures, and technology-driven engineer-

11

v

ing processes the current service ecosystems are at risk to become yet new tech-
nological and conceptual silos.

The current technology-driven approaches for establishing service ecosystems are
infeasible to meet these challenges. From an engineering perspective, there is
an evident lack of a service ecosystem engineering discipline. The prevailing
technology-driven approaches stress the implementation and operation of service
ecosystem infrastructure while neglecting analysis and design of service eco-
systems as holistic systems. Consequently, service ecosystems are established
based on implicit and technology-dependent architectures and design principles.
Such ad hoc service ecosystems suffer from reduced longevity due to technology-
dependent designs, as well as interoperability problems and inflexible governance
practices due to ambiguous ecosystem architectures. There is a need for a systems
engineering discipline which provides means for analysis, design, instrumentation
and operation of service ecosystems.

From a business perspective, the current approaches for service ecosystem estab-
lishment do not provide sufficient support for ecosystem sustainability. Sustain-
ability is defined as a quality of a service ecosystem to support continued viabil-
ity. The viability of a service ecosystem can only be established if the concerns of
stakeholders, e.g. service providers and service engineers, are feasibly addressed
during the service ecosystem engineering life cycles. For example, service pro-
viders must be provided with means for service contracting and bundling while
service engineers must be provided with facilities that enable well-advised and
efficient service production. Guaranteeing continuation of ecosystem viability
necessitates e.g. preservation of member autonomy and dynamic business service
collaboration capabilities for allowing efficient utilization of core competencies
and exploitation of new business opportunities.

This thesis proposes service ecosystem engineering as a novel systems engineer-
ing discipline for enabling a transition from contemporary ad hoc service eco-
systems to sustainable ones. Such a transition is required for supporting modern
networked business practices and the “services everywhere” vision. The service
ecosystem engineering discipline is realized with a model-driven approach. The
approach facilitates establishment of sustainable service ecosystems where ser-
vice ecosystem viability is achieved by addressing the characteristic concerns of
ecosystem stakeholders.

Service ecosystem engineering is defined as a systems engineering life cycle
which comprises phases of ecosystem analysis, design, instrumentation and oper-
ation. The model-driven approach for service ecosystem engineering is based on
a holistic conceptual model of service ecosystems, which in itself supports service
ecosystem analysis. The conceptual model is formalized as a meta-model which
enables further design and utilization of explicit service ecosystem architecture
models. The conceptual model and the meta-model provide foundations for the
Service Ecosystem Architecture Framework (SEAF), which enables service eco-
system architecture analysis and design. SEAF is implemented over a commercial
UML-modelling tool. Finally, a model-driven methodology for service ecosystem
instrumentation is defined. Service ecosystem instrumentation denotes delivery of
the infrastructure necessary for enabling the operation of the ecosystem. Service
ecosystem instrumentation may involve for example implementation of infrastruc-
ture services and engineering tools, and configuration of middleware platforms.
The methodology utilizes the architecture models and model-driven engineering
practices for instrumentation of domain-specific service ecosystems. In addition,
service ecosystem architecture models can be applied for service ecosystem gov-
ernance approaches, as well as for establishing interoperability and predictability
of ecosystem operation.

The impact of this work is two-fold. First of all, the results of this work facilitate
rigorous engineering of sustainable service ecosystems. Enabling analysis and
design of service ecosystems as holistic systems decreases the risks associated for
example with technology dependency and migration. Explicit service ecosystem
architectures enable efficient analysis techniques, €.g. assessment of service eco-
system maturity with respect to local criteria, to support business decision making
when joining and operating in service ecosystems. Moreover, service ecosystem
architecture models are utilizable for model-based interoperability approaches, as
well as for supporting service ecosystem governance.

Secondly, added value and utility is provided for service ecosystem stakeholders.
Ecosystem members are delivered with means for efficient utilization of core com-
petencies, opportunistic and flexible business networking, supporting progressive
business environments, and efficient business decision making. As demonstrated
in the evaluation part of this thesis, these activities are addressed by the approach
in service ecosystem engineering life cycles.

Vi

Computing Reviews (1998) Categories and Subject
Descriptors:

D.2.1 Requirements / Specifications: Methodologies

D.2.11 Software Architectures: Domain-specific Architectures
D.2.12 Interoperability

[.6.5 Model Development

General Terms:

service ecosystems, service ecosystem engineering, model-driven engineering,
service ecosystem sustainability, open service ecosystems, service-oriented
computing

Additional Key Words and Phrases:
architecture framework, meta-modelling, model-driven methodology, systems
engineering, service ecosystem meta-model, foundational ontology

Acknowledgements

This book was written within a rich and complex socio-technical ecosystem. Now
that the work is done I want to thank all the people involved in this co-creation
experience.

First of all, I would like to thank my supervisor Lea Kutvonen for being patient
and visionary enough to let me find my own path as a researcher. I especially
appreciate the discussions that have happened at the “meta-level”, providing me
guidance how to proceed both methodologically and as an expert on our field
that is a strange mixture of computer science, information systems, mathematics,
economics and sometimes even philosophy.

I would like to thank all the former and current CINCO members for all the
support and discussions. I feel especially lucky that I have had the opportunity
to have really inspiring talks with my colleague Tuomas Nurmela. His industrial
expertise and knowledge of economics and service business has certainly had an
effect on my thinking along the way. I hope that our collaboration will carry on.

I have had the pleasure of working at the best computer science department
in Finland. I am grateful for all the support I have had from the Department of
Computer Science. While I have not been the most talkative person in the coffee
room [have really enjoyed the off-topic discussions while enjoying a break from
deep thinking or sometimes even agonizing verbalization of thoughts.

I thank my pre-examiners, Jodo Paulo A. Almeida and Antonio Vallecillo, for
their valuable feedback and encouraging comments. Their expertise shows in the
book especially in enhanced comprehensibility and transparency of the contribu-
tions. I am honored to have the opportunity to defend my thesis in front of my
assigned opponent, Marten van Sinderen, whose long research career especially
in the area of specification and modelling of distributed systems shows also in this
book.

I am blessed to have an extended family whose support has enabled me to pro-
ceed on my research career. They have taken especially good care of my daughter
Aada who has taught me more that I can ever teach her back. She has taught me
especially about sincerity, presence and joy of life. I am also grateful to all the
other teachers I have had, and still have, in my life. You have shown me valuable

vii

viii

things about myself and the world around us. And of course, I am thankful to all
my friends who I have had the honour to grow up and have fun with.

Finally, I would like to express my eternal gratitude to my late mother who
brought me up to appreciate the simplicity of life.

Raasepori, 27 January 2013
Toni Ruokolainen

Contents

Introduction

1.1 Emergence of service ecosystems
1.2 Engineering a home-automation service ecosystem
1.3 Identifying the challenges
1.4 Researchquestions
1.5 Research approach and contributions
1.6 Relatedresearchareas.
1.7 Structure of the dissertation,
1.8 Researchhistory

Sustainable service ecosystems

2.1 Elements of service ecosystems

2.2 Service ecosystem stakeholders,

2.3 Defining ecosystem sustainability
2.3.1 Requirements for service ecosystem viability
2.3.2 Establishing continuation of viability

A meta-model for service ecosystems
3.1 Design principles for the meta-model
3.2 Modelling practices and conventions
3.3 Foundations for service ecosystem modelling
3.4 Service ecosystem architecture descriptions
3.5 Ecosystemmodel
3.5.1 Ecosystem capabilities
3.5.2 Ecosystemdomains.
3.5.3 Ecosystemlifecycles
3.6 Domain ontology model,
3.6.1 Top-levelconcepts
3.6.2 Contracting conceptso
3.6.3 Service ecosystem entities

X

10
14
14
20
21
22

25
26
28
30
30
36

3.6.4

CONTENTS

Cooperation facilities

3.7 Intensionmodel

3.7.1
3.7.2

Support for ecosystem evolution and specialization
Service ecosystem features

3.8 Engineeringmodel
3.9 Knowledge managementmodel

4 Tools for model-driven service ecosystem engineering
4.1 The Service Ecosystem Architecture Framework

4.1.1
4.1.2

4.2 A model-driven methodology for service ecosystem engineering

4.2.1
422

Elements of the architecture framework
Viewpoint specifications

Engineering activities
Implementation details

S Validation and evaluation
5.1 Evaluationapproach,
5.2 Evaluation case: Pilarcos service ecosystem

5.2.1
522

Pilarcos service ecosystem
Modelling Pilarcos service ecosystem architecture

5.3 Evaluationresults

5.3.1
532
533
534

Validating the feasibility of the approach
Evaluating the applicability of the approach
Evaluating the support for ecosystem viability
Evaluating the support for continuation of viability

5.4 Comparisontorelatedwork L.

54.1
54.2
543
544
545

OASIS SOA Reference Model
Reference Model for Open Distributed Processing
Enterprise Architectures
European FP7 research
Otherrelated work

6 Conclusions and consequences
6.1 Summaryofresults L oL
6.2 Analysisoftheresults.

6.2.1

6.2.2

6.2.3
6.3 Impacts
6.4 Further

References

Meeting the research objectives
Satisfying the stakeholder concerns
Demarcationof thethesis.

..............................

Prospects

99
100
100
102

. 134

134
139

145
145
147
147

. 149

166
166
167
168
171
175
179

.. 182

188
190
194

199
199
200
201
203
208
210
212

215

Chapter 1

Introduction

The passage from monolithic, product-driven business models to networked and
service-based business has given rise to the emergence of service ecosystems.
A service ecosystem is a socio-technical complex system that enables service-
based collaborations between entities such as enterprises, institutions or individu-
als. Service ecosystems may emerge spontaneously due to a common interest or
demand, or as a result of long-term strategic planning. Examples of service eco-
systems include software ecosystems, electronic business networks, cloud com-
puting platforms and social networking platforms.

This academic dissertation provides model-driven facilities for service eco-
system engineering. The contributions of this thesis support a transition from
contemporary, technology-driven ad hoc service ecosystems to sustainable ser-
vice ecosystems. Such transition is a pre-requisite for reaching the Internet of
Services envisioned by the European Commission. A sustainable service eco-
system 1s a well-defined, governed system with an explicit architecture that ad-
dresses the fundamental concerns of ecosystem stakeholders, and provides means
for maintaining viability of ecosystem operation.

This Chapter introduces the context, motivation and contents of the disserta-
tion. Firstin Section 1.1 the notion of service ecosystems is introduced. After that,
in Section 1.2, an application scenario is introduced for clarifying the demand for
the results of this thesis. Section 1.3 identifies research research challenges which
need to be addressed. Motivation and objectives for this work are introduced in
Section 1.4 which formulates the concrete research questions for this dissertation.
The approach for reaching the objectives is described in Section 1.5. Related
research fields are identified in Section 1.6. The structure of the dissertation is
described in Section 1.7. Finally, the research history that lead to this academic
dissertation is described in Section 1.8.

2 1 INTRODUCTION

1.1 Emergence of service ecosystems

The current business landscape is characterized by commoditization and short-
ened product life spans [30]. In an effort towards increasing their revenues in
this landscape, many enterprises are moving to service-centric business models
and especially the utilization of electronic services. Also public organizations
operating in domains like health-care (and government) provide and utilize elec-
tronic services for increasing their coverage, efficiency and customer satisfaction.
Even individuals consume electronic services provided by governmental bodies,
commercial actors, and communities of interest. These services include different
forms of information sharing and social networking services.

The passage from monolithic, product-driven business models to networked
and service-based business has given rise to the emergence of service ecosystems.
A service ecosystem is a socio-technical complex system that enables service-
based collaborations between entities such as enterprises, institutions or individ-
uals. A service is here considered as an autonomous, self-descriptive software
component with a well-defined interface [151] that delivers a set of capabilities
to fulfill the business needs of a client. Service ecosystems may emerge sponta-
neously due to a common interest or demand, or as a result of long-term strategic
planning.

Examples of service ecosystems include software ecosystems, service-based
collaborative networks, and web-application platforms. Software ecosystems have
become popular as a means for producing software applications more efficiently
for heterogeneous clientele with varying requirements. A software ecosystem is
typically based on a software platform provided by an organization. The platform
is then used by internal and external developers for implementation of applica-
tions [22]. Infrastructure services are provided by the platform owner for appli-
cation provisioning and distribution. Software ecosystem strategy is utilized by
companies such as Apple! or Nokia? for establishing communities of developers
and clientele over their own corresponding platforms.

Organizations participate in service-based collaborative networks which are
established to share risks, development costs or intellectual capital, or to com-
plement each others’ skills [157, 27]. A common form of collaborative network
in a business context is a supply chain coordinated and managed by a dominant
player of the domain [157]. In other kinds of scenarios, such as formal joint
ventures, professional virtual communities, or collaborative engineering environ-
ments [101], collaborations need to be formed in a more loosely coupled and
democratic manner. Such collaborative networks can be realized as different kinds

"http://www.apple.com
*Nokia Ovi: http://www.ovi.com/

1.1 Emergence of service ecosystems 3

of virtual organizations [28], for example.

The Web 2.0 (see e.g. [105]) emphasizes provision of Web-based applications
and their mash-ups (see e.g. [176]) over the Internet. Typical Web 2.0 applications
can be classified into social networking and knowledge sharing services, tools and
platforms for end-user content creation, and on-line collaboration tools for spe-
cific tasks [146]. Especially social networking platforms have become popular,
since they typically allow light-weight and easy methods for sharing knowledge
within different communities of interest. Social networking platforms, such as
YouTube?, Facebook* or LinkedIn®, provide infrastructure services for sharing
knowledge, such as video feeds, user profiles, personal information, or competen-
cies of individuals. Additional services, such as discussion forums for users, are
typically provided by social networking platforms.

The emergence of service ecosystems has been driven especially by tech-
nological developments and innovations, such as the Web [173] and Web Ser-
vices [169], and generalization of communication technology. Advancement in
the areas of service-oriented computing and cloud computing has provided foun-
dations for implementation and operation of contemporary service ecosystems.
Service-oriented computing is a paradigm for designing and implementing com-
plex distributed systems [122, 151] that is based on the concept of services. The
service-oriented computing paradigm comprises four conceptual elements: ser-
vices, service descriptions, service composition, and service-oriented architec-
tures (SOA). Services are advertised by publishing their descriptions in service
brokers. Service descriptions are produced by service providers and they char-
acterize the properties and capabilities of corresponding services. Service con-
sumers use service discovery mechanisms provided by a service broker infrastruc-
ture to locate appropriate services. Other kinds of infrastructure services, such as
repositories for domain vocabularies, can also be available in service ecosystems.
Finally, SOA is an architectural style, i.e. a collection of design and implementa-
tion principles, for design and development of service-based systems. The design
principles of SOA seek to attain loose coupling and late binding between software
services.

Cloud computing is an approach where computing, storage and software ap-
plication resources are delivered to customers as services [166]. Cloud computing
is based on abstraction of computing infrastructure providing an elastic capacity
and illusion of infinite computing resources, self-service interfaces, and a pay-per-
use model of resource utilization [166]. The cloud computing approach includes
three service models based on the abstraction level of capabilities and services

3YouTube: http://www.youtube.com
*Facebook: http://www.facebook.com
>LinkedIn: http://www.linkedin.com

4 1 INTRODUCTION

delivered to customers. Infrastructure as a Service (IaaS) refers to a cloud com-
puting service model where the primary capabilities delivered are associated with
computing infrastructure, such as storage and networking. The capabilities are
managed and accessed through a virtual infrastructure manager [166]. The Ama-
zon EC2° is an example of an IaaS-platform. In the Platform as a Service (PaaS)
model the delivered capabilities include programming languages and frameworks,
and structured data. The PaaS services are accessed and managed through a cloud
development environment which provides a platform for service developers to im-
plement and deploy software services. Google AppEngine’ can be considered a
PaaS-platform. The Software as a Service (SaaS) model is characterized by web-
browser accessible consumer services, such as social networks, office suites, or
video processing applications [166].

Contemporary service ecosystems can be characterized as closed systems.
That is, either the set of available services is restricted to specific kinds of services
that are pre-determined before ecosystem operation, or then utilization and com-
position of services is based on manual service discovery and static, development-
time binding of service interfaces. Interoperability between services is established
manually and pre-determined before actual operation; tightly coupled technology-
level integration is used for establishing interoperable service compositions. Cur-
rent service ecosystems typically do not support evolution (i.e. introduction of
new kinds of services and collaboration forms), dynamic service discovery and
composition, or run-time collaboration establishment, all of which are considered
crucial elements in the vision of service ecosystems, service-oriented comput-
ing [122, 123] and Internet of Services [146, 92, 42].

In future, organizations and individuals collaborate within open service eco-
systems for enabling service-oriented networked business. An open service eco-
system is characterized especially by the autonomy of its entities, its evolution
with respect to available services and collaboration types, and dynamic establish-
ment of collaborations. In an open service ecosystem the service providers and
clients are not bound to a shared development platform. Instead, each ecosys-
tem member may utilize methods and technologies that suit their own needs best.
A set of global infrastructure services are then used for service publication and
discovery, as well as dynamic establishment of service-based collaboration net-
works [87]. An open service ecosystem is based on the SOA architectural style
with service brokering and dynamic binding facilities, but requires in addition
more sophisticated infrastructure services for enabling interoperable service col-
laboration.

In open service ecosystems means for sharing and maintaining interoperabil-

® Amazon EC2: http://aws.amazon.com/ec2/
"https://developers.google.com/appengine/

1.2 Engineering a home-automation service ecosystem 5

ity knowledge need to be provided. We define knowledge as explicit and formal-
ized information that is shared within a community of entities having a common
understanding of the information and its purpose. Knowledge is based on the
conceptual framework of the community and is specific for the corresponding do-
main of interest. Interoperability knowledge is utilized in open service ecosystems
for guaranteeing interoperable operation of service-based collaborations. Interop-
erability knowledge includes information about service compatibility with other
services and their applicability with respect to different models of collaboration,
for example. Interoperability knowledge is typically public or shared within a
community of ecosystem members, and it is dependable in the sense that it comes
from trusted sources and is verified with respect to some domain-specific formal
criteria.

Services, service-based systems and other artefacts instrumenting service-
based collaborations are envisioned to be produced in open service ecosystems by
globalised software engineering processes. From such a service-oriented software
engineering perspective this dissertation provides means for sharing engineering
knowledge and for instrumenting service-oriented software engineering frame-
works. Engineering knowledge is characterized by its design and development
time usage and its context dependence: a knowledge fragment can be meaningful
only within a specific phase of an engineering process. Complete, independent
knowledge artefacts are composed from such incomplete knowledge fragments
within knowledge management and software engineering processes. Engineering
knowledge, as opposed to interoperability knowledge, is not necessarily verified
all the time due to its possible incompleteness.

1.2 Engineering a home-automation service ecosystem

The demand for results produced in this thesis are clarified by a running example.
The application scenario involves home-automation for supporting so-called ac-
tive ageing. Active ageing is “is the process of optimizing opportunities for health,
participation and security in order to enhance quality of life as people age. It ap-
plies to both individuals and population groups” [177]. Home-automation is one
of the applications that especially can utilize the Internet of Things [43] for estab-
lishing connectivity between home-appliances, end-user terminals and interfaces,
and services available in the Internet.

In western countries, such as Finland, ageing of the society is nowadays a
great, multi-faceted challenge to be solved. Let us assume that a governmental
body decides that ageing should be addressed in the nation by supporting active
ageing, thus enhancing the quality of living for elderly people. The governmental
body has acknowledged the national strategy for utilizing service-orientation and

6 1 INTRODUCTION

government-supported service platform to increase efficiency and competitiveness
of national companies .

The governmental body decides that they should support the emergence of an
open service ecosystem for home-automation. Thus, a working group is created
for analysing the requirements for such a strategy. The working group consists of
selected experts in the domains of service-based business, health-care, and gov-
ernment. Their first task is to consider what kinds of end-user services are critical
in the context of home-automation for active ageing.

The working group creates a vision of the service ecosystem by analysing
for example the business ecosystem surrounding home-automation and the so-
cial system around aging people. The working group identifies different actors in
the service ecosystem vision, such as “Doctor”, “Relative” or “Practical nurse”
and appliances such as “Health monitor”, “Tablet computer” or “Tracking de-
vice”. After that, the working group analyses what kind of service infrastructure is
needed for supporting the delivery of such services, what kinds of actors produce
and consume those services, and are there any third-parties needed for delivering
critical capabilities to the ecosystem. Examples of different engineering activities,
contextual information and stakeholders are illustrated at the top of Figure 1.1.

For the activity of service ecosystem analysis, the working group needs a con-
sistent and complete conceptual framework. Without such conceptual framework
for service ecosystems, the domain-experts may fail to find and address critical
components of the service ecosystem. Especially, dependencies between differ-
ent service ecosystem elements, such as actors, services or life cycles, might get
unnoticed or ambiguous. This thesis defines a conceptual framework for service
ecosystems that is utilizable for service ecosystem engineering; the conceptual
framework is discussed in Chapter 2. With the activity of service ecosystem en-
gineering the service ecosystem vision is turned into a more concrete and unam-
biguous service ecosystem conceptualization by the working group, as illustrated
in Figure 1.1.

After conducting the analysis of the service ecosystem the findings of the
working group are documented as a service ecosystem conceptualization, or ini-
tial design. The working group now addresses a larger community of stakeholders
by issuing a request for comments and proposals. The extended stakeholder com-
munity includes for example additional industry members (potential service pro-
viders), and both governmental and non-governmental organizations. The stake-
holders include for example potential service ecosystem infrastructure providers,
such as telecommunication operators. Based on the feedback on requests a con-
sortium is founded for creating a more formal design of the home-automation

¥Such an strategy has been suggested as of 2013 in Finland. The strategy was prepared under a
workgroup of the Ministry of Employment and Economy: http://tem. f£i (in Finnish)

H3IWNSNOD IDINH3S

NOILVHd3dO

H430INOHd 3D1IAH3S

Aianlap 331nias

(¢ 1e3deyd)
s|001 SuaaulSua uanp-[apoA

Jusawdolanap aJnjoniselju]

NOILLVINIWNYLSNI .
¥30IA0¥d 1001 |
ONI¥IINIONS

JUaWAO[INIP TN
32IAI3S 3iNJaNAISOIfU]

aoubuIanob WalsAsoaa 32In1as

L

[\ 3134ONOD
|- Buliaaulbua 221nias

(9 191dey)) uoneiado

wa3sAs022 221A135 SAMNLAELU)

Wwa15As023 32IAI3S

(€ 49adey)d)
[2pOoW 2.Nn12311Yday

~ uopuaWaldw ainoayyae
9 001 Buniasubuy WISAS03 IS

MdoMmaWwel} ainjI=aiydly

(v 491deyd)

USIS9P W21SAS0d9 adIAISS

IILSASODI IDIAY3S
sisAjpup ssauisng

1.2 Engineering a home-automation service ecosystem

3 uoijIuifa
NDIS3d uonnifizuapl ajoy nluifap > uoneziienidasuod
H3IAINOHd ik Abojojuo uibwoq L
) Wa1sAS023 33INIBG
FHNIINYISYHANI ubisap 3j2A2 afi7
S1Y3dX3 NIVINOQ (z 2e3dey)d)
yJomawely jenydasuo)
SISA[EUE Wa3SAS0Ja 90IAIaS UOISIA
sisAjoun 1030y w91sAS0I3 93IAIIS
SISATVYNY ¥30IAOYd Wa1sAS [B120S

sisAjpup uipwoq

Wwa31sAs023 ssaulsng 1ovylsav

Figure 1.1: Illustrating service ecosystem engineering.

8 1 INTRODUCTION

service ecosystem for active ageing.

The first task of the consortium is to refine and formalize the service ecosys-
tem conceptualization. As the service ecosystem design is now collaboratively
worked upon in a large community of stakeholders, the effectiveness of design
work and unambiguity of concepts as well as design representation become im-
portant issues. Design work should be conducted with an appropriate modelling
language that supports experts in different domains to share and develop the ser-
vice ecosystem concepts and elements. Without such a design environment, the
work of the consortium become inefficient due to lack of a shared vocabulary and
its representation, and design practices.

To address the above challenges, the consortium decides to use a well-defined
architecture framework for the design work. An architecture framework is an
engineering tool which establishes common practise for creating, interpreting,
analyzing and using architecture descriptions within a specific domain or com-
munity of stakeholders [72]. The consortium utilizes an architecture framework
for service ecosystems to describe the concepts needed in the home-automation
ecosystem (especially what kinds of service concepts are required), defining the
ecosystem life-cycles and processes, and identification of the fundamental roles
the different ecosystem actors may take (e.g. an elder may take the role of “Pa-
tient” or “Resident” in life cycles associated with hospitals or residences, corre-
spondingly).

As illustrated in Figure 1.1, the design activities take the service ecosystem
conceptualization as an input and produce a service ecosystem architecture de-
scription as an output. The architecture framework defined in Chapter 4 is uti-
lizable for supporting such service ecosystem design work. It provides the means
for the creation of service ecosystem designs, as well as utilization of shared mod-
elling practices. The service ecosystem architecture description is made explicit
in a form of an architecture model. The architecture model enables formalization
and sharing of the service ecosystem design among the stakeholders. The founda-
tions for such architecture description models are provided in form a meta-model
which is defined in Chapter 3.

After the consortium is finished with the design work, the resulting service
ecosystem architecture description is used as an engineering input for develop-
ing the infrastructure required for service ecosystem operation. The service eco-
system infrastructure especially includes infrastructure services. Infrastructure
services, such as registries maintaining the collection of offerings for home-au-
tomation services, provide ecosystem members with means for delivery of the
end-user services. The consortia decides that for establishing trust among the
end-users, the elderly people, the infrastructure services should be provided by a
government-lead organization. The governmental organization becomes thus an

1.2 Engineering a home-automation service ecosystem 9

ecosystem provider.

However, the ecosystem provider organization does not have the necessary
skills to develop the infrastructure services. Thus it contacts various service en-
gineers and provides them with the service ecosystem architecture model. The
service engineers use the architecture model to implement the required software
components for the infrastructure services. Engineering tools are utilized by ser-
vice engineers and service providers to design and implement services that con-
form with the requirements and characteristics of the home-automation service
ecosystem. Ecosystem specific engineering tools are now needed for enabling ef-
ficient production of services for the home-automation service ecosystem. The
consortium contacts potential engineering tool providers and gives them access
to the service ecosystem design (or makes the design public). Domain-specific
service engineering methods that meet the regulations and quality requirements
of the home-automation service ecosystem are part of the design; they are used by
both service engineers and engineering tool providers in their activities.

Efficient means for instrumentation of a service ecosystem is a deciding fac-
tor for the success of a service ecosystem. Service ecosystem instrumentation
denotes delivery of the infrastructure necessary for enabling the operation of the
ecosystem. Service ecosystem instrumentation may involve for example imple-
mentation of infrastructure services and engineering tools, and configuration of
middleware platforms with model-driven approaches such as [4]. A model-driven
methodology enabling efficient service ecosystem instrumentation is defined in
Chapter 4.

Finally, when the home-automation service ecosystem for active aging is in-
strumented with the necessary infrastructure, the service ecosystem can become
operational. During the service ecosystem operation different stakeholders require
knowledge about the state and characteristics of the service ecosystem. Knowl-
edge is needed for example to discover appropriate business services, coordination
of collaboration between services, and governance of the service ecosystem as a
whole. Without any means for describing and maintaining such knowledge, ser-
vice delivery in the service ecosystem becomes problematic, thus decreasing its
sustainability and value to stakeholders (especially service consumers).

The model-driven methodology for service ecosystem engineering that is im-
plemented as part of this thesis provides means for establishing a knowledge man-
agement infrastructure for service ecosystems. Moreover, the explicit service eco-
system architecture models can be utilized during service ecosystem operation for
coordinating the collaboration between services, as well as establishing interop-
erability with so-called model-driven interoperability approaches (see e.g. [19]).
Finally, the service ecosystem architecture descriptions can be used for the gover-
nance of the service ecosystem [143].

10 1 INTRODUCTION

The above example illustrates the different kinds of activities associated with
establishment of service ecosystems. In this thesis a methodology is defined
which supports all the different activities discussed above. The methodology is
model-driven: service ecosystem architecture models developed during the anal-
ysis and design activities are utilized for generation of various software engineer-
ing artefacts during service ecosystem instrumentation. Service ecosystem oper-
ation is not discussed explicitly in this thesis; however, the application of service
ecosystem models is discussed briefly in Chapter 6.

1.3 Identifying the challenges

Contemporary service ecosystems are now challenged especially on two fronts.
On one hand, networked business and networked business models require sup-
port especially for efficient business decision making, opportunistic and flexible
business networking and service ecosystem governance. Such activities require
explicit knowledge about the capabilities and other characteristics of service eco-
systems. On the other hand, the visions of Internet of Things [43] and Inter-
net of Services [42] necessitate means for efficient, on-demand establishment of
domain-specific service ecosystems, as well as loosely coupled connectivity and
interoperability both in and between distinct service ecosystems.

The current technology-driven approaches for establishing service ecosystems
are infeasible to address the preceding advancements. Due to the implicit nature of
contemporary service ecosystem architectures, and technology-driven engineer-
ing processes the current service ecosystems are at risk to becoming yet new tech-
nological and conceptual silos. The current situation calls for novel solutions for
establishing and managing service ecosystems. For creating such a solution, three
primary research challenges must be addressed. The challenges are:

1. establishment of a service ecosystem engineering discipline;
2. support for service ecosystem sustainability; and
3. knowledge management in open service ecosystems.

First, from an engineering perspective there is an evident lack of a service
ecosystem engineering discipline. The prevailing technology-driven approaches
stress the implementation and operation of service ecosystem infrastructure while
neglecting analysis and design of service ecosystems as holistic systems. Con-
sequently, service ecosystems are established based on implicit and technology-
dependent architectures and design principles. Such ad hoc service ecosystems
suffer from reduced longevity due to technology-dependent designs, as well as
interoperability problems and inflexible governance practices due to ambiguous

1.3 Identifying the challenges 11

ecosystem architectures. There is a need for a service ecosystem engineering
discipline with an appropriate systems engineering life cycle. Thus, a rigorous
service ecosystem engineering discipline must be provided which enables anal-
ysis, design, instrumentation and operation of service ecosystems. In this context
rigorous engineering discipline means that the involved stakeholders are provided
with means for formalizing architectural designs and knowledge, assessing archi-
tectural designs, as well as tracing design decisions and their implications. Such
arigour is enabled by explicit and formal service ecosystem architecture models.

Secondly, from a business perspective the current approaches for service eco-
system establishment do not provide sufficient support for ecosystem sustainabil-
ity. Sustainability is defined as a quality of a service ecosystem to support con-
tinued viability [143]. Viability of a service ecosystem can only be established if
concerns of stakeholders, e.g. service providers and service engineers, are feasibly
addressed during the service ecosystem engineering life cycles. For example, ser-
vice providers must be provided with means for service contracting and bundling
while service engineers must be provided with facilities that enable well-advised
and efficient service production. Guaranteeing continuation of ecosystem viability
necessitates e.g. preservation of member autonomy and dynamic business service
collaboration capabilities for allowing efficient utilization of core competencies
and exploitation of new business opportunities.

Thirdly, contemporary service ecosystems lack means for establishing the
knowledge management practices required for open service ecosystems. Man-
agement of service ecosystem knowledge comprises the standard activities of
1) knowledge creation, 2) knowledge integration and 3) knowledge dissemina-
tion [46]. Regarding creation of ecosystem knowledge a lot of relevant research
has been conducted. Different kinds of modelling languages have been specified
for definition of services, service compositions, and service-oriented architectures
(e.g. [126, 12, 14]). Methods for creating service engineering artefacts have been
provided in the form of design and development principles [124], reusable service
development patterns [180], and methodological frameworks [94], for example.
Tools have been created for service development purposes which utilize different
approaches, such as the semantic web services approach [78], or model-driven
engineering with UML profiling mechanisms [179].

However, none of the current solutions for creating service-related knowl-
edge consider their usage in service ecosystems but typically address only the
engineering side of service-oriented computing. This academic work provides a
unified framework which enables knowledge creation in open service ecosystems.
The framework provides a methodology and tools for specification of service eco-
system architecture models that specify the features of a service ecosystem as a
whole. The models facilitate knowledge creation and management in the eco-

12 1 INTRODUCTION

system. The service ecosystem architecture models define ecosystem knowledge
artefacts (e.g. service descriptions), infrastructure services (e.g. service discovery
agents) and life cycles. Especially, the models declare explicitly how all these ele-
ments, which are typically addressed in the current state-of-the-art only individu-
ally, are related with each other; such holistic frameworks for service ecosystems
do not exist yet.

Interpretation and utilization of knowledge artefacts is context-dependent in
service ecosystems: for example service descriptions are utilized as implementa-
tion templates during the development phase, and as conformance criteria during
operation. Especially in open service ecosystems it becomes important for knowl-
edge integration purposes to make explicit the relationships between knowledge
artefacts, ecosystem life cycles and their phases, and engineering methods utilized
by service providers. Moreover, in open service ecosystems knowledge elements
need to be mapped against varying domain-specific languages and engineering
processes used in different organizations. For enabling collaborative service en-
gineering between autonomous partners, knowledge integration activities are em-
phasized in the knowledge repository designs developed in this dissertation.

Representational formalization means putting information in a form such that
computational mechanisms can access and interpret it [46]. Formalization of con-
cepts related to service ecosystems has been addressed by research communities in
service-oriented computing, model-driven engineering and service-oriented soft-
ware engineering. However, the research efforts have typically taken a rather
unilateral view on ecosystem knowledge and emphasized either knowledge as an
engineering asset or knowledge as means for providing interoperable service de-
livery and collaboration.

On the contrary, the formalization given in this dissertation emphasizes equally
the engineering and interoperability viewpoints over knowledge management in
service ecosystems. These two roles of knowledge artefacts are unified by involv-
ing at the very core of the framework the principles of ontological and linguistic
meta-modelling, similarly to [125]. Ontological meta-modelling addresses con-
struction of ontologies whereas linguistic meta-modelling is about construction of
so-called system models.

An ontology is a descriptive model used for characterizing the existing world,
the environment and the domain of the system [5]. An ontology is inherently asso-
ciated with with an open-world assumption: anything that is not explicitly stated
remains unknown. Especially, two different systems (models) may satisfy an on-
tology if they differ in areas that are not explicitly mentioned in the ontology [5].
This is in contrast with the system models that completely specify a system within
the limits of the corresponding point of view and the abstraction level used.

System model is a prescriptive model that is used to specify and control the

1.3 Identifying the challenges 13

system under study [5]. A system model gives a specification of the system that
must be conformed to by the corresponding implementations. Model-driven soft-
ware engineering typically emphasizes the use of prescriptive models for facilitat-
ing development processes where abstract models of the system are first designed
and then refined during the process to more concrete models and development ar-
tifacts. A modelling framework for open service ecosystems must provide mech-
anisms for construction of both ontologies and system models to cater for the
dynamic knowledge landscape of open service ecosystems and the prescriptive
nature of knowledge in engineering activities associated with service ecosystems.

Knowledge dissemination includes activities for making knowledge explicitly
available for the knowledge workers to help their problem solving [46]. Knowl-
edge dissemination mechanisms in service ecosystems have to support knowledge
a) accessibility, b) conformance and c) coherency. For enabling accessibility of
knowledge dissemination mechanisms in service ecosystems, global repositories
that can be used by ecosystem members for knowledge publication and retrieval
should be provided.

Mechanisms utilizable for knowledge dissemination in service ecosystems
have been addressed especially in research related to semantic web services archi-
tectures [128, 165] and global model management frameworks [20, 21, 104, 24].
Knowledge repositories found in semantic web service architectures and global
model management infrastructures are however quite generic, since they are de-
signed for managing any kinds of ontologies and software models. In service
ecosystems the knowledge repositories need to be more specific to enhance ac-
cessibility, consistency and coherency of knowledge.

From the accessibility perspective especially pragmatic support for shared en-
gineering processes are missing from ontology repositories found in semantic web
services architectures. Global model management repositories, such as the Mod-
elBus infrastructure [20], support shared processes for knowledge creation and
sharing [1]. However, the model management repositories currently concentrate
on providing generic support for software development tool integration and dis-
semination of engineering knowledge between different tools [20, 60]. Conse-
quently, providing a federated service ecosystem knowledge base becomes prob-
lematic, since mechanisms for maintaining inter-repository relationships induced
by domain-specific coherency rules and support for repository interoperation in
service ecosystem life cycles are not addressed.

14 1 INTRODUCTION

1.4 Research questions

The goal for this academic dissertation is to enable a transition from contemporary
ad hoc service ecosystems to sustainable service ecosystems required by modern
business practices and the vision of open service ecosystems. A sustainable ser-
vice ecosystem is a well-defined, governed system with an explicit architecture
that addresses the fundamental concerns of ecosystem stakeholders, and provides
means for maintaining viability of ecosystem operation. For supporting this tran-
sition, a service ecosystem engineering discipline is needed. Moreover, facilities
for supporting service ecosystem sustainability are required. In addition, support
for establishing open service ecosystems must be provided.

The above goal can be elaborated to more specific research questions. The
fundamental research questions contemplated in this thesis are:

1. What are the essential concepts of service ecosystems?
2. How to facilitate rigorous service ecosystem engineering?

3. How to address the requirements stemming from sustainability and the vi-
sion of open service ecosystems in service ecosystem engineering life cy-
cles?

To answer these questions first a conceptual model for service ecosystems is
defined and formalized. Rigorous service ecosystem engineering is facilitated by a
model-driven approach. The requirements stemming from the definition of service
ecosystem sustainability and vision of open service ecosystems are addressed in
different ways in the artefacts designed and developed in this thesis. Especially,
the requirements are used as the criteria for evaluating the applicability and utility
of the artefacts.

1.5 Research approach and contributions

This thesis proposes service ecosystem engineering as a novel systems engineer-
ing discipline. The discipline is realized with a model-driven approach. There
are three main contributions in this thesis. First, the means for a rigorous service
ecosystem engineering is provided. Service ecosystem engineering is defined as a
systems engineering life cycle which comprises phases of ecosystem analysis, de-
sign, instrumentation and operation. Rigour for all these phases is provided with
creation and utilization of explicit service ecosystem architecture models. Sec-
ondly, instruments for supporting service ecosystem sustainability are delivered.
Service ecosystem sustainability is supported with a model-driven approach that

1.5 Research approach and contributions 15

DESIGN
Service
ARARE / ecosystems

Service Ecosystem : V'e"dvpl‘ll'":
i * Modelkinds
Architecture Framework

« Correspondence rules N

CONFORMS TO /)

Service Ecosystem Metamodel « Formalization of the conceptual model <‘7
* Foundational ontology for ecosystem entities

¢ Dynamism & variability of conceptualizations
* Enabling constructs for MDE N
CONFORMS TO |
Conceptual model for « Actors, capabilities & artefacts

. « Lifecycles & choreographies
Service Ecosystems * Service kinds & offers

Ecosystem
models

Figure 1.2: Relationships between the service ecosystem conceptual model, meta-
model and the architecture framework.

addresses different stakeholder concerns in the different phases of service ecosys-
tem engineering. Thirdly, means for managing interoperability and engineering
knowledge in open service ecosystems are provided. These contributions in con-
cert enable establishment of sustainable and open service ecosystems.

The approach taken for realizing rigorous service ecosystem engineering is
model-driven. Means for analysing, designing and applying explicit service eco-
system architecture models are defined in this thesis. The approach is founded on
three components: /) a conceptual model for open service ecosystems, 2) a service
ecosystem meta-model, and 3) the Service Ecosystem Architecture Framework.
These artefacts and their mutual dependencies are illustrated in Figure 1.2.

The approach is based on a holistic conceptual model which addresses several
aspects of service ecosystems related to contracting, binding and service engineer-
ing, for example. Concepts defined in the conceptual model enable expression of
service categories, service offers, service ecosystem behaviour, and actors, ca-
pabilities and artefacts, for example. Primary elements of the conceptual model
are characterized in Chapter 2. The conceptual model is inspired by the Pilarcos
framework [87, 85] whose concepts were used as a starting point for creating a
more extensive vocabulary required for describing varying kinds of service eco-
systems and their features. The applicability and completeness of the conceptual
model is evaluated by a case study in Chapter 5.

16 1 INTRODUCTION

The conceptual model for service ecosystems is elaborated and formalized
by the service ecosystem meta-model defined in Chapter 3. The meta-model
validates the feasibility of the conceptual model by providing means for ser-
vice ecosystem architecture modelling. Also, the unified meta-model validates
the consistency (e.g. contains no dangling references or orphan concepts) of the
conceptual model that comprises various viewpoints on service ecosystems. Es-
pecially, the meta-model includes elements which enable application of model-
driven engineering principles [144] over service ecosystem architecture descrip-
tions. The meta-model also addresses ecosystem dynamism and evolution by
defining foundations for expressing dynamism of ecosystem concepts, and spec-
ification of generalization and instantiation relationships. Moreover, the meta-
model provides constructs enabling service ecosystem architecture specialization
through domain-specific variations and extensions of the meta-model. Elements
of the service ecosystem meta-model have been previously described for example
in [135, 141]. The service ecosystem meta-model defined in Chapter 3 extends
this work by providing refinements of the concepts and re-factoring of the meta-
model to better support the needs of sustainable service ecosystems.

The third artefact developed in this thesis is the Service Ecosystem Architec-
ture Framework (SEAF) which is defined in Chapter 4. SEAF is an architecture
framework in the sense of ISO 42010 [72] which is based on the identification
of service ecosystem stakeholders and their concerns. SEAF provides means for
analysis and design of service ecosystem architectures. SEAF is implemented
over a commercial UML-modelling tool. The applicability of SEAF is evaluated
by the case study described in Chapter 5.

Finally, a model-driven methodology for service ecosystem engineering is de-
fined in Chapter 4. The methodology utilizes architecture models produced with
SEAF and model-driven engineering practices for engineering of domain-specific
service ecosystems. The proof of concept methodology validates the feasibility of
the model-driven approach for service ecosystem engineering, as well as serves
as an example for efficient utilization of service ecosystem architecture models.

This academic dissertation does not explicitly address the operation phase of
service ecosystem engineering life cycles. However, the the architecture models
produced with SEAF can be utilized for model-based interoperability (see e.g. [13,
89]) and governance [143] of service ecosystem operation. The applicability of
the architecture models for management and governance of service ecosystem
operation is discussed in Chapter 5 and Chapter 6.

The research methodology utilized follows design science [62]. Design sci-
ence is a research paradigm for artificial, man-made constructs where a set of
artefacts are evaluated with respect to the utility they provide for stakeholders in a
selected domain of interest. In this academic work, a set of artefacts are designed

1.5 Research approach and contributions 17

which address the challenges of engineering sustainable service ecosystems and
the vision of open service ecosystems. The utility of the artefacts is then evalu-
ated with respect to the needs of service ecosystem stakeholders and requirements
stemming from the definition of service ecosystem sustainability. The set of proof
of concept artefacts comprise:

e a conceptual model for service ecosystems;

e a service ecosystem meta-model;

e SEAF; and

e a model-driven methodology for service ecosystem engineering.

All the preceding artefacts are assessed in Chapter 5 with respect to appropri-
ate criteria, that is, conceptual completeness, feasibility, applicability and utility.
Conceptual completeness of the conceptual model is evaluated using a case study
where the Pilarcos service ecosystem is modelled with SEAF. The feasibility of
the approach is validated by assessing the technical implementability of the in-
dividual artefacts. The applicability of the approach is validated with respect to
the practical usability of the artefacts in service ecosystem engineering life cycles.
Finally, the utility of the approach is evaluated with respect to the needs of ser-
vice ecosystem stakeholders, and requirements stemming from the definition of
service ecosystem sustainability defined in Chapter 2.

The impact of this work is two-fold. First of all, the results of this work fa-
cilitate rigorous engineering of sustainable service ecosystems. Enabling analysis
and design of service ecosystems as holistic systems decreases the risks associated
for example with technology dependency and migration. Explicit service ecosys-
tem architectures enable efficient analysis techniques, e.g. assessment of service
ecosystem maturity with respect to local criteria, to support business decision
making when joining and operating in service ecosystems. As demonstrated by
the model-driven methodology, service ecosystem architecture models are utiliz-
able for instrumenting service ecosystems with necessary infrastructure services.
Moreover, service ecosystem architecture models are utilizable for model-based
interoperability approaches, as well as for supporting service ecosystem gover-
nance.

Secondly, added value and utility is provided for service ecosystem stake-
holders. Ecosystem members are delivered the means for efficient utilization of
core competencies, opportunistic and flexible business networking, supporting
progressive business environments, and efficient business decision making. As
demonstrated in the evaluation part of this thesis, these activities are addressed by
the approach in service ecosystem engineering life cycles.

18 1 INTRODUCTION

Added value and utility are provided for the different service ecosystem stake-
holders. Initiating a service ecosystem becomes feasible when a vocabulary and
a methodology for defining such abstract environments is provided. New service
ecosystems can be initiated effectively to serve the purpose of a particular busi-
ness domain, enterprise architecture, or social network, for example. Ecosystem
designers working towards establishing new service ecosystems can utilize the
meta-models for defining conceptual models and infrastructure services for ser-
vice ecosystems.

Implementation and maintenance of the infrastructure services required for in-
strumenting a service ecosystem can be a business of its own, given an appropriate
business model. Operation of such an infrastructure service provider can be mo-
tivated by an access to service usage patterns, or other ecosystem-wide business
intelligence, that can breed new innovations or even be information of direct mon-
etary value for some enterprises. The model-driven approach for service ecosys-
tem engineering enables efficient construction of knowledge repositories for serv-
ing the purposes of the infrastructure service providers. Model transformations
can be exploited for generating the required knowledge repository implementa-
tions. This academic work enables such efficient implementation approaches for
infrastructure services.

Service ecosystem models are used by the ecosystem members for joining
the ecosystem in an interoperable manner. The corresponding knowledge base
is utilized by service consumers for finding appropriate services using the ser-
vice discovery mechanisms. Dually, service providers use infrastructure services
to feed the knowledge base with service offers that advertise the available ser-
vices. The efficiency and dependability of service discovery are one of the most
fundamental quality aspects of service ecosystems, as this function serves as an
interface between service consumers and providers, as well as facilitates collab-
oration establishment processes. From this perspective, the service ecosystem
models provide means for categorization of services; this is definitely needed in
an open service ecosystem to enable efficient service delivery.

Service developers can utilize the service ecosystem models as a unification
mechanism for integrating their development tools, domain-specific languages
and engineering processes to serve the purposes of a specific ecosystem. More-
over, for enabling collaborative software engineering activities, engineering pro-
cesses and engineering artefacts need to be integrated and shared among the par-
ticipants of the domain; the meta-models and knowledge repository designs de-
fined in this academic work are crafted for serving such purposes.

For managing interoperability knowledge in open service ecosystems this dis-
sertation defines domain ontology model for service ecosystems. The domain
ontology model defines concepts for description of service ecosystems. The do-
main ontology model can be specialized for the purposes of specific service eco-

1.5 Research approach and contributions 19

systems. Especially, the domain ontology model suggests a two-level hierarchy
of concepts divided into ontological types and instances. This division enables
dynamic extension of the ontology during the operation of the ecosystem and
moreover, declares a generic typing relationship between fundamental concepts
existing in service ecosystems.

Regarding management of engineering knowledge, this dissertation provides
a comprehensive definition of the elements, entities and features of service eco-
systems. A unifying, holistic framework enabling management of engineering
knowledge is provided. Relationships between functional and non-functional ele-
ments in service ecosystems can be made explicit in this framework, for example.
Corresponding knowledge repositories can be utilized by developers for enabling
global software engineering practices. For enabling collaborative software engi-
neering activities, engineering processes and engineering artefacts need to be in-
tegrated and shared among the participants of the domain; the conceptual frame-
work and its formalization presented in this dissertation are crafted for serving
such purposes.

This academic dissertation induces several other research tracks and questions
to be considered later. Service-oriented software engineering methodologies pro-
vide a whole other discipline which should be studied for providing a complete
service ecosystem, for example. Such work involves development of software-
engineering processes suitable for service-engineering and service-based system
engineering. From a global software engineering point of view, the engineer-
ing processes should be provided with explicit models. The software engineer-
ing processes are envisioned to be composed of modelling workflows that utilize
the knowledge repositories and different stake-holders involved in the engineer-
ing process. Consequently, the knowledge repositories must be provided with
facilities to support such engineering workflows with transaction and notification
support, for example. The meta-models used for defining service ecosystems are
designed in such a way that these future research topics can be weaved into the the
conceptual models easily. More over, the author envisions that the approach pro-
vided can be utilized for efficient production of ecosystem-specific engineering
tools and a coherent families of domain-specific languages.

In service ecosystems the same knowledge repositories and models represent-
ing services, or other relevant artefacts, are needed equally by service-oriented
software engineering tools and infrastructure facilities for service-oriented com-
puting. To fully utilize the potential of this trend, complete tool-chains with con-
sistent concepts and semantics for service-oriented software engineering are still
missing. This dissertation provides a contribution towards this objective in form
of a conceptual model and knowledge repository designs providing facilities for
both design and run-time use of service ecosystem knowledge.

20 1 INTRODUCTION

1.6 Related research areas

This academic dissertation contributes to several research areas. First of all, con-
tributions towards the area of service-oriented computing [122, 151, 123] are
given by elaborating and formalizing concepts of service ecosystems, and thus
services and service-based collaborations in general. The contributions are con-
cretized by the conceptualization and the corresponding meta-models. In addition,
the knowledge repositories developed in this work are utilizable for service dis-
covery and selection when realizing mature service-oriented architectures.

Secondly, this dissertation contributes to the research in service-oriented soft-
ware engineering (SOSE) (see e.g. [156, 160, 97, 124]) by providing means for
supporting engineering knowledge management in globalized environments and
production of ecosystem-specific service development tools. Knowledge reposito-
ries enable engineering knowledge propagation in distributed software engineer-
ing processes, while models defining service ecosystems can be utilized for gen-
erating domain-specific languages and corresponding tools semi-automatically.
SOSE is a software engineering approach which utilises constructs and concepts
conforming with the service-oriented computing paradigm for designing, mod-
elling and developing service-based systems. Corresponding methods used for
production of service-oriented solutions utilize the infrastructure services of the
ecosystem for enabling global software engineering [61] practices.

Finally, this work contributes in the research area of model-driven engineering
(MDE) [144] by providing feasible methods for linguistic and ontological meta-
modelling [8, 54] of models (ontologies) with both static and dynamically exten-
sible concepts. The modelling method is based on deliberate use of meta-model
extension [11] and partial instantiation of meta-models. Model-driven engineering
1s a software engineering discipline which considers models as first-class entities
and primary objects of engineering [144]. The main challenges that the MDE
approach pursues to respond to are induced by the complexity and evolution of
computing platforms as well as complexity of system integration and configura-
tion [144]. Domain-specific languages, model transformations, and code genera-
tion are utilised to bridge the semantic gap between problem domains and tech-
nology, and to efficiently produce software artefacts and systems that are “correct-
by-construction” [144].

The approach presented in this academic dissertation shares similarities with
enterprise architectures research. An enterprise architecture can be defined as “a
coherent whole of principles, methods, and models that are used in the design
and realization of an enterprise’s organizational structure, business processes,
information systems, and infrastructure” [88]. There are several enterprise archi-
tecture frameworks developed in the industry and academia, such as The Open
Group Architecture Framework (TOGAF) [118], the US Department of Defense

1.7 Structure of the dissertation 21

Architecture Framework (DoDAF) [161], or ArchiMate [119].

Enterprise architectures are applied for managing the inherent structural com-
plexity of enterprises, enabling enterprise engineering [65] and directing enter-
prise transformations [58]. In comparison, the approach developed in this thesis
is directed towards enabling engineering and governance of sustainable service
ecosystems. Both enterprise architectures and the service ecosystem architectures
discussed in this thesis can be applied for enabling business decision making in
organizations. Enterprise architectures do not typically address collaboration be-
tween autonomous entities, but concentrate on operations within a single enter-
prise; the approach developed in this thesis is founded on the idea of enabling
such loosely coupled collaborations.

1.7 Structure of the dissertation

The remainder of this dissertation comprises five chapters. The conceptual model
for service ecosystems and implications of service ecosystem sustainability are
first elaborated in Chapter 2. The conceptual model describes the elementary
elements of service ecosystems, as well as identifies stakeholders of open ser-
vice ecosystems. Each stakeholder is associated with a set of concerns. These
stakeholder concerns give the foundations for elaborating the notion of service
ecosystem sustainability.

Chapter 3 introduces the meta-model for service ecosystems. The meta-model
elaborates and formalizes the conceptual model. First in the chapter the primary
design principles for the meta-model are identified. After that, the different con-
structs defined in the service ecosystem meta-model are discussed. The discussion
does not detail all the elements included in the meta-model, since there are over
260 classes included in it. However, this chapter provides a sufficiently com-
plete description of the meta-model elements and their characteristics such that
the work can be evaluated.

Tools for model-driven service ecosystem engineering are defined in Chap-
ter 4. The tools include an architecture framework for service ecosystems and
a model-driven methodology for service ecosystem engineering. The architec-
ture framework comprises modelling viewpoints and notations for service ecosys-
tem architecture description. First in the chapter the elements of the architecture
framework are described, and specifications of the viewpoints and corresponding
notations are given. Secondly, a model-driven methodology for service ecosys-
tem engineering is defined. The methodology utilizes model transformations that
consume service ecosystem architecture models designed with the architecture
framework. The model transformations produce refined architecture models, and
technology-specific engineering artefacts required for enabling operation of the

22 1 INTRODUCTION

service ecosystem.

Validation and evaluation methods and results are then discussed in Chapter 5.
The validation approach and evaluation criteria are first defined. After that, the
evaluation case is introduced. Evaluation results are then presented. The artefacts
developed in this thesis are assessed with respect to conceptual completeness,
feasibility, applicability and utility. The chapter is concluded with a comparison
to related work.

Finally, conclusions about the research results and further prospects are dis-
cussed in Chapter 6.

1.8 Research history

This academic dissertation is a result of research stemming from the areas of inter-
enterprise computing, interoperability management and service-oriented middle-
ware platforms. The research has been conducted as part of the CINCO (Col-
laborative and Interoperable Computing) research group [84] which works to-
wards enabling and facilitating service-based collaborative computing especially
in inter-enterprise contexts.

The author’s research was initiated for providing a so-called service typing
discipline and corresponding type management infrastructure (type repositories)
for the Pilarcos interoperability middleware [86, 85]. Interoperability challenges
imminent in dynamic business-to-business environments were discussed in [86]
which described the concepts and functionality of the Pilarcos B2B-middleware.
Service types and type repositories were identified as foundational for the working
of the federated service collaboration model described in the paper.

Service typing is used in the Pilarcos framework for achieving service in-
teroperability. The author of this academic dissertation studied several formal
methods for finding a feasible method for formalizing service interoperability.
The research in formal methods resulted in construction of the service typing dis-
cipline [139, 134] which is based on session typing [162]. Session typing is a
formal method that gives rigour to such concepts as business service behaviour,
and behavioural compatibility and substitutability.

A brief description of the type management infrastructure needed in collabora-
tive systems was given in [139] which followed the RM-ODP reference model for
open distributed computing, consisting of type repositories and name registries.
Information about service types and their properties were proposed to be prop-
agated through a service-oriented software engineering process and standardised
middleware interfaces to corresponding meta-information repositories [139].

In addition to interoperability between individual services, there are other as-
pects of interoperability that have been addressed for managing interoperability

1.8 Research history 23

in service ecosystems. Interoperability in service-based, inter-enterprise environ-
ments was represented with a layered model of interoperability management, con-
sisting of five layers of increasing abstractness from technical level to business
level [138]. The interoperability model provided can be regarded as a reflec-
tive meta-information system, i.e. changes in lower-layers of the interoperabil-
ity meta-information “stack’ are propagated to upper-layers using well-defined
transformations. Moreover, the interplay between autonomy and interoperability
in service-based environments were discussed [137], in addition to more generic
characterizations of interoperability [142].

From the research efforts described above it became evident that, for achiev-
ing interoperability in service collaborations, one must provide a conceptual for-
malization of the service ecosystems as a whole. Achieving interoperability is a
multi-faceted problem. For achieving service collaborations between autonomous
partners each entity must have an unambiguous interpretation of the features af-
fecting the form and quality of the collaboration. Moreover, pragmatic support is
needed at the conceptual level for enabling production of new kinds of collabora-
tion forms and services enabling their operation.

For achieving collaborative and interoperable computing in service ecosys-
tems, the author developed a set of meta-models and ontologies describing the
foundational elements of service ecosystems [140, 135]. Management of interop-
erability and engineering knowledge in service ecosystems was now taken as the
focus of research. The conceptual model of federated service communities that
had been developed within the Pilarcos framework [87, 86, 85] provided a basis
for further research in the more generic context of service ecosystems.

The concepts of the Pilarcos framework were first generalized and additional
concepts for enabling complete ecosystem description were developed. In ad-
dition, the role of service-oriented software engineering was emphasized while
developing the service ecosystem concepts. The concepts were formalized us-
ing a set of meta-models and the practices of model-driven engineering [144]
were taken as the primary means for instrumenting knowledge repositories [135].
Especially, the resulting conceptual framework for declaring features of service
ecosystems was founded on the core principles of meta-modelling [45, 54] and on
separation between linguistic and ontological meta-modelling [5, 125].

This academic dissertation is a continuation of the research process described
above. The conceptual framework developed in the author’s Licentiate thesis [135]
has been further developed. In addition, a methodology for defining service eco-
system domain models has been developed and is described in this dissertation.
Especially, the conceptual framework for service ecosystems is now validated
within the context of this work.

24

1 INTRODUCTION

Chapter 2

Sustainable service ecosystems

The conceptual model described in this chapter enables service ecosystem anal-
ysis by domain experts. Such an analysis tool is needed for example to construct a
service ecosystem conceptualization from an ecosystem vision, as was illustrated
in Figure 1.1. The conceptual model defines the fundamental elements of service
ecosystems as well as dependencies between the elements. Thus means for unam-
biguous interpretation and communication of service ecosystem characteristics is
provided.

The conceptual model addresses especially the requirements for establishing
sustainability: it identifies the essential elements of service ecosystems, stake-
holders and their primary concerns, as well as objectives, principles and implica-
tions for continued viability. The conceptual model and the definition of service
ecosystem sustainability provide foundations and design principles for the other
artefacts developed in this thesis. Moreover, the definition of service ecosystem
sustainability and its implications declare evaluation criteria for assessing the ap-
plicability and utility of the model-driven approach for service ecosystem engi-
neering. The completeness of the conceptual model is evaluated by a case study
in Chapter 5.

The elements of service ecosystems are first elaborated in Section 2.1. Sec-
tion 2.2 then introduces service ecosystem stakeholders and their concerns. After
that, the notion of service ecosystem sustainability is defined in Section 2.3. Ser-
vice ecosystem sustainability is defined as a quality of a service ecosystem to
support continued viability; implications of this definition are discussed in the
section.

25

26 2 SUSTAINABLE SERVICE ECOSYSTEMS

* Collaboration
* Service delivery

¢ Product offering
etc.

\ e Enterprises
e |nstitutions
e Individuals

* Business services

* Infrastructure
services

* Enablers for
e Service
engineering
* Service delivery
* Service governance

Figure 2.1: Elements of service ecosystems.

2.1 Elements of service ecosystems

Service-centric business takes place in varying kinds of service ecosystems. A
service ecosystem is a socio-technical complex system that enables service-based
collaboration between autonomous entities such as enterprises, institutions and
individuals. The ecosystem provides an environment for creating and manag-
ing service-based collaboration networks, such as virtual organizations or service
mash-ups, from services provided by a community of autonomous entities.

For handling the inherent complexity of service ecosystems, and for enabling
analysis and description of service ecosystems, the fundamental elements and
their inter-relationships must be identified and formalized. Based on a survey
and an analysis of different service ecosystems and related frameworks [135],
four fundamental elements existing in service ecosystems are identified. The eco-
system elements are : /) ecosystem capabilities, 2) members, 3) services, and
4) infrastructure. The elements are illustrated in in Figure 2.1.

An ecosystem capability is the ability of a service ecosystem to perform ac-
tions. An ecosystem capability provides a declaration of core functionality in
the service ecosystems. A set of ecosystem capabilities describes the motive for
ecosystem existence, or the ecosystem purpose. Ecosystem capabilities include
service delivery and collaboration, for example. In product-centric service ecosys-
tems a capability of product provisioning is the primary motive for the ecosystem
operation.

2.1 Elements of service ecosystems 27

Ecosystem members are autonomous entities such as enterprises, institutions
or individuals which act in the service ecosystem in specific roles. An entity is
considered as an object of the ecosystem with an identity and that has its own dis-
tinct existence. Entities bound to a role must possess the capability of discharging
the commitments a role imposes for them.

A service is considered here as a mechanism to access one or more capabil-
ities [154]. A service is realized by an exchange of value objects between a ser-
vice consumer and a service provider. Following the definitions provided in [9]
and [76], a value object is created, traded, and consumed by ecosystem entities
and is of economic, ideological, political or social value for at least one of the
entities involved. From an economic perspective, services are considered as in-
tangible, perishable, inseparable, and variable goods, as opposed to products (see
e.g. [175]).

In the conceptual model for open service ecosystems, services are classified
into three different categories [143], each category associated with a character-
izing kinds of capabilities: /) infrastructure services delivering ecosystem capa-
bilities, 2) business services delivering business transactions, and 3) component
services delivering service protocols.

Infrastructure services are used for delivering ecosystem capabilities. For ex-
ample, in the Pilarcos open service ecosystem [87] the set of infrastructure ser-
vices include service offer repositories delivering loose coupling between service
providers and consumers, as well as the populator service for dynamic business
network establishment. Infrastructure services especially include the knowledge
repositories needed for managing the global knowledge base of the service eco-
system. Additional infrastructure services, such as trust or reputation management
systems, may be provided for facilitating collaboration establishment processes in
service ecosystems.

A business service i1s a service which delivers the business transactions re-
quired to fulfill commitments of a business network role. Business services are
technological representations of services (i.e. intangible goods) and are provided
as software-based components that utilize information and communication tech-
nology for service delivery. A business network is a prescribed choreography
between business roles which describes a business collaboration. A collaboration
is a process of shared creation among a group of actors that share information,
resources, responsibilities and rewards to achieve a common goal [27].

Business services are provided for clientele with service offers. A service of-
fer is a declaration for a set of business services offered as a service bundle, and
their capabilities and qualities. A service offer provides a basis for negotiating a
service-level agreement between a service provider and a service consumer. Ne-
gotiation is “a process by which a group of agents communicate with each other

28 2 SUSTAINABLE SERVICE ECOSYSTEMS

and try to come to a mutually acceptable agreement on some matter” [93]. Af-
ter a successful negotiation process, the participants are provided with a shared
service-level agreement, or SLA (see for example [96, 152, 153]), expressing the
mutual commitments and expectations about the quality properties of the business
services under contract.

Component services are utilized in business services to implement their func-
tionality. Component services represent reusable service engineering assets which
deliver functionality defined by service protocols. A service protocol provides a
definition of component service operations and behaviour. Exemplary component
services may include services for domain-specific business protocol exchanges,
e.g. banking protocols, or more technically oriented services such as key ex-
change protocols for encryption.

Ecosystem infrastructure provides means for realizing service engineering,
service delivery and service ecosystem governance activities in the service eco-
system. In addition to infrastructure services, ecosystem infrastructure includes
1) service engineering tools and methods, 2) specifications of ecosystem features
and feature bindings, and 3) cooperation facilities enabling dependable service in-
teractions and communication. Service ecosystem governance is enabled with in-
frastructure services which coordinate cooperation between ecosystem members
in accordance to ecosystem life cycles [143].

2.2 Service ecosystem stakeholders

Several stakeholders can be identified in service ecosystems. Typically at least
service consumers and service providers are identified in contemporary service
ecosystems. However, especially in open service ecosystems there are several ad-
ditional stakeholders which have their distinctive roles. The roles may or may
not overlap with service consumers and providers. The ecosystem stakeholders
include service consumers, service providers, service engineers, engineering tool
providers, infrastructure providers, and ecosystem providers, as illustrated in Fig-
ure 2.2.

Service consumers are legal entities that utilize business services available in
the ecosystem to fulfill their business needs. Service consumers are responsible
for utilizing the business services as declared in agreements made with service
providers about service utilization. Service consumers may confront challenges
related to identification and selection of suitable business services, dependability
of business services, and monitoring of business service operations.

Service providers are legal entities that offer business services for their clien-
tele. In a business landscape comprising diverse service ecosystems, service pro-
vider differentiation and revenue is created by providing added value for the cus-

2.2 Service ecosystem stakeholders 29

Service
Service engineer
provider

Engineering
tool provider

Service
consumer

" Infrastructure

provider
Ecosystem

provider

Figure 2.2: Stakeholders in service ecosystems.

tomers. Service providers act in service ecosystems for creating profit by opti-
mizing their business service usage, and supporting their business models. The
services consumed by the clientele may directly benefit the business of the ser-
vice provider. Services can also be provided for creating support and added value
for other products, or for establishing and promoting business platforms around
the offered services [30]. Business services are provided within service bundles
by publishing appropriate service offers.

Service engineers produce so-called component services by implementing
technological artefacts (e.g. web services) which are then utilized by service pro-
viders to implement their business services. The primary concern of service engi-
neers is that of well-advised service engineering. Well-advised service engineer-
ing here refers to both correspondence of service engineering with the business
models (“well-advised motivations”) and pragmatics (“well-advised practices”)
of the ecosystem. The notion of well-advised service engineering is elaborated in
Section 2.3.1.

Engineering tool providers are responsible for providing service engineers
with tools. For increasing the efficiency of service production in a service ecosys-
tem, the tools should be specialized for the specific domain of operation. Conse-
quently, the primary concern of engineering tool providers in service ecosystems
1s efficient tool production and specialization.

Infrastructure providers deliver infrastructure services required by service eco-
systems. Delivering infrastructure services could be business on its own, or it
might be affordable due to supporting other aspects of infrastructure provider

30 2 SUSTAINABLE SERVICE ECOSYSTEMS

business models (e.g. bootstrapping the use of business services in the service
ecosystem). Thus, efficiency of infrastructure service production becomes a con-
cern for infrastructure providers.

Ecosystem providers represent entities such as organizations or consortia whose
business models require utilization and instrumentation of a service ecosystem.
Ecosystem providers initiate establishment of service ecosystems by first anal-
ysing and designing required ecosystem capabilities, and identifying means for
delivering those capabilities. The primary concerns associated with ecosystem
providers are analysis and design of service ecosystems, and enabling and main-
taining ecosystem viability by service ecosystem governance.

2.3 Defining ecosystem sustainability

For supporting business in future service ecosystems, a transition from ad hoc so-
lutions to sustainable service ecosystems is needed. Sustainability in essence en-
ables feasible business and longevity for service ecosystem members. Feasible
business is enabled especially by delivery of mechanisms that support efficient
utilization of core competencies and business decision making. Longevity is en-
abled with means for opportunistic and flexible business networking, as well as
by support for progressive business environments. These characteristics are elab-
orated further in Section 2.3.2.

In this academic dissertation, the definition of sustainability is based on termi-
nology used in the context of software architecture research'. The definition for
service ecosystem sustainability is given as Definition 2.1.

Definition 2.1 (Service ecosystem sustainability) Service ecosystem sustainabil-
ity is a quality of a service ecosystem to support continued viability.

The implications of the above definition are discussed in the rest of this sec-
tion. The requirements for service ecosystem viability are elaborated in Sec-
tion 2.3.1 which identifies service ecosystem stakeholder concerns. After that,
the means for establishing continuation of service ecosystem viability are defined
in Section 2.3.2.

2.3.1 Requirements for service ecosystem viability

Viability is achieved by supporting the operation of stakeholders and addressing
their primary concerns through the phases of the service ecosystem engineering
life cycle. Service ecosystem engineering life cycle is a systems engineering life

'Sustainability in the context of software architectures is defined as “An architectural property
of a program which allows continued viability” in the Open Knowledge Initiative by MIT.

2.3 Defining ecosystem sustainability 31

cycle which comprises the phases of service ecosystem /) analysis, 2) design,
3) instrumentation, and 4) operation.

Service ecosystem analysis is a systems engineering activity where a needs
assessment is performed. Needs assessment is utilized for identifying the capa-
bilities required from the service ecosystem to support the business objectives of
associated stakeholders. The capabilities are formalized during the design phase.
The service ecosystem design phase provides definitions for the necessary ecosys-
tem infrastructure, life cycles, service ecosystem features, and domain concepts
required for realizing the identified capabilities. During the service ecosystem
instrumentation phase all the necessary engineering components required for ser-
vice ecosystem operation are delivered. This includes especially implementations
of the infrastructure services, and possibly selected component and business ser-
vices to bootstrap the operation phase of the service ecosystem. During the oper-
ation phase service ecosystem stakeholders exploit the service ecosystem and its
infrastructure to support and establish service-based collaborations.

Service ecosystem stakeholders have different concerns associated with ser-
vice ecosystem engineering life cycles. The primary concerns are identified in
Table 2.1 and discussed below.

Ecosystem provider concerns

For service ecosystem providers three primary concerns are identified in Table 2.1.
In the service ecosystem analysis phase ecosystem providers need instruments
which can support the identification of required service ecosystem capabilities,
and formulation of ecosystem elements that support the delivery of those capabil-
ities. Supporting this concern, a conceptual model for service ecosystems is pro-
vided by this thesis. The conceptual model is applicable for structuring the com-
plexity of service ecosystems, identifying capabilities fulfilling business needs,
and further constructing the required ecosystem elements.

A service ecosystem architecture for supporting delivery of the required eco-
system capabilities is constructed during the design phase. The architecture de-
scriptions are utilized for communicating and further refinement of ecosystem
designs between associated stakeholders. Moreover, different architecture anal-
ysis techniques, such as ATAM [77], are applicable for enacting the design pro-
cess. To enable such architectural design activities, the architecture descriptions
must be unambiguously defined. This requires formalization of the architecture
descriptions. Formalization also provides means for validating the consistency
and completeness of the ecosystem designs, as well as enables tool support for
their further analysis. Towards these purpose, the conceptual model of service
ecosystems is formalized as a service ecosystem meta-model in this thesis; the
meta-model enables unambiguous description of service ecosystem architectures

32 2 SUSTAINABLE SERVICE ECOSYSTEMS
Stakeholder Engineering phase | Concern
Ecosystem provider Analysis Identification of required ecosystem capabilities and
elements supporting the delivery of those.
Design Formalization of service ecosystem architecture de-
scriptions.
Operation Supporting service ecosystem governance.
Infrastructure provider Design Identification and design of required infrastructure
services.
Instrumentation Efficient production of infrastructure services.
Operation Infrastructure service interoperability.
Engineering tool provider | Design Identification of engineering capabilities required for
component service production.
Instrumentation Efficient tool production and specialization.
Operation Tool and language interoperability and integration.
Service engineer Design Identification of engineering capabilities required for
component service production (shared with engineer-
ing tool providers).
Well-advised service engineering.
Operation Efficient component service production.
Service provider Operation Service bundling.
Service contracting.
Service consumer Operation Business service identification, location and selection.
Business service dependability.
Business service monitoring.

Table 2.1: Stakeholder concerns in service ecosystem engineering life cycles.

with models and modelling languages conforming with the meta-model.

During the operation phase, the primary concern of a service ecosystem pro-
vider is to enable and support service ecosystem governance. Service ecosystem
governance is defined as a collaborative activity taking place between ecosys-
tem members, which extends service governance (such as described in the Open
Group SOA Governance Framework [117], for example) of the individual mem-
bers in the ecosystem [143]. Service ecosystem governance comprises activities
and structures for directing, monitoring and managing the operations enacted in a
service ecosystem. For enabling and supporting such collaborative activities, ser-
vice ecosystem providers define ecosystem life cycles. A service ecosystem life-
cycle definition prescribes behaviour and roles expected from ecosystem members
in the corresponding life-cycle phases.

The conceptual model, the service ecosystem meta-model, and the architec-
ture framework defined in this thesis provide instruments for prescribing service

2.3 Defining ecosystem sustainability 33

ecosystem life cycles and structures. Moreover, the model-driven approach used
for designing and instrumenting service ecosystems supports governance activi-
ties by delivering a unified service ecosystem model. These service ecosystem
models can be used during the operation phase for coordinating the behaviour of
participants in ecosystem life cycles, and for realizing model-driven interoperabil-
ity (see e.g. [19]) approaches.

Infrastructure provider concerns

Infrastructure providers take part in the service ecosystem design phase especially
to analyse and design the kinds of infrastructure services required for realizing the
ecosystem capabilities. Infrastructure providers require concepts and modelling
facilities for expressing the features of infrastructure services and the requirements
they induce to other parts of the service ecosystem architecture.

For addressing infrastructure provider concerns, this thesis provides concepts
and an architecture framework for designing infrastructure services and formal-
izing their designs as part of architecture models. During the instrumentation
phase, the architecture models can be exploited for enabling efficient production
of infrastructure services. Finally, interoperability between infrastructure services
must be supported during ecosystem operation. Formal architecture models defin-
ing the features, structure and inter-dependencies between infrastructure services
can be utilized for achieving interoperability. Especially model-driven approaches
become applicable for establishing both conceptual and technological unification.

Engineering tool provider concerns

Engineering tool providers are involved during the service ecosystem design phase
by identifying and designing required engineering capabilities. Engineering ca-
pabilities comprise tools and methods needed for producing engineering artefacts
in the service ecosystem, especially for component service production. During
service ecosystem instrumentation, efficiency of engineering tool production and
specialization becomes a concern for engineering tool providers. The engineering
tools produced are utilized by service engineers during ecosystem operation for
developing component services. The efficiency of component service production
can be increased, if the tools themselves address domain-specific features and use
domain-specific concepts. Thus, efficient specialization of engineering tools be-
comes a concern for engineering tool providers. Finally, during service ecosystem
operation the interoperability between engineering tools and languages, and their
integration may become an issue for engineering tool providers.

For addressing the engineering tool provider concerns, this thesis provides
means for designing the required engineering capabilities, instrumenting efficient

34 2 SUSTAINABLE SERVICE ECOSYSTEMS

modelling tool production with model-driven methods, and integrating domain-
specific languages through the unified service ecosystem models.

Service engineer concerns

Service engineers are primarily engaged by concerns associated with service eco-
system operation phase. However, service engineers also have their role during the
design phase when identifying engineering capabilities for the ecosystem together
with engineering tool providers. During the operation phase, service engineers are
confronted with two foundational challenges: /) establishing well-advised service
engineering, and 2) increasing the efficiency of component service production.

Well-advised service engineering here refers to both correspondence of ser-
vice engineering with the business models (“well-advised motivations™) and prag-
matics (“well-advised practices”) of the ecosystem. Well-advised motivations
means that service engineering activities should align with the requirements stem-
ming from the business models and business networks applied in the service eco-
system. Alignment can be advanced with service engineering methods and tools,
which utilize domain-specific concepts for bridging the semantic gap between
business and engineering domains. Well-advised practices means that service en-
gineers should be provided with re-usable engineering artefacts that allow en-
coding and sharing of best practices and regulations associated with the service
engineering domain. Well-advised practises increase the efficiency of service pro-
duction, thus increasing the viability of service engineers.

From service engineers’ perspective, added value for customers is delivered
by crafting services to fit the requirements of the clientele and the domain of the
service ecosystem. In this setting, efficiency and flexibility of service production
becomes a critical asset for service providers. Towards this purpose, the tools
and facilities utilized by service engineers must support rapid reaction to mar-
ket changes, emergence of new service ecosystems, and adaptation and reuse of
services in different service ecosystems. This can be achieved with engineering
facilities that are targeted for specific ecosystem domains.

Service engineer concerns are addressed in this thesis by providing means for
formalizing and modelling engineering capabilities (tools and methods) as part
of ecosystem architecture descriptions. Well-advised service engineering moti-
vations are instrumented with explicit models of business network models, and
formalization of relationships between component services, business services and
business networks.

2.3 Defining ecosystem sustainability 35

Service provider concerns

Service providers are responsible for delivering the business services as declared
in corresponding service-level agreements. Moreover, the service providers are
expected to act in accordance with the rules of the service ecosystem. Service
providers may encounter several challenges related to provisioning and delivery
of services. These challenges include service bundling, contracting issues, busi-
ness network management, and service governance. In addition to the above chal-
lenges, service innovation is a fundamental challenge in service-based business
environments. Service innovation is a complex topic which may include eco-
nomical, organizational and social challenges (see e.g. [30]). However, service
innovation is not in the scope of this dissertation.

Service bundling is used by service providers for supplying a selection of
services as a single service for consumers. The services used in a bundle can
be provided by other service providers (i.e. “sub-contractors”). Reasons for ser-
vice bundling include cost reduction through utilization of common processes and
shared infrastructure, inter-dependency of bundled services (e.g. bundling a set of
financial services), product differentiation, increasing revenues, and increasing
competitiveness through creation of entry barriers [9]. In service ecosystems ser-
vice bundles are advertised through service offers. Service bundling can become
an issue if the ecosystem does not allow declaration of provider-specific bundles
(i.e. the ecosystem does not allow autonomous decisions over bundling), or if
the service offering mechanism utilized in the ecosystem does not support service
bundling (i.e. issues in expressing bundling).

Contracting is needed in service ecosystems for guaranteeing dependable ser-
vice delivery between autonomous service providers and consumers. With respect
to contracting, service providers are encountered with challenges related to con-
tract formulation and establishment. A service ecosystem should provide mecha-
nisms that can be utilized for managing these challenges.

With respect to contract formulation, a service ecosystem should provide con-
cepts that can be used by service providers to express varying kinds of service
contracting relationships. In different kinds of business ecosystems different kinds
of business models, business networks and relationships are utilized. In product-
driven business ecosystems there is typically a dominating partner, the product
owner. In a corresponding service ecosystem, the business networks could be for-
mulated in a way that in every business network established at least some of the
services must be provided by the product owner, for example. In more traditional
business ecosystems sub-contracting relationships between ecosystem members
constrain and direct the formulation of available business networks. Moreover,
different in- and out-sourcing scenarios might be dominating factors in business
networks allowable in certain service ecosystems. The conceptual framework of

36 2 SUSTAINABLE SERVICE ECOSYSTEMS

service ecosystems should enable expression of such varying kinds of service con-
tracting and business networking scenarios.

Service consumer concerns

In open service ecosystems service consumers and providers are free to leave
and join the ecosystem as they wish. Moreover, service providers decide au-
tonomously about the features and accessibility of their business services. In such
an environment, service consumers require means for identifying and locating
services they wish to use and selecting the most appropriate ones for their needs.
For this purpose, the infrastructure designed for an open service ecosystem must
provide mechanisms for efficient service discovery and selection.

Open service ecosystems must provide means for establishing a suitable level
of dependability in business service interactions and communication. Service con-
sumers and providers should have the possibility to dynamically select, agree and
realize features of business service interactions and communication, based on the
operational context and business sensitivity, for example. This requires concepts
and instruments for unambiguously describing the nature of service ecosystem
features and their effects on service channels used for enabling business service
collaboration.

Especially in open service ecosystems where service contracts are established
dynamically between autonomous ecosystem members, service monitoring is need-
ed for identifying and reacting to possible contract breaches. Service monitor-
ing includes observation of service interactions (behavioural monitoring), service
level (quality monitoring), and service compliance. For enabling behavioural mo-
nitoring, the behaviour of services associated with a service contract should be
unambiguously described. Service level monitoring requires well-defined descrip-
tions about the mutually agreed service quality values. Finally, service compliance
monitoring involves both observation of contractual and regulatory compliance.
Contractual compliance here refers to conformance of partners with the proper-
ties of the business network, such as sub-contracting relationships, or in- and out-
sourcing contracts. Regulatory compliance means conformance with legislation,
business rules and policy frameworks associated with the business ecosystem and
partners as legal entities.

2.3.2 Establishing continuation of viability

Continuation of service ecosystem viability is established by supporting activi-
ties that ensure relevance and sensibility of ecosystem operation. Towards this
purpose, service ecosystems should provide means for a) efficient utilization of
core competencies, b) opportunistic and flexible business networking, ¢) support-

2.3 Defining ecosystem sustainability 37

ing progressive business environments, and d) efficient business decision making.
These objectives are realized by principles for supporting continuation of viabil-
ity. The objectives, their realizing principles and implications of following the
principles are described in Table 2.2 and discussed below.

Supporting efficient utilization of core competencies

For supporting efficient utilization of core competencies a service ecosystem must
allow autonomy of its members. Autonomy manifests itself as degrees of free-
dom given to ecosystem members with respect to design and implementation of
services, and decisions concerning entities’ willingness to collaborate and local
service governance [137]. By allowing autonomy, the ecosystem members can
maintain their competitiveness and agility of their core business operations more
efficiently. For example, service engineers want to utilize production methods and
tools that best suit their engineering practices; service providers want to exploit
their business networks and added-value services for increasing the efficiency of
service provisioning and provider differentiation.

A viable service ecosystem must not restrict the facilities or business net-
works stakeholders use for their operations locally, since the well-being (com-
petitiveness, efficiency etc.) of the ecosystem members promotes the viability
of the ecosystem itself. Instead, the service ecosystem should provide facilities
for the ecosystem members for joining and operating in the ecosystem effort-
lessly. Such facilities include for example mappings between representations used
in the service ecosystems and different technological spaces (e.g. Web Services
-architecture [169] or REST-based web application frameworks), explicit specifi-
cations of engineering tools and practices utilizable for creating service artefacts
in the service ecosystem, and unambiguous definitions for ecosystem vocabulary
enabling both conceptual and technological mappings between heterogeneous do-
mains.

Autonomy of ecosystem members induces potential interoperability problems.
For example, the freedom of design and implementation of services leads to tech-
nological and semantic heterogeneity which induces interoperability problems.
Interoperability means the capability of systems (e.g. organizations, business ser-
vices, communication technology) to co-operate in such a fashion that eventually
either their mutual goals become fulfilled or their co-operation is dissolved in a
controllable manner in case of problems, such as conflict of interests or technical
failures [135].

Interoperability can be considered from technical, semantic and pragmatic
viewpoints [86]. Technical interoperability means that the technological facilities
underlying the business services are compatible, such that communication paths
can be established, for example. Semantic interoperability deals with the meaning

2 SUSTAINABLE SERVICE ECOSYSTEMS

38

Objective

Principle

Implication

Efficient utilization of core compe-
tencies

Ecosystem member autonomy

Members can follow their established practices to operate in the ecosystem.

Facilities are provided for supporting effortless integration and compatibility of local prac-
tices with ecosystem capabilities and policies.

Interoperability service utilities are provided for identifying and handling interoperability
problems between autonomously provided services, and features and policies associated
with them.

Dependability of service collabora-
tions

Ecosystem provides means for assessing, establishing and monitoring dependability of ser-
vice collaborations. In open service ecosystems this involves especially the aspects of trust,
privacy and security.

Opportunistic and flexible business
networking

Dynamic business service collabo-
rations

Ecosystem provides means for establishing business service collaborations on demand.

Mechanisms are provided for loose coupling of business services; this includes especially
late binding and late encapsulation of services.

Supporting progressive business
environments

Open model of ecosystem partici-
pation.

Autonomic entities may join and leave ecosystems as they wish. Ecosystem members may
take any role available in the service ecosystem, in accordance with ecosystem policies.

Extendability of ecosystem knowl-
edge bases.

New kinds of services, cooperation facilities and business networks can be introduced on
demand.

Efficient business decision making

Predictability of joining and operat-
ing in service ecosystems.

(Potential) ecosystem members are provided with methods for analyzing the maturity and
feasibility of service ecosystems, and their capabilities and requirements with respect to
local enterprise and service architectures.

Governability of service ecosystem
operation.

Local governability: Ecosystem members are able to govern their local service-oriented
architectures in accordance with ecosystem requirements and capabilities.

Global governability: Ecosystem members are provided with means for collaborative gov-
ernance of service ecosystem operation.

Table 2.2: Objectives, principles and implications for establishing continued viability.

2.3 Defining ecosystem sustainability 39

of exchanged information and information exchange patterns. Pragmatic interop-
erability is achieved if the intentions, business rules, and organizational policies
of collaborating parties are compatible with each other.

Autonomy allowed for service ecosystem members must be compensated with
mechanisms for guaranteeing interoperability. Three approaches can be iden-
tified for achieving interoperability, namely integration, unification and federa-
tion [86]. Integration aligns with the traditional model of software system devel-
opment where interoperability is ensured by pre-development and pre-operational
agreements about the properties of collaboration components, and basically hand-
crafting the corresponding software artefacts to fulfill the prerequisites for inter-
operability. In unification a shared model describes the functionality and respon-
sibilities of each collaboration participant and provides the knowledge needed for
attaining interoperability. In the federated approach interoperability is achieved
by utilizing shared interoperability knowledge and Interoperability Service Util-
ities (ISU, see for example [40]. Interoperability knowledge comprises different
kinds of artefacts, such as descriptions of services and their features, domain on-
tologies and communication channel descriptions, for example. Interoperability
Service Utilities denotes a category of infrastructure services which provides ca-
pabilities for identifying and overcoming interoperability problems. Operation of
interoperability service utilities is typically based on unified models representing
service ecosystem architecture and vocabulary, for example.

Supporting opportunistic and flexible business networking

Supporting opportunistic and flexible business networking required means for es-
tablishing business service collaborations on demand, and mechanisms for loose
coupling of business services. For enabling on-demand business service collab-
orations, dynamic business network establishment and negotiation processes [87,
85], as well as facilities for contract establishment and enforcement are required.

In a dynamic business network establishment process a business network model
is filled with appropriate business services. For this purpose, specialized infras-
tructure services, such as the Pilarcos populator [85], are utilized. In addition,
infrastructure services addressing trust [131] and privacy management [149] is-
sues may be needed for establishing dependability in dynamic business network
establishing processes.

Late binding, also known as dynamic or run-time binding, of service interfaces
is one of the principal tenets of service-oriented computing. In a collaboration in-
volving late binding between business services a binding process is initiated for
deciding the features, especially the identity and location of service endpoints, of
forthcoming service interactions. Essentially, the binding process establishes a
contractual context (a binding) between service interfaces to enable service inter-

40 2 SUSTAINABLE SERVICE ECOSYSTEMS

actions [69]. The binding process may comprise refinements of communication
channel models and negotiations about the features of the communication chan-
nels.

In late encapsulation the service channels constructed with binding processes
are further refined with qualitative features. Late encapsulation involves selection
and negotiation about the features such as security, privacy or non-repudiation,
for example. After a successful negotiation process, the participants are provided
with a shared service-level agreement, or SLA (see for example [96, 152, 153]),
expressing the mutual commitments and expectations about the qualitative fea-
tures of service interactions.

Facilities for contract establishment include repositories for storing contract
templates and contracts, and mechanisms for contract negotiation and validity
checking [102], for example. Contract templates provide standard contract forms
to facilitate the drafting of collaboration contracts. Repositories storing contracts
are needed for keeping signed copies of contracts as evidence for possible dispute
settlement processes.

Contract enforcement comprises infrastructure services that provide means
for monitoring the compliance between service interactions and a collaboration
contract, contract enforcement when a collaboration partner deviates from the be-
haviour prescribed by the contract, and dissolution of collaborations. The essen-
tials for enabling contract enforcement and dispute settlement in electronic collab-
orations are typically borrowed from conventional (non-electronic) environments:
compensations, insurances, fines and trusted third parties acting as notaries are
used for giving the motivation for the partners to follow the collaboration con-
tract. Contract notification, mediation and arbitration mechanism are examples of
typical contract enforcement facilities [102] used for informing the parties about
(possible) contract deviations, and settlement and resolution of actual contract
breaches.

Supporting progressive business environments

Progressive business environments require support for ecosystem evolution. Eco-
system evolution means dynamism and flexibility over the selection of actors
available in the ecosystem, and extendability of the ecosystem knowledge espe-
cially with respect to available services and collaboration types. New members
may join and members may leave the ecosystem during its operation. Moreover,
new kinds of roles for ecosystem entities can be introduced for supporting newly
emerged business opportunities. For supporting ecosystem evolution, the concep-
tual model underlying the ecosystem must be extendable such that new concepts
can be introduced dynamically and on demand. Support for ecosystem evolution
enhances the elasticity and longevity of the service ecosystem.

2.3 Defining ecosystem sustainability 41

From the knowledge management perspective, especially the ontology of ser-
vices must be dynamic and extendable in an open service ecosystem. In such a
setting new services can be introduced to the ecosystem and removed from it on
demand. Moreover, service categories, that is, the types of services that can be
offered and utilized, must be extendable to promote introduction of new kinds
of services. Extendability of the ontologies must also be enabled for other kinds
of artefacts, such as communication channel definitions or non-functional feature
models.

Supporting efficient business decision making

Supporting efficient business decision making requires predictability of joining
and operating in service ecosystems, as well as governability of service ecosys-
tem operation. Potential ecosystem members must be provided with support for
efficient business computing, and for identifying business opportunities and value
proposition in the ecosystems. Such support can be delivered for example with
service ecosystem modelling and analysis tools, which enable assessment of ca-
pabilities and maturity of service ecosystems. Moreover, tools for analysing the
compatibility between local enterprise architecture and business models with the
service ecosystem architecture and its business networks would support making
business decisions about joining and operating in service ecosystems.

Efficient business decision making requires local governance of enterprise
systems and global governance of service ecosystems. Governance can be charac-
terized as a “process of making correct and appropriate decisions on behalf of the
stakeholders of those decisions or choices” [98]. Local governance activities in a
service-oriented organization typically involve utilization of so-called enterprise
architectures describing the structure of the organization and its operation, and
service portfolios declaring the services used and provided by the organization.
Frameworks such as the Open Group SOA Governance Framework [117] can be
utilized by organizations as a basis for implementing service governance. For en-
abling efficient business decision making in organizations, the contemporary gov-
ernance frameworks should be extended with concepts and methods which enable
alignment of local enterprise governance with service ecosystem requirements,
capabilities and service ecosystem governance structures.

Service ecosystem governance means the collaborative activity of directing,
monitoring and managing service ecosystem operation [143]. Governance activi-
ties are enacted by ecosystem members in life cycles which define how, when and
by whom a certain activity should be taken. These activities are defined in service
ecosystem life cycle declarations as part of the service ecosystem architectures.

42

2 SUSTAINABLE SERVICE ECOSYSTEMS

Chapter 3

A meta-model for service ecosystems

The meta-model defined in this chapter enables construction of service ecosystem
architecture description models. The architecture description models are utilized
by different stakeholders during service ecosystem engineering, as was illustrated
in Figure 1.1. Moreover, the meta-model enables construction of the model-driven
methodology for service ecosystem engineering that will be developed in Chap-
ter 4. The meta-model supports especially service ecosystem design and instru-
mentation activities: it acts as a foundation for the engineering tools required for
the engineering activities included in the methodology.

The meta-model elaborates and formalizes the conceptual model and enables
instrumentation of service ecosystem sustainability. Especially, the meta-model
provides support for continuation of viability and enables model-based manage-
ment and governance of service ecosystem operation. Such management and gov-
ernance facilities are required especially in open service ecosystems for guaran-
teeing correctness of ecosystem operation and establishing interoperability be-
tween autonomous members. Moreover, formal ecosystem architecture models
support unification and integration of separate (enterprise) systems and even dif-
ferent service ecosystems. This decreases especially the risk of building concep-
tual and technological stove-pipe systems, since the designs of service ecosystems
are explicit and, as such, mappable to other formal system designs (other service
ecosystem designs). The applicability of the meta-model for facilitating service
ecosystem sustainability is assessed in Chapter 5.

The meta-model design is affected by the requirements and principles stem-
ming from the definition of service ecosystem sustainability and stakeholder con-
cerns. These design principles are discussed in Section 3.1. Before presentation
of the service ecosystem meta-model, the modelling practices and conventions
used for designing and illustrating the meta-model are described in Section 3.2.
The meta-model is founded on a few core concepts that are defined and formal-
ized in Section 3.3. The meta-model elements for service ecosystem architecture

43

44 3 A META-MODEL FOR SERVICE ECOSYSTEMS

descriptions are defined in Section 3.4. The architecture descriptions include spec-
ifications for service ecosystem structure, domain ontologies, intensional defini-
tions, engineering models, and knowledge management models. The correspond-
ing meta-model definitions are presented in Sections 3.5 — 3.9.

3.1 Design principles for the meta-model

There are two foundational requirements that affect the design of the service eco-
system meta-model. First of all, the conceptual model for service ecosystems must
be formalized by the meta-model for establishing consistency of service ecosys-
tem architecture descriptions, as well as for enabling rigorous service ecosystem
design and analysis. Secondly, design principles for the meta-model need to re-
flect the requirements implied by service ecosystem sustainability and the vision
of open service ecosystems.

The main elements of the conceptual model for service ecosystems were de-
scribed in Chapter 2. The conceptual model declared service ecosystems as com-
plex systems comprising capabilities, members, services and infrastructure. These
service ecosystem elements are elaborated and formalized in the meta-model as
a domain ontology model for service ecosystems. The domain ontology model
formalizes ecosystem capabilities and relates them with life cycles and infras-
tructure services. Ecosystem members are represented in the domain ontology
model by concepts of actors, roles and legal entities. The domain ontology model
formalizes also the service categorization of the conceptual model. Elements of
the service ecosystem infrastructure (e.g. infrastructure services and service en-
gineering capabilities) are provided with formal definitions in the meta-model.
Moreover, additional constructs are specified in the meta-model when needed for
establishing consistent representations and relationships between the service eco-
system concepts.

For establishing viability of service ecosystems, the meta-model must take
into account the stakeholders described in Section 2.2 and their concerns iden-
tified in Section 2.3.1. Towards this end, the service ecosystem meta-model in-
cludes constructs for /) enabling efficient engineering techniques and practices,
2) supporting diverse business and service delivery models, and 3) a rich feature
management model supporting declaration, management and evolution of abstract
service platforms.

Efficient service engineering techniques and practices are needed for address-
ing the concerns and supporting the activities of service engineers, infrastruc-
ture providers, and engineering tool providers. For enabling efficient engineering
techniques and practices in service ecosystems, the meta-model includes prin-
cipal concepts underlying model-driven engineering [144] as well as constructs

3.1 Design principles for the meta-model 45

supporting situational method engineering [103]. The principal MDE concepts
included in the meta-model formalize the notions of models and their dependen-
cies [44, 17], enable multi-level meta-modelling [7], as well as provide means
for unification of linguistic and ontological modelling practices [8, 54]. Conse-
quently, the service ecosystem meta-model subsumes a mega-model [18, 16] (i.e.
a model that represents or refers to models) for service-oriented software engi-
neering.

Linguistic meta-modelling is used for defining modelling languages and their
primitives on the meta-model level [8, 54] and so-called linguistic instantiation
is used for instantiating model elements from the types defined within a corre-
sponding meta-model. That is, linguistic instantiation crosses modelling levels
and forms the basis for linguistic meta-levels [8] (e.g. levels comprised of meta-
meta-models, meta-models and models).

Domain concepts are designed using ontological meta-modelling where so-
called ontological instantiation is used for creating domain specific artifacts using
the concepts defined at the upper-level ontology, or an ontology meta-model [8,
54]. Ontological instantiation takes place within a linguistic modelling level [8].
Ontological instantiation provides support for facilitating dynamic user extensions
to modelling concepts, modelling notation and the models created from them [8].
This is especially invaluable for facilitating dynamism of knowledge in open ser-
vice ecosystems.

The principles of linguistic and ontological meta-modelling are illustrated in
Figure 3.1. In the figure, so-called linguistic instantiation takes place between
the elements residing at linguistic modelling levels L1 and L2 that are separated
vertically: Breed is a linguistic instance of MetaClass, and Collie is a linguistic
instance of Class, for example. In Figure 3.1 the linguistic modelling level L1
includes three ontological modelling levels O2, O1 and O0. So-called linguistic
instantiation takes places between the concepts of Breed, Collie and Fido corre-
spondingly. It should be noted that ontological instantiation is not a transitive
relationships: while in the example illustrated in Figure 3.1 Fido is-a Collie is-a
Breed does hold, it does not make sense to say that Fido is-a Breed.

There is an essential difference between linguistic and ontological instantia-
tion, in addition to the fact that the former is an inter-modelling level relationships
while the latter is an intra-modelling level relationship. This difference is about
the intensional and extensional meaning [82, 54] of concepts defined in the mod-
els. While in the example case illustrated in Figure 3.1 Fido is conformant with the
characteristics of a Collie, as specified in the intensional part of the Collie concept,
it also belongs to the set of all Collies. That is, in ontological meta-modelling the
instantiation relationship happens between two concepts if and only if one con-
cept is conformant to the intensional part of the other and is an element of the

46 3 A META-MODEL FOR SERVICE ECOSYSTEMS

L1 L2

instance Of
— —» MetaClass

[Ontological
instanceOf

> Class
Ontological
instanceOf

—» Object

Figure 3.1: An example of ontological and linguistic instantiation relationships [8]

extension of the other concept [54].

Situational method engineering is a software engineering discipline, which
focuses on project-specific method construction [127]. In the context of service
ecosystems, situational method engineering can be utilized for sharing and re-use
of engineering knowledge, and for establishing distributed software engineering
practices. For supporting situational method engineering, the service ecosystem
meta-model includes constructs for specification of re-usable engineering knowl-
edge, where methods are composed of autonomous method chunks [103].

Support for diverse business and service delivery models is needed for ad-
dressing especially the concerns of service providers and service ecosystem pro-
viders. This support is realized in the service ecosystem meta-model by several
constructs. The meta-model includes constructs for technology agnostic and flex-
ible specification of service composition and bundling. The concept of business
services in the meta-model corresponds to composite services delivered for ful-
filling a service role. The meta-model provides means for exploiting possible
sub-contracting relationships, supply chains, or other forms of business networks
in business services. The concepts enabling such rich expression of business net-
works are based on the notion of commitment operations [150] and loose coupling
between service roles, business services and their features. The meta-model in-
cludes constructs for specification of service bundles. The constructs representing
service bundles enable expression of additional functionality and features for de-
livering added value and differentiation in service markets. Finally, constructs for
representing product models are included in the service ecosystem meta-model.

Ecosystem providers, infrastructure providers as well as service engineers

need to be able to evolve and manage the service ecosystem infrastructure to bet-
ter respond to ever-changing business and customer needs. The service ecosys-

3.1 Design principles for the meta-model 47

tem meta-model includes a rich feature management model for managing features
of service ecosystems and their infrastructures. The feature management model
comprises feature categories and binding models. The feature categorization en-
ables control over description and management of service ecosystem features and
their inter-dependencies. The binding models allow definition and control over
feature usage. The dynamism of features, and the binding targets (e.g. service
channels) and features bindable to them can be specified with the constructs pro-
vided by the meta-model. This allows for explicit declarations about such charac-
teristics as late binding or late encapsulation in service ecosystems.

The service ecosystem meta-model provides the foundations for supporting
continuation of viability during service ecosystem operation, as well as for en-
abling open service ecosystems. The foundations are delivered by addressing
a) semantic interoperability,) dynamism required for opportunistic and flexi-
ble business networking, c¢) evolution capability supporting progressive business
environments, and d) ecosystem architecture specialization explicitly in the meta-
model definition.

Semantic interoperability is addressed in the service ecosystem meta-model
by the domain ontology model. The domain ontology model serves as a means for
enabling interoperability through unification (during service ecosystem operation)
of concepts. The meta-model enables control over service ecosystem dynamism
by demarcation of static and dynamic parts of ecosystem concepts. Ecosystem
evolution and specialization is addressed with modelling structures that support
specification of generalization and instantiation hierarchies, as well as extension
and management of variability of ecosystem concepts and features.

In general, models can be considered either as prescriptive systems models or
descriptive domain models [5]. A system model is a description or specification of
a system where a domain model describes its environment. The service ecosystem
meta-model plays both of these roles. The domain model of service ecosystems is
defined by the domain ontology model described in Section 3.6 (used for defining
domain concepts and their relationships) and the intension model (used for defin-
ing the features that are used for defining the intensions of the concepts) defined in
Section 3.7. Other parts of the meta-model define the characteristics of the service
ecosystem as a system model.

There is an important implication stemming from the distinction of the sys-
tem model and the domain model roles of the service ecosystem meta-model that
should be noted: ontological instantiation (distinction between types and their in-
stances) takes place only within the domain model part and is addressed by the
concepts residing in the domain ontology model and the intension model. For
example the model element named Event is defined at the system model part of
the ecosystem meta-model; it is thus not subject to ontological instantiation and

48 3 A META-MODEL FOR SERVICE ECOSYSTEMS

should not be considered as an ontological type or instance. On the contrary, the
model element named LegalEntityKind is defined at the domain model part of the
ecosystem (more specifically, within the domain ontology model) and plays the
role of an ontological type for legal entities. The ontological instances of legal
entities are represented with the concept of LegalEntity defined within the domain
ontology model.

3.2 Modelling practices and conventions

In the following sections the meta-model for service ecosystems is described.
There are several options for modelling of conceptual frameworks, ranging from
mind-maps ! to formal ontology definition languages, such as OWL DL 2. The
various modelling approaches differ from each other for example on the basis of
their notation, semantics and applicability.

The modelling approach selected for this thesis is based on the Meta Object
Facility (MOF) [112]. MOF is an industry-standard developed by the Object Man-
agement Group (OMG) 3. It is is especially applicable for definition, development
and management of modelling languages and models created by those languages.
In essence, the MOF provides a definition for a so-called meta-meta-model, that
is, a meta-model for declaration of meta-models. The foundational elements of
MOF include for example definitions for such concepts as “Class”, “Property” or
“Package” applicable for description of classes, their features and collections of
classes, correspondingly. MOF is utilized for example by the UML-standard [113]
for definition of the UML abstract syntax (i.e. the UML meta-model).

The meta-model for service ecosystems has been designed with a commercial
UML-modelling tool. UML class diagram notation [111] was utilized for design-
ing and illustrating the meta-model elements. The UML-model was then imported
to the Eclipse framework * for enabling development of the tools required by the
model-driven service ecosystem engineering methodology. During the import the
UML-model was converted to Ecore model, which is the meta-meta-model of
the Eclipse Modeling Framework [39]. The Ecore meta-meta-model is closely
aligned with the OMG MOF.

The service ecosystem meta-model is a single, unified model where every
model element is connected to at least one other element of the model by gener-
alization or association. The model exists both as an UML model and an Ecore
model [136]. As the meta-model comprises currently over 260 classes it is pre-

"http://en.wikipedia.org/wiki/Mind_map
*http://www.w3.org/TR/owl-guide/
*http://omg.org

*http://eclipse.org

3.2 Modelling practices and conventions 49

package systems| @ SystemsDiagramy
+cmodel +conformsTo
0. 0..1
+representationOf System +element
0.* 0..*
+model
0.
Digital System
PhysicalSystem *systeml ApstractSystem | tSystem
1 1
A +extension +elementOf
+intension 0.1 | | 0.. 0.”
Intensional System Set
0.* 0._.*
System harget ~HargelOf Relationship +subset Fingludegln
1..* 0.*
+sourceT1..* +sourceOf |0..*

Figure 3.2: Modelling conventions: associations, generalizations and uniqueness
of naming.

sented piece by piece in the following sections. Not every class of the meta-model
is presented in this thesis for clarity of presentation. Especially, some generaliza-
tion hierarchies are not presented but only the most generic classes are discussed.
Some of the meta-model elements not discussed thoroughly in this thesis have
been elaborated in previous publications [135, 141, 140]. However, the presen-
tation in this thesis describes the most fundamental elements of the meta-model
such that the feasibility, applicability and utility of the model-driven approach for
service ecosystem engineering can be evaluated.

The modelling conventions followed for illustrating the service ecosystem
meta-model are exemplified in Figure 3.2 and Figure 3.3. As discussed above,
the UML class diagram notation [111] is used for illustrating the meta-model el-
ements. Figure 3.2 describes a fragment of the meta-model that defines seven
(7) elements: System and its three specializations (PhysicalSystem, DigitalSystem
and AbstractSystem), and Set, IntensionalSystem and Relationship as specializa-
tions of the AbstractSystem element.

Class named System occurs twice in Figure 3.2 while class named Abstract-
System occurs both in Figure 3.2 Figure 3.3. All occurrences of classes with the
same name in the diagrams represent the same meta-model element; correspond-

50 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package models [NbdeIDiagramy
AbstractSystem NamedElement
Zr +name : String [1]
+cmodel Model +model
0.* 1 +elements | 0..*
{redefines conformsTo} T M odelElement
+conformsTo |1 |
ReferenceModel TerminalModel

Figure 3.3: Modelling conventions: attributes and redefinitions.

ingly, the meta-model elements are uniquely named. When same class occurs
more than once in a class diagram the out-going associations are only described
in one place.

Naming of association ends is used in the meta-model illustrations for iden-
tifying relationships between classes instead of association names [111]. This is
due to the fact that association names are not used in MOF-based meta-modelling
but instead navigable association ends are regarded as properties of classes. All
association ends are named in the meta-model and they are considered as pub-
lic properties of their owning classes. All class properties, including association
ends, are attached with a multiplicity conforming the the UML-notation [111].

In the class diagrams illustrating the service ecosystem meta-model both one-
way and two-way associations are utilized. One-way associations are navigable
only to the direction of the arrow-head. For example, System owns the association
end named conformsTo as illustrated in Figure 3.2. The corresponding associ-
ation can be read as “System conformsTo System”. Two-way associations are
represented with lines without any arrowheads. A two-way association is defined
in Figure 3.2 between the elements named System and Set with roles names of
elementOf and element. The the two-way association in the example can be read
as: “System (is an) elementOf Set, and Set (has) element(s) (of kind) System”.
Navigable association ends are owned by the classes located at the opposite side
of the association line. In the example, System owns the conformsTo association
end, i.e. the class named System has a similarly named property which may refer
to another System.

Two kinds of associations are used in the service ecosystem meta-model: reg-
ular associations representing named references between classes and compos-
ite associations representing whole-part relationships. Composite associations

3.3 Foundations for service ecosystem modelling 51

are identified by a filled diamond shape. The diamond shape is located at the
composite-end (the owning end) of the association. In Figure 3.3 a Model is a
composite class which includes zero or more ModelElements. In the meta-class
this composition is used to denote conceptual “ownership” or inclusion of ele-
ments: a Model owns the included model elements. Each class may be included
in at most one composite. The multiplicity of the association end at the composite-
side of the association is always exactly one (i.e. a ModelElement is necessarily
included in exactly one Model).

In addition to association ends classes can include attributes. In Figure 3.3 the
class named NamedElement includes an obligatory (multiplicity is exactly one)
attribute named name which is of type String. Primitive types, such as String or
Integer, are part of the MOF industry standard and usable as such in modelling
elements.

Redefinition of properties is utilized in the meta-model for expressing spe-
cialization of inherited properties, especially association ends. Redefinition is
supported by the UML-notation with a redefines tag. In Figure 3.3 model el-
ement named Model redefines association end named conformsTo which is in-
herited from class System through a generalization hierarchy. This redefinition
means that a Model can only conformTo other Models, but not Systems which was
the original definition of the association. In addition to redefinitions, property
sub-setting (declared by subsets tag) [113] is utilized in some of the meta-model
diagrams. MOF standard [112] does not actually support property redefinition
or subsetting; these constraints described in the UML representation of the meta-
model are however encoded in the model transformations and other modelling
tools developed in this thesis.

3.3 Foundations for service ecosystem modelling

For establishing the design principles defined in Section 3.1 and to enable tech-
nology-agnostic declaration of ecosystem behaviour, the service ecosystem meta-
model is constructed over a small core of foundational concepts. Support for
efficient engineering practices in service ecosystems is provided by constructs
formalizing the foundations of model-driven engineering [44, 45, 54]. For de-
scribing behaviour in service ecosystems, the meta-model defines a classification
of events and behaviour. These constructs are described in the following.

The service ecosystem meta-model formalizes the foundations of model-driven
engineering using a systemic approach, where models are considered as systems
representing other systems. Following the literature in the theory of model-driven
engineering [44, 45, 54], systems are classified into physical, digital and abstract
systems. A system can be a representation of another system or conform to an-

52 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package systems| @ SysterrsDiagramu
+cmodel +conformsTo
0.* 0..1
+representationOf System +element
0.* 0.
+model
0.*
DigitalSystem
PhysicalSystem *systeml ApstractSystem | tSystem
1 1
A +extension +elementOf
+intension [0..1 | | 0.. 0.
Intensional System Set
0..* 0.*
System [0St MArGetON| oo ationship | [*subset | *includedin
1. 0.*
+sourceT1 o +sourceOf lO..*

Figure 3.4: Hierarchy of systems.

other system. In addition, a system can be part of a set of systems, where a set
is a specific kind of an abstract system. An abstract system can have both inten-
sional and extensional part; this allows linguistic and ontological modelling of
abstract systems, as discussed in [8]. The intensional part of the abstract system
defines its characteristic features while the extensional part defines the collection
of instances of the corresponding abstract system.

A system can play the role of model with respect to another system [44]. That
is, when a system is considered as a representation of another system, we say
that the first one is a model of the second one, the system under study. A model
represents the system under study in a way that satisfies Liskov’s principle of sub-
stitutability [11]. Liskov’s principle [91] states that two entities are substitutable
with each other if and only if every property that can be proved about an entity can
also be proved about the other. The preceding classification and relationships be-
tween systems are formalized in the meta-model by constructs that are illustrated
in Figure 3.4.

Systems can be related by domain-specific relationships. For this purpose, a
concept of Relationship is provided in the meta-model as illustrated in Figure 3.4.
A Relationship is considered as a kind of abstract system which refers to other
systems known as the source and the target of the relationship. A relationship

3.3 Foundations for service ecosystem modelling 53

package models [ModeIDiagramy
AbstractSystem NamedElement
Zr +name : String [1]
+cmodel Model +model
0.* 1 +elements | 0..”
{redefines conformsTo} T M odelElement
+conformsTo |1 |
ReferenceModel TerminalModel

Figure 3.5: Models as abstract systems.

may have multiple sources and targets.

The service ecosystem meta-model introduces an explicit concept for repre-
sentation of models. As illustrated in Figure 3.5, a model is considered as an
abstract system and a named element, which includes a collection of model ele-
ments. There are two different kinds of models that are used for practising model-
driven engineering. So-called reference models [75, 158] are used for defining
modelling languages. Reference model defines the typing rules for models, that
is, the kinds of model elements and the way they can be arranged, related, and
constrained [17]. A reference model thus specifies the rules and the language for
describing corresponding kinds of models. At the instance level, models are con-
structed in conformance to a reference model. A model M is said to conform
to its reference model RM if and only if each model element in M has its cor-
responding meta-element in RM [17]. A model that does not act as a reference
model to any other model, is typically called a terminal model. The relationships
between a model and its reference model is illustrated in Figure 3.5.

Service ecosystems involve different kinds of behaviour associated with ser-
vice life cycles, services and service endpoints, for example. Behavioural mod-
elling is founded on the concepts of Event and Behaviour as illustrated in Fig-
ure 3.6. An Event in the meta-model is considered as a specific point or duration
of time where a certain behaviour is enacted. An event is enabled and can be
enacted if and only if all its successor events have already happened. Events are
classified into phases and actions, making a distinction between events associated
with complex and simple behaviour: a Phase is associated with a process, while
an Action is a sort of event which is associated with an (atomic) activity.

A Process is considered as a behavioural unit which composes a set of actions.
For declaring alternate enactment paths in processes, the notion of Choice is used.

54 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package behaviour[BehaviourDiagramy

+e0 [action L€ +successor [0..*
1 1 Event [0."
+choice +choice +predecessor
0.” 0.”* 0.* +behaviour [gepaviour
Choice +event 0.1
0.* +stage
+choice Phase 0.*
+events . +rec
Action
+event |0..* ”
1. 0.1
+event| +stages |1..*
Behaviour 0.*
{redefines pehaviour} {redefines behaviour}
i +
+process T +behaviour pattern | 1
+behaviour | 0..1 | | 0..1
e BehaviouralPattern
+process Process Activity
AN

Commitment ServiceActivity EngineeringActivity

+description : String [1]

Figure 3.6: Concepts for modelling behaviour in service ecosystems.

3.3 Foundations for service ecosystem modelling 55

A choice prescribes a mutual exclusion between two actions. A set of events de-
fined by a process, the transitive closure of the successor relationships, and a set
of choices makes a Process a behavioural description that corresponds to the no-
tion labelled prime event structures [174]. Event structures provide an elegant
and generic formalization of behaviour that is particularly well suited for express-
ing the externally observable, reactive behaviour of services, and service-oriented
business processes and choreographies in varying kinds of service ecosystems.

The basic unit of behaviour is described by the concept of Activity, which
represents “any activity that is considered as a conceptual entity at the given
level of abstraction” [163]. An Activity is considered a physical or mental act of
performing something that changes the state of the cooperative environment. In
the case of communication behaviour, the set of activities would include send and
receive activities mediating the different kinds of information entities involved
between cooperation participants, for example.

Activities are further classified into three distinct categories: /) commitments,
2) service activities, and 3) engineering activities, as illustrated in Figure 3.6.
Commitments are kinds of activities that declare interaction between named roles
defined in choreographies. Service activities are declared in interaction schemes
of service endpoint kind definitions. An interaction scheme may for example de-
clared service activities for create, read, update and delete operations in service
ecosystems that follow CRUD-like service architectures. Finally, engineering ac-
tivities are defined by engineering tool types that are part of the service ecosystem
engineering space declarations. They prescribe activities that can be taken in en-
gineering methods for delivery of engineering artefacts.

Choreographies are used in service ecosystems to describe and coordinate
multi-lateral, interactive behaviour taking place between a group of actors. The
actors take a certain role declared in the choreography specification. The ser-
vice ecosystem meta-model formalizes choreographies as structures comprising
events, conditions, roles and commitments.

As illustrated in Figure 3.7, a choreography in the service ecosystem meta-
model is considered as a kind of a Process. A Choreography is a composition of a
collection of ChoreographyRoles and a collection of ChoreographyStages. Each
choreography role is a named element that is assigned with a set of commitments.
A commitment is a kind of activity which denotes a binary, asymmetric relation-
ship between two choreography roles: one role is considered as the creditor and
the other role is considered as the debtor of the commitment. A debtor has the
obligation to fulfill the commitment towards the creditor. Typically commitments
are fulfilled in service ecosystems with communication activities originating from
the debtor and having a creditor as the destination. The real-world effects of dis-
charging the commitments, such as associated with co-creation of value during

56 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package behaviour [ChoreographyDiagramy

Process Rols
lﬁ +choreograph 1.7 lr
Choreography sl ol ChoreographyRole
1 roles
+creditor |1
Rule 1 |+choreography +debtor |1
+expression : String [1] ————
+condition | 0..1 {redefines events} Commitment [0.*
+commitment
+EVEnE L] . +behaviour |1

*stage _| choreographyStage |tevent
1 0..* {redefines behaviour}

v

Action

Activity

Figure 3.7: Choreography diagram.

the service delivery, are not considered by the meta-model. However, such asso-
ciations with the real-world effects can be specified in domain-specific ecosystem
models as extensions of the ChoreographyStage element, for example.

The behaviour of a choreography is declared as a partial ordering between a
set of ChoreographyStages. A choreography stage is an action which is labelled
by a commitment, and is associated with an optional rule expression. The rule
expression defines a condition under which the corresponding action represented
by the choreography stage can be enacted. The set of choreography stages can
be considered as a collection of event-condition-action rules (ECA) (see for ex-
ample [100]) where ChoreographyStages correspond to events, Rules express the
condition part, and Commitments correspond to actions.

3.4 Service ecosystem architecture descriptions

A service ecosystem architecture description includes representations of several
ecosystem aspects, such as behaviour, concepts and structure. The meta-model
for architecture descriptions is illustrated in Figure 3.8. A service ecosystem
architecture description is a model which comprises five kinds of sub-models:
1) ecosystem model, 2) domain ontology model, 3) intension model, 4) engineer-
ing model, and 5) knowledge management model. These sub-models are briefly
characterized below and elaborated in subsequent sections.

3.4 Service ecosystem architecture descriptions 57

package seadescription [SEADescriptionDiagramU

SEADes cription [y "M0d€! +telements | seam odel

1 0.r T-

IntensionModel EcosystemModel | | |EngineeringModel

DomainOntologyModel Knowledge ManagementModel

Figure 3.8: Service ecosystem architecture description diagram.

The constructs defined in the ecosystem model facilitate especially service
ecosystem governance. The ecosystem model provides modelling constructs for
specifying capabilities, structure, behaviour, artefacts and actors of service eco-
systems. Ecosystem models are specified primarily by ecosystem providers and
infrastructure providers for defining the purpose, scope and structure of service
ecosystems.

A domain ontology provides an explicit and formal description of the corre-
sponding portion of reality using selected level of granularity and viewpoint [59].
The service ecosystem concepts are made explicit by the domain ontology model.
An ontology in this context is considered as a shared, descriptive, structural model
that represents reality by a set of concepts, their interrelations, and constraints un-
der the open-world assumption [5].

The domain ontology model provides means for establishing semantic inter-
operability by specification of service ecosystem concepts. A service ecosys-
tem architect defines a domain ontology by extending the concepts of the do-
main ontology model. The domain ontology model includes definitions for dif-
ferent service ecosystem entities (e.g. services and legal entities) and their inter-
relationships. More over, the domain ontology model includes elements that are
used for specification of domain concept hierarchies and relationships.

Interoperability knowledge in service ecosystems is specified with constructs
defined in the domain ontology model and the intension model. While domain on-
tology model specifications address hierarchies and relationships between domain
concepts, the intension model provides definitions for structural properties of the
concepts. The relationship between the domain ontology model and the intension
model makes explicit the inter-dependencies between ontological and linguistic

58 3 A META-MODEL FOR SERVICE ECOSYSTEMS

meta-modelling discussed in Section 3.1. Ontological meta-modelling facilitates
dynamic user extensions to modelling concepts, modelling notations and the mod-
els created from them, while linguistic meta-modelling is used for defining mod-
elling languages and their primitives on the meta-model level [8]. The unification
of the two meta-modelling dimensions in the service ecosystem meta-model en-
ables specification and management of extendable, domain-specific vocabularies
and modelling languages.

The engineering model constructs are used for specification of the engineering
knowledge and for enabling efficient engineering practices in service ecosystems.
Efficient service engineering is supported by prescribing reusable engineering as-
sets. Engineering assets include definitions for product models and binding mod-
els, as well as engineering methods. Product models prescribe artefacts and their
compositions appropriate to be utilized in service engineering methods. Typically
the decompositions of artefacts would follow the structure of knowledge items,
but other kinds of structuring allowing more efficient engineering efforts can also
be utilized. Binding models declare the rules for late encapsulation of services
with bindable features: binding specifications prescribe what kinds of features
can be bound to service roles, business transactions or service connections. A
situational method engineering approach is applied for specification of engineer-
ing knowledge. In this approach, methods are composed of autonomous method
chunks [103].

The knowledge management model constructs provide means for establishing
interoperability and engineering knowledge management infrastructures required
in open service ecosystems. The knowledge management model provides means
for specification of knowledge repositories, and knowledge items and relation-
ships managed in the repositories. A knowledge repository represents a coherent
knowledge base comprising a collection of artefacts which conform to a common
intensional definition. In the service ecosystem meta-model, a single domain con-
cept may have several roles in ecosystem life cycles: concepts can be declared
as representations of multiple life-cycle artefacts. Such one-to-many relationship
between concepts and life-cycle artefacts is needed for encoding different roles of
knowledge in service ecosystem life cycles. This enables formalization of con-
text and situation specific interpretations for concepts, and variable consistency
criteria for their intensions.

3.5 Ecosystem model

The service ecosystem meta-model provides constructs for defining the scope,
structure and behaviour of service ecosystems; these constructs are defined under
the ecosystem model. The scope of service ecosystems is defined with ecosystem

3.5 Ecosystem model 59

package ecosystemmodel [Ecosysteml\/lodeIDiagramy

+model | EcosystemModel > Model
1
{redefines elements} M odelElement
+elements [0..* 6y

AbstractSystem L, | EcosystemElement EcosystemDomain

N

tlifecycle Actor
0.1 47
+capability | 1 +lifecycle |0..* *

J7 m *praduct | 0. NamedElement
Capability LifeCycleProduct

EcosystemCapability | |LifeCycle

+name : String [1]

Figure 3.9: Ecosystem model diagram.

capabilities, structure with ecosystem domains, and behaviour with ecosystem life
cycles. The ecosystem model identifies the actors and infrastructure services in
service ecosystems. The ecosystem model addresses especially service ecosystem
governance and knowledge management issues. The ecosystem model comprises
a collection of ecosystem elements, as illustrated in Figure 3.9. The ecosystem
elements include ecosystem capabilities, domains, life cycles and life-cycle prod-
ucts, and actors; these individual elements are elaborated below.

3.5.1 Ecosystem capabilities

Ecosystem capability specifications are used for representing the purpose of the
ecosystem. An ecosystem capability denotes an ability of a service ecosystem
to perform actions and to deliver qualities to its members. Ecosystem capabil-
ities are represented in the meta-model by the concept of EcosystemCapability,
as illustrated in Figure 3.10. An ecosystem capability is a specialization of the
Capability concept. A capability can exploit one or more other capabilities for
delivering the corresponding ability.

Ecosystem capabilities are further categorized into functional and qualitative
capabilities, and knowledge bases, as illustrated in Figure 3.10. A Functional-
Capability represents a service ecosystem’s ability to deliver some function to its
members. Functional capabilities are supported by qualitative capabilities, repre-

60 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package ecosystemmodel[CapabilityDiagramy

+uses

0.*
+enables | 0..

Capability

Fay

EcosystemCapability | |BehaviouralCapability | |EngineeringCapability

z 5 7
I I I [|
FunctionalCapability | || Qualitative Capability ServiceProtocol Method Tool
KnowledgeBase BusinessTransaction | |InteractionScheme

Figure 3.10: Capability diagram.

sented with the concept of QualitativeCapability in the meta-model. A qualitative
capability specifies how ecosystem functions must be delivered. An example of
functional capability is dynamic collaboration establishment, which is supported
by a qualitative capability of dependability (e.g. trusted and secure interactions).
A KnowledgeBase represents a capability of the service ecosystem to maintain a
coherent collection of artefacts utilized in life cycles; the notion of a knowledge
base will be elaborated below.

In addition to ecosystem capabilities, the service ecosystem meta-model in-
cludes categories for behavioural and engineering capabilities. A Behavioural-
Capability represents a demarcated unit of behaviour exposed by a service eco-
system component. The behavioural capabilities are further categorized into busi-
ness transactions, service protocols and interaction schemes which are exposed by
business services, component services, and service endpoints, correspondingly.
The behavioural capabilities are discussed in more detail later.

Engineering capabilities express means for enabling service engineering prac-
tices in ecosystem domains. In the meta-model, engineering capabilities are repre-
sented by the concept of EngineeringCapability illustrated in Figure 3.10. There
are two concrete engineering capabilities: methods and tool types. A method
provides a process and guidelines for production of a part of an engineering prod-
uct. A tool type provides a specification of an engineering tool for delivery of
engineering activities producing required product elements. These engineering
capabilities are further elaborated in Section 3.8.

3.5 Ecosystem model 61

package ecosystemmodel] E@j EcosystemDomainDiagramU

+provides

EcosystemModel EcosystemCapability
0.*
lr +dormain | 0.* +requires |0..
EcosystemElement 4 EcosystemDomain +domain
0.~
+domain |0..* +domain |0..* +domain
1
EngineeringSpace 1
+engineeringspace +ontology
1 1..*], +choreographies

DomainOntologyModel | |ServiceChoreography

Figure 3.11: Ecosystem domain diagram.

3.5.2 Ecosystem domains

Ecosystem domains are the main construct provided by the meta-model for struc-
turing service ecosystem architectures. For example in cloud computing environ-
ments (see e.g. [37]) the notion of domains could be used for representing differ-
ent cloud computing models such as Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS). An ecosystem domain is
considered as an ecosystem model itself, as illustrated in Figure 3.11. An ecosys-
tem domain may thus include any number of ecosystem elements, including other
ecosystem domains.

An ecosystem domain may provide a number of capabilities to be utilized
by other domains. This facilitates control over managing dependencies between
ecosystem domains. In a cloud computing environment, the PaaS-domain might
provide service deployment capabilities to be utilized by a SaaS-domain, for ex-
ample. In the Pilarcos framework, which is discussed in Section 5.2, an ecosystem
domain representing a reputation system [133] provides a trust management ca-
pability to be utilized in dynamic collaboration establishment processes.

An ecosystem domain includes specifications for a collection of service chore-
ographies, represented by the element ServiceChoreography in Figure 3.11. The
notion of service choreography is defined in the domain ontology model discussed
in Section 3.6. In addition, an ecosystem domain is associated with an engineer-
ing space, and a domain ontology model; these constructs are elaborated in Sec-

62 3 A META-MODEL FOR SERVICE ECOSYSTEMS

ackage lifecycle)| LifeCycleDia ram)
& g Y [il g] EcosystemCapability
+capability |1
EcosystemElement .
+lifecycle [0..*
tlifecycle P +lifecycle
1 Eile Gycle 01 EcosystemElement
Phase v
+phase +product s
lr 1?_* +phase |0..* +input/0..* O..Ki T {redefines element}
Actor LifeCyclePhase LifeCycleProduct Feloment
+actor [1..* +participates [1..* +phase |1 0+..F;‘ha86+0UtDUt 0.” {redefines elementOf}
+liaison |1 +elementOf |0..*
ServiceLiaison Artefact ArtefactSet > Set

Figure 3.12: Life-cycle diagram.

tion 3.8 and Section 3.6, correspondingly.

3.5.3 Ecosystem life cycles

Within ecosystem domains capabilities are realized with service ecosystem life
cycles, infrastructure services and qualitative features. Service ecosystem life cy-
cles are ecosystem elements that compose a set of life-cycle phases and life-cycle
products. The formalization of life cycles in the service ecosystem meta-model is
illustrated in Figure 3.12. Life-cycle phases are represented by the element named
LifeCyclePhase. Each life-cycle phase can be associated with one or more life-
cycle products acting as inputs and outputs for the corresponding phase. A life-
cycle product is represented by the element named LifeCycleProduct. Artefacts
and artefact sets are considered as realizations of life-cycle products. A life-cycle
phase is associated with the set of actors that are eligible for taking roles in the
phase. The roles are declared through a service liaison (discussed in Section 3.6),
which associates a service choreography with a service life-cycle phase.

3.6 Domain ontology model

The domain ontology model supports establishment of semantic interoperability
in service ecosystems. Semantic interoperability is addressed by the domain on-
tology model by formalizing the conceptual model of service ecosystems. The
domain ontology model includes definitions for service contracting concepts, co-
operation facilities and service ecosystem entities. The domain ontology model

3.6 Domain ontology model 63

enables definition of holistic, unifying ecosystem vocabularies which are utiliz-
able for establishing semantic interoperability in service ecosystems.

The domain ontology model comprises a set of domain ontology elements,
as illustrated in Figure 3.13. Each domain ontology element is considered as an
abstract system in addition to of being a kind of model element. This allows for
specification of conformance and representation relationships between the model
elements inside domain ontology models, which is required for addressing service
ecosystem dynamism through extendability of domain ontologies.

package domainontology | % DominOntoIogyDiagramu

M odel x— DomainOntologyModel

+model | 1 M odel Element
+elements | 1..* %
AbstractSystem «——DomainOntologyElement
LP
Concept +Harget Relationship
+isDynamic : Boolean [1] = true 1
+source |1 +argetOf [0..* T
+system |1 ConceptRelationship
+intension |1 +sourceOf | 4jow erBound : Integer [1] = 0
Conceptintension 0.* |+upperBound : Integer [1] =1
0.* 0..1
+opposite +oppositeOf

Figure 3.13: Domain ontology diagram.

Domain ontology elements are further classified into concepts and concept re-
lationships. Domain concepts are represented in the meta-model by the notion of
Concept. Each concept is provided with a declaration of its intension, represented
by the element named Conceptintension. As illustrated in Figure 3.13, each con-
cept owns its intension which defines the characteristic features of the concept.
The characteristic features are specified with modelling elements specialized from
the InstantiableElement, especially Feature elements which are described in Sec-
tion 3.7. Consequently, the intension of a concept is described as a collection of
selected features.

The composite one-to-one association between concepts and their intensions

64 3 A META-MODEL FOR SERVICE ECOSYSTEMS

represents a design decision that has been made to separate the ontological ele-
ments from their intensional features, and their corresponding inter-dependencies.
This design decision enables separation of the ontological space and features
space of the domain ontology model. The separation between ontological and
feature spaces in the service ecosystem meta-model supports reuse of feature def-
initions when describing concept intensions, and especially, utilization of feature
management theories and practices, such as described in [15], for managing ser-
vice ecosystem features.

In the ontological space, concept specializations and relationships (represented
by the ConceptRelationship in Figure 3.13) between concepts are used. The inten-
sions of concepts are defined as collections of features that are defined in the fea-
ture space, more concretely, using the intensional model described in Section 3.7.
Inter-dependencies between features, such as mutual exclusion, can be declared
using the modelling construct of Featurelnteraction described in Section 3.7.

3.6.1 Top-level concepts

The foundational service ecosystem concepts defined by the service ecosystem
meta-model include service liaisons, service contracts, concept sets, service of-
fers, service channels and co-operation facilities. Each concept can provide a
representation of a life-cycle product, i.e. an artefact or artefact set used in eco-
system life cycles. The domain ontology model defined in the service ecosys-
tem meta-model is extended in service ecosystem architectures to represent the
domain-specific versions of these generic concepts. The top-level concepts of the
domain ontology model are illustrated in Figure 3.14.

The element DomainConcept is utilized for specifying domain-specific con-
cepts that are not addressed by the service ecosystem meta-model; such concepts
might include for example products associated with the ecosystem. The intension
of domain concepts comprises a set of user-definable domain features which may
have conformance relationships with each other.

The concepts of EntityKind and Entity declare conceptual typing hierarchies:
each entity conforms to a unique entity kind. These categories of entities and
entity kinds include concepts for describing services (business and component
services), service endpoints and legal entities, for example. The semantics of the
conformance relationships between the domain ontology concepts is ecosystem-
specific, and are validated with domain-specific infrastructure services and tools.
The meta-model does not address the formalization of such domain-specific se-
mantics, however, regulations and constraints describing such semantics can be
weaved as comments to the corresponding modelling elements.

An ontological concept is represented by the Concept element, which is con-
sidered as an abstract system as illustrated in Figure 3.15. Each Concept can be

3.6 Domain ontology model 65

package concepts [ConceptualFramew orkDiagramy

Concept EeE
: ; 0.*
+isDynamic : Boolean [1] = true +representationOf | 0..*
A
DomainConcept LifeCycleProduct

|
|

ServiceLiaison ConceptSet EntityKind ServiceChannel

=Y

0..*

+liaison
@ +model | ServiceOffer | | Entity || CooperationFacility

+contract |0..*

Service Contract +representationOf
0.1

ArtefactSet

Figure 3.14: Top-level concepts of the domain ontology model.

declared as either static or dynamic. Static concepts can not be instantiated dur-
ing service ecosystem operation; they can be utilized to represent for example
immutable services in Infrastructure-as-a-Service cloud environments. Dynamic
concepts are utilizable for expressing extendable service ecosystem knowledge.
A Concept is a GenerizableElement for enabling declaration of abstraction hier-
archies between concepts.

The intensional meaning of a concept is provided by the Conceptintension el-
ement and extensional meaning by a set of concepts (ConceptSet element). The
concept intension comprises a set of InstantiableElements which in essence en-
able deep instantiation [7] hierarchies between intensional elements. Each In-
stantiableElement is associated with a potency which declares if the correspond-
ing element is an instance (potency is zero) or instantiable at a lower semantic
modelling level. The service ecosystem meta-model supports natively two-level
instantiation hierarchies, which are represented in the domain ontology with En-
tityKind - Entity -pairs, and in the intension model with Feature - Property -pairs.
Deeper instantiation hierarchies can be defined by exploiting higher potencies for
features and defining conformance relationships between EntityKinds and Fea-
tures. The concept extension comprises the set of ontological instances of the
concept. For example, the intension of a concept named “Organization” would
define the characteristic features shared by all organizations (such as having a set
of sub-organizations and employees) while its extension includes all the organi-
zations available in the service ecosystem.

66 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package concepts | @ ConceptDiagramu

AbstractSystem Kl———— Set k}——

{redefines conformsTo}

+conformsTo 01 J7
+cmodel = .
0.* Concept FEgstem Fextension ConceptSet
- : : 1) 0.1
+isDynamic : Boolean [1] = true {redefines extension}
- +elementOf
0. %
+system| 1 +element . 0.
{redefines element}

GeneralizableElement +general {redefines elementOf)

{redefines intension} isAbstract : Boolean [1] = false |0..*
+intension |1 AN *
+intension - +element (0.
5 Conceptintension

+elements |0..*

InstantiatableElement

+potency : Integer = 1

Figure 3.15: Domain ontology concepts and concept sets.

3.6 Domain ontology model 67

package contracting [E‘g ServiceLiaisonDiagramu

Concept

+isDynamic : Boolean [1] = true

T

tHiaison [gq ryvice Liais on [Fintension
1 0.”
+phase |1 +choreography |1
LifeCyclePhase ServiceChoreography

Figure 3.16: Service liaison diagram.

3.6.2 Contracting concepts

The service contracting concepts included in the domain ontology model include
service liaisons, service contracts, service channels and service offers.

Service liaisons declare the kinds of service-based collaborations that can be
enacted in service life-cycle phases. A service liaison serves as a specification
for service contracts in the corresponding life-cycle phase. A service liaison is
defined in the service ecosystem meta-model as an association between a service
choreography and life-cycle phase, as illustrated in Figure 3.16. The intension of
a service liaison comprises a set of feature bindings, which will be discussed in
Section 3.7.

A service choreography is defined in the meta-model as a specialization of the
choreography introduced in Section 3.3. The formalization of service choreogra-
phies is illustrated in Figure 3.17. A ServiceChoreography extends the concept
of Choreography and comprises sets of service connections, business transac-
tions, business actions, and service roles. A ServiceConnection makes explicit
the negotiable relationship between service roles and acts as a target for binding
of extra-functional features. A BusinessTransaction is a declaration for a set of
business actions that are needed for fulfilling some meaningful business goal. A
BusinessAction 1s a specification for an event which realizes a service commit-
ment. A ServiceCommitment denotes an exchange of a life-cycle product (i.e.
artefact or artefact set) or meaning activity between service roles over a service
connection.

Service contracts are utilized in service ecosystems for establishing depend-
ability of interactions between service providers and consumers. Service contracts
can involve two or more members. Service contracts can be subject to dynamic

68 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package choreographies [ServiceChoreographyDiagramy

| Choreography | InstantiatableElement

| ChoreographyRole | | Actor |
[]

+potency : Integer =1]|
X
+actor |1
redefines roles
+Chmhl| ServiceChoreography ,|: +choreography _{) ———
1 | I +roles | 1..* 0.*
1| +choreography 1 ServiceRole rereditor
+choreography 1
1..%| Hransactions o 1 ¥ +debtor {redefines creditor}
|BusinessTransaction | {redefines debtor}
[]
1.7 Arecefinesieventsy {redefines commitments} i
. : +commitment
i defi beh
+ransaction atione] 1% {redefines e.aV|our} SO [a— 0"
+c?nnections +action BusinessAction l—gm ServiceCommitment |
1., 1| +even 1] {
ServiceConnection I +commitment |0..* 0. | +commitment
i |Choreography$tage |
| -
StructuralElement | : +connectiony1 0.1, +product

——] 1.* _ *connection [ge rvice Connection || LifeCycleProduct
[I+servicerole 1. |]|]

Figure 3.17: Service choreography diagram.

negotiations, especially in open service ecosystems. However, static or implicit
service contracts are a feasible option in service ecosystems following a more
closed approach to service collaboration establishment.

The service contract concept is formalized with modelling elements illustrated
in Figure 3.18. Service contracts are defined in the domain ontology model as
concepts that compose a collection of service channels to realize a service liaison.
The intension of a service contract comprises a set of property bindings and a set
of so-called commitment operations. The property bindings included in service
contract intensions are mostly taken for the service offers published by partic-
ipants of the contract; they are possibly refined and negotiated during contract
establishment processes.

Service channels enable provisioning of business services through different
interaction media and with varying qualitative properties affecting the service in-
teractions. The concept of service channel defined in the meta-model enables
loose coupling between business services and late encapsulation of service fea-
tures. The ServiceChannel concept, illustrated in Figure 3.19, is not related to
any other elements at the conceptual level. Instead the intensional definition of a
ServiceChannel is used for collecting cooperation facility properties, service links
and endpoint bindings to allow specification of service interactions with necessary
features.

Facility features included in service channel intensions comprise binding ports
and channels phases. A binding port represents a logical grouping of service op-

3.6 Domain ontology model

package contracting[];‘Q ServiceContractDiagramu

Concept

+isDynamic : Boolean [1] = true

+contract

i

ServiceContract

+contract

0.x

+liaison |1

ServicelLiaison

+intension | 1

0.x

-

+system

+intension

ServiceContractintension

+channel |0..*

ServiceChannel

{redefines intension}

+intension

0.

0..%|, +commitmentoperation

{subsets elements}
{subsets elements}

CommitmentOpe

+propertybinding | 0..*

ration

PropertyBinding

Figure 3.18: Service contract diagram.

package channels [ServiceChanneIDiagramﬂ

ServiceChannel >

Concept

+isDynamic : Boolean [1] = true

ServiceConnection

0.*

BindingPort
1

+system |1 +connection | 1
Conceptintension .
{redefines intension} InstantiatableElement
sintensian |1 ‘r +potency : Integer = 1
tintension ServiceChannellntension
1 i i +intension | 0..* Hlink 0.7
{subsets elements} *intension |1 l h +servicelink ServiceLink
{subsets elements} 1.*
+channelproperty +pinding | +ink |0..*
0.. {subsets elements} sendpointbinding 0.*
FacilityProperty 1.*
- - +
+binding | EndpointBinding [*Pinding 4 port

0..* +bindingpor

{redefines bindablepr

operty} J7

+address |1

PropertyBinding

EndpointAddress

!

BindableProperty

{redefines target}

+servicerole |1

ServiceRole

Figure 3.19: Service channel diagram.

69

70 3 A META-MODEL FOR SERVICE ECOSYSTEMS

erations which can be accessed from the same location (address). Each binding
port conforms to a binding port type that is declared in a binding type specifi-
cation. Binding types are used in the service ecosystem meta-model to repre-
sent different interaction mechanisms, such as document-oriented messaging or
publish-subscribe paradigm.

Channel phases represent actions that need to be taken to establish the required
form and quality of service communication. Each channel phase conforms to a
channel feature, which are defined as part of channel type declarations. Channel
types are used in the meta-model for representing especially means for realizing
qualitative communication features. A channel type realizing secure messaging
may include channel features representing payload encryption and decryption, for
example.

A service link associates a binding port with a service connection and a ser-
vice role. Consequently, a service link specifies the binding ports, and thus inter-
action mechanisms to be used in service connection endpoints. Finally, endpoint
bindings are utilized for associating service endpoint addresses with the binding
ports. Service endpoint addresses are considered as unique, resolvable identifiers
enabling point-to-point communications.

The intensional definition of service contracts comprises a set of commitment
operations. The commitment operations are used for discharging the commit-
ments set for roles in the service choreography declared by the service liaison.
The set of commitment operations in service contracts represent values mutually
agreed on by service contract participants. The set of commitment operations
must cover all the commitments declared in the service liaison associated with
the contract. The commitment operations follow the ontology for commitments
in multi-agent systems [150] and they are defined in the meta-model as illustrated
in Figure 3.20.

The concept of CommitmentOperation is further classified into five different
subclasses, as illustrated in Figure 3.20. The DischargeCommitment concept rep-
resents the basic commitment operation that is used in the end for discharging a
commitment set for an ecosystem member. A commitment is discharged when the
desired condition is obtained [150]; in service ecosystems the desired conditions
are obtained typically with message exchanges. Commitments are discharged
with the service operations provided by component services. Commitments can be
cancelled with the CancelCommitment concept. A commitment can be canceled
when a service provider cannot or will not act in accordance with their commit-
ments. Commitment cancels are subject to cancellation clauses and policies that
are in effect [150] in the given service ecosystem and service contract. ReleaseC-
ommitment represents a commitment operation which eliminates the commitment
and can be performed by the creditor of the given commitment [150]. A release

3.6 Domain ontology model 71

package ecosystemintensionmodel] Eﬁ\ ComTitmentOperationDiagramU

BusinessAction | 1 +operation | commitmentOperation |— > Event
+businessaction 0-- ?

[I]
AssignCommitment ReleaseCommitment DischargeCommitment

+assignment
0.*
+creditor |1) +discharge |0..*
Identity 1 e legation DelegateCommitment | | CancelCommitment
+debtor ¥ +operation | 1

ServiceOperation

Figure 3.20: Commitment operation diagram.

commitment is distinguished from both discharge and cancel operations, because
release does not mean success or failure of the given commitment [150]. The
DelegateCommitment operation shifts the role of debtor to another identified eco-
system member. Finally, AssignCommitment represents a commitment operation
which transfers a commitment to another creditor, and can be performed by the
present creditor, if authorized by the prevailing policies [150].

Service offers are used by service providers to publish and advertise their busi-
ness services in a service ecosystem. A service offer enables bundling of services.
A service offer is defined in the meta-model as a concept which associates a set
of business services with a legal entity. The service provider publishing a service
offer defines which commitment operations are offered from the bundled busi-
ness services, as illustrated in Figure 3.21. Service offer intension is defined as a
collection of binding ports, a set of property bindings, and a set of port bindings.

3.6.3 Service ecosystem entities

The notion of entities is used in the domain ontology model to represent elements
of service ecosystems that possess unique, resolvable identities and existence.
The entities of the domain ontology model follow a two-level abstraction hierar-
chy where every entity in a service ecosystem conforms to an entity kind. The
service ecosystem entity kinds are illustrated in Figure 3.22. Each entity kind is
associated with an appropriate identity type which declares the mechanism to be
used for identifying the corresponding kinds of entities. Especially, legal entity
kinds are associated with a set of service ecosystem actors. The association in
effect declares what kinds of roles the corresponding kinds of entities can take in
the service ecosystem. The intensional definitions for entity kinds are specified as
collections of features, as illustrated in Figure 3.22.

72 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package contracting[ServiceOfferDiagramy

Concept
LegalEntity +isDynamic : Boolean [1] = true BusinessService

-

T +service |1..*

+offer ServiceOffer ucliiy

0..* 0.”

+provider

+system| 1 +offer |1 +commitmentoperation | commitmentOperation
0.7

{redefines intension}
+intension |1

+intension

ServiceOfferintension

: ; {subsets elements}
1 +intension | 1

+intension +bindingport [1..*
BindingPort

{subsets propertybinding} 1
+portbinding | 1..* +bindingport

{subsets elements} PortBinding

+binding

0..* {redefines bindableproperty}

+propertybinding | 0..*
PropertyBinding |

+binding |0..”

1./ ServiceOperation

+operation
{redefines target}

Figure 3.21: Service offer diagram.

3.6 Domain ontology model 73

package entitykinds | EntityKindDiagramy

+intension EntityKindintension +intension
{redefines intension} 1 1
+system}1
— +entitykind {subsets elements}
Concept < EntityKind
+isDynamic : Boolean [1] = true +identitytype | 1 +feature | 0..*
T IdentityType | | Feature
| | I +entitykind
ServiceEntityKind EndpointKind | |LegalEntityKind o d
lﬁ +actor |1..*
InformationEntityKind +endoointkind |Actor
‘ﬁ Service EndpointKind SNdpOINtry
1
BusinessDocumentKind +scheme | 1..*
+docunment 1 InteractionScheme
+activity (0..* +scheme | 1
ServiceActivity tactivities

1.*

Figure 3.22: Entity kind diagram.

The domain ontology model provides definitions for four distinct kinds of
entities: /) service entities, 2) information entities, 3) endpoint kinds, and 4) legal
entities. These entities illustrated in Figure 3.23 conform with the corresponding
entity kinds in Figure 3.22. Each entity is associated with an identity, which must
conform with the identity type declared for the corresponding entity kind. The
intensional definitions for entities are specified as collections of properties.

The service ecosystem meta-model defines the notion of service as an ab-
stract system that delivers one or more capabilities. This definition aligns with the
common interpretation of services, such as utilized in the OASIS SOA-RM stan-
dardization [154]. The meta-model elaborates the service definition with a further
classification of services to infrastructure services and service entities. The ser-
vice definition and categorization is formalized in the meta-model with constructs
that are illustrated in Figure 3.24.

Infrastructure services are used for delivering ecosystem capabilities. In-
frastructure services include the category of knowledge repositories needed for
managing the global knowledge base of the service ecosystem. As illustrated in
Figure 3.24, the notion of KnowledgeBase is introduced in the meta-model as a
capability for representing knowledge base management. Each knowledge base
comprises a selection of life-cycle products, that is, artefacts or artefact sets. Ad-
ditional infrastructure services, such as trust or reputation management systems,

3 A META-MODEL FOR SERVICE ECOSYSTEMS

package entities [| 5 EntityDiagram]/]

EntityKind Concept Identifier
+isDynamic : Boolean [1] = true +value : String [1]
1| +conformsTo
{redefines conformsTo} lr ‘T
+cmodel Entity +entity 1 Identity +cmodel
0.* 1 : ; 0.*
+system +identity
1 lP {redefines conformsTo}
{redefines intension} l I
+intension 1 ServiceEntity EndpointEntity +conformsTo |1
Entitylntension Identity Type
s tarmsion | 4 InformationEntity Le galEntity

{subsets elements} Lr

+property [0..* BusinessDocument || ServiceEndpoint
Property

+value : String [0..1]

Figure 3.23: Entity diagram.

package ecosystemmodel [ServiceDiagramy
—— > AbstractSystem K——

+service +capability
0.* 1.*

i |

Service Capability

Actor

*SEIVice | |nfrastructure Service ServiceEntityKind
0.*

{subsets capability} [Ik
1..%,+ecosystemcapability ’
EcosystemCapability BusinessServiceKind

& +service
o KnowledgeRepository ComponentServiceKind
{subsets ecosystemcapability}
1 [+tknow ledgebase

KnowledgeBase [*Pase +artefactset | ArtefactSet

0.* 1.*

Figure 3.24: Service diagram.

3.6 Domain ontology model 75

package entities [@ ServiceEntityDiagramﬂ +conformsTo
1

{redefines conformsTo}

CommitmentOperation +cmodel | 0.

ServiceEntity ServiceInterface

1..* [+commitmentoperation ?

ServiceEntityKind

*

+interfaces |1..

+service

* . - -
0--_ BusinessService ComponentService
+service 1

+cmodel | 0..* +cmodel (0. InteractionScheme

{redefines conformsTo} {redefines conformsTo}

+sch 1
+conformsTo |1 +conformsTo |1 seheme

+service

+service | BysinessServiceKind | |ComponentServiceKind]
0.
+servicekind |0..* {subsets capability}

+servicerole
1.* +protocol 1 +protocol [0..*

ServiceRole {subsets capability} +protocol

ServiceProtocol
. . 0.2*
+Hransaction |1..* +conversation |1..*

BusinessTransaction | |ServiceConversation

Figure 3.25: Service entity diagram.

may be provided for facilitating collaboration establishment processes in open
service ecosystems.

Service entities are used in the meta-model for representing identifiable eco-
system elements that are utilizable for service provisioning and engineering. Ser-
vice provisioning is enabled with the notion of business services whereas service
engineering concerns are addressed with the notion of component services. The
corresponding meta-model constructs are illustrated in Figure 3.25.

A business service denotes a software-supported service that is provisioned
by an independent entity. A business service delivers the business transactions
required to fulfill the commitments of a service choreography role. Component
services are utilized in business services to implement their functionality. Com-
ponent services represent reusable service engineering assets which deliver func-
tionality defined by service protocols. A service protocol provides a definition
of component service operations and behaviour. Exemplary component services
may include services for domain-specific business protocol exchanges, e.g. bank-
ing protocols, or more technically oriented services such as key exchange proto-
cols for encryption. A component service represents reusable service engineering
assets which are utilized for realizing the interactions required by business trans-
actions.

Interactions in service ecosystems are used for exchanging information be-

76 3 A META-MODEL FOR SERVICE ECOSYSTEMS

tween ecosystem members. Information entities in the domain ontology model
are used for representing the information contents of interactions. Information
entities are described with the concepts of InformationEntityKind and Informa-
tionEntity. These abstract concepts are further classified into concepts of Busi-
nessDocumentKind and BusinessDocument, representing business document def-
initions and their instances, correspondingly. Standardised document description
languages such as XML [172] and XML-Schema [170] can be used for definition
of the structural features of an information entity kind. Semantic features for in-
formation entities can be prescribed using vocabularies such as ebXML [80] or
RosettaNet [130], common taxonomies such as North American Industry Classi-
fication System (NAICS) [106] or generic ontology description languages, such
as the OWL [167].

Service interactions are enabled by interaction endpoints that provide the nec-
essary knowledge, such as identification and location information, for establish-
ing bindings with the corresponding services. Interaction endpoints in service
ecosystems are represented by the EndpointEntityKind and EndpointEntity con-
cepts which manifest the local facilities reserved and provided by the cooperating
parties for the purpose of delivering the required interactions. These concepts
are further classified into service endpoints represented in the meta-model by
the concepts of ServiceEndpointKind and ServiceEndpoint, as illustrated in Fig-
ure 3.22 and Figure 3.23. Service endpoint kinds provide definitions for interac-
tion schemes, which declare the kinds of activities supported by the corresponding
kinds of endpoints. The notion of InteractionScheme, illustrated in Figure 3.22,
comprises a collection of ServiceActivity elements. Each ServiceActivity defines
an activity for enabling service communication by exchange of business docu-
ments; the kind of business documents that can be exchanged is specified by an
association to a BusinessDocumentKind element.

Service ecosystem members are represented in the domain ontology model by
the concept of legal entities. Legal entities include for example organizations and
individuals. A LegalEntityKind illustrated in Figure 3.22 represents the kinds of
ecosystem members that can be obligated to deliver the required functionality and
behaviour through contracts and agreements. Each legal entity kind is associated
with a set of actors defined in the service ecosystem model (see Section 3.5). The
set of actor definitions denotes the kinds of roles the corresponding kinds of legal
entities can take in service ecosystem life cycles and service choreographies. The
intensional definition for legal entity kinds comprises a set of cooperative features.
Cooperative features include different collections of policies regarding legislation,
business rules, operational policies and reputation management; cooperative fea-
tures are discussed in Section 3.7.

3.6 Domain ontology model 77

package facilies [| %) Cooperation FacilityDiagramU

Concept

+isDynamic : Boolean [1] = true

T

CooperationFacility

+Hacility
0"*

ﬁ +delivers |1
ExtraFunctionalFeature

ChannelType | |BindingType

Figure 3.26: Cooperation facility diagram.

3.6.4 Cooperation facilities

Cooperation facilities provide elements for describing the abstract platform of a
service ecosystem. These abstractions representations for interaction and com-
munication which are agnostic with respect to the actual technological platforms
(e.g. web services or other middleware platform) used. The categorization of co-
operation facilities is illustrated in Figure 3.26. As defined in the meta-model, a
cooperation facility delivers an extra-functional feature; this category of ecosys-
tem features is discussed in Section 3.7. Intensions of cooperation facilities are
defined by a set of facility features.

There are two categories of cooperation facilities: channel types and binding
types. Binding types represent interaction relationships taking place between two
or more service endpoints. A binding type provides an abstraction for declaring
interaction characteristics, such as if interaction is to be taken in a one-to-one or
one-to-many setting. Binding types provide especially an abstraction for inter-
ception mechanisms that can be utilized for adaptation (e.g. mappings in different
representation formats), exogenous coordination (e.g. notifications about specific
communication activities), or implementing enterprise integration patterns.

Channel types are used for declaring abstract communication media. A chan-
nel type intension comprises an ordered set of channel features. Each feature
represents an individual activity that must be taken for propagating the communi-
cation payload from one interaction endpoint to another, such as encryption and
decryption of the payload.

78 3 A META-MODEL FOR SERVICE ECOSYSTEMS

3.7 Intension model

The intension model provides support for continuation of viability in service eco-
systems. Support is provided with modelling constructs that enable evolution
and specialization of service ecosystem architectures. Semantic and pragmatic
interoperability aspects are addressed in the intension model. Semantic interop-
erability is especially addressed by feature declarations utilized in the intensional
definitions of ecosystem entities. Pragmatic interoperability is addressed by bind-
ing specifications and a category of bindable features. These modelling constructs
are used for declaring what kinds of features are dynamically bindable, and possi-
bly negotiable, in a service ecosystem architecture. The binding specifications let
ecosystem architects explicitly declare and control the level of dynamism during
service ecosystem design.

The constructs of the intension model for supporting ecosystem evolution and
specialization are elaborated below. After that, the feature model subsumed by
the service ecosystem intension model is described.

3.7.1 Support for ecosystem evolution and specialization

For enabling ecosystem evolution that is needed for supporting progressive busi-
ness environments, the concrete intension model elements (i.e. features, feature
interactions and user elements) are defined as specializations of two modelling
constructs. GenerizableElement and InstantiatableElement, as illustrated in Fig-
ure 3.27, enable generalization hierarchies and deep instantiation [7] of intension
model elements, correspondingly.

The service ecosystem meta-model supports natively two-level instantiation
hierarchies, which are represented in the domain ontology with EntityKind - En-
tity pairs, and in the intension model with Feature - Property pairs. Deeper in-
stantiation hierarchies can be defined by exploiting higher potencies for features
and defining conformance relationships between EntityKinds and Features. Fea-
tures and properties are elaborated in the next section where the feature model is
described.

Service ecosystem specialization is addressed in the service ecosystem meta-
model by providing means for representation of domain-specific extensions of
the meta-model. The concept intensions and ecosystem features can be extended
with domain-specific properties by exploiting the ExtendableElement-modelling
element illustrated in Figure 3.28. Each ExtendableElement may contain several
extensions represented by the element named Extension. An extension in practice
represents a property of a concept intension or an intensional element (e.g. a
feature, property or structural element as illustrated in Figure 3.27).

An extension is associated with an ExtensionDefinition which prescribes the

3.7 Intension model 79

package ecosystemintensionmodel[IntensionModeIDiagramu

M odel < IntensionModel ExtendableElement

+model |1 pr Zrl - p - =
M odelElement onceptintension M ntensional System
+intension | 0..*
? +elements | 0..* GeneralizableElement
IntensionM odel Element isAbstract : Boolean [1] = false
+elements zr
0..*

ExtendableElement K— InstantiatableElement > AbstractSystem
+potency : Integer = 1

‘ +source StructuralElement
Feature
* 5
+t t[1
T arge UserBlement
Property +sourceOf |0..*

HargetOf | FeatureInteraction [> Refationship
0..”

+value : String [0..1]

Figure 3.27: Intension model diagram.

multiplicity, containment kind, and type of the corresponding property. Extension
definitions are further classified into redefinitions, sub-setting operators, or undef-
initions. Redefinitions and sub-setting operators are similar to the corresponding
UML [111] concepts, providing means for example to redefine or refine relation-
ships defined in the domain ontology model. Undefinitions can be utilized for
rejecting properties higher in concept intension or intension model element hi-
erarchies. For example, a concept intension for a service kind may declare that
services are not associatable with specific features in the corresponding service
ecosystem.

3.7.2 Service ecosystem features

The intension model includes feature definitions that are used for defining the
intensions of domain ontology concepts. Feature definitions are modelled with
elements named Feature and Property, where the latter is considered as a kind
of feature that conforms with another feature. Features can interact with each
other; such feature interactions are domain-specific and they are described with
the concept of Featurelnteraction illustrated in Figure 3.27. In addition, the in-
tension model includes so-called structural elements, which allow modelling of
sub-structures of features and domain-specific extensions of concepts.

3 A META-MODEL FOR SERVICE ECOSYSTEMS

package ecosystemintensionmodel [ExtendabIeEementDiagramy

AbstractSystem IntensionM odel Element

T 1

+element | FytendableElement PrimitiveType

0.*
+element (1 J7
ExtensionType
+extensions [0..* .
Extension fe— C1ension +type (0.1
1
. +definition |1 0..* | +definition
0. | Extendable ElementSet - finiti
+elementOf ExtensionDefinition
J7 +valueset [0..1 1 +containment : Boolean [1] = true
+ower : Integer [1] =0
Set +definition TuPper : Integer [1] =1

T
l | |

Redefinition

SubsetDefinition

Undefinition

+redefines : String [1]

+subsets : String [1]

+undefines : String [1]

Figure 3.28: Extendable element diagram.

3.7 Intension model 81

package features [FeatureDlagramy f6ABATEE SORIMETE)

+conforn‘sTol1 +cmodel |0..*

Feature k1 Property
T +value : String [0..1]

EndpointFeature InformationFeature CooperativeFeature EngineeringFeature

" — R +feature
ServiceFeature FacilityFeature QualitativeFeature
0..* +provides |0..1

Qualitative Capability

Figure 3.29: Feature diagram.

The service ecosystem meta-model subsumes a feature model which provides
means for formalizing concept intensions, qualitative characteristics and engineer-
ing assets in service ecosystems. The categorization of service ecosystem features
identifies seven different categories, namely /) endpoint features, 2) service fea-
tures, 3) information features, 4) facility features, 5) cooperative features, 6) qual-
itative features, and 7) engineering features. The categorization is illustrated in
Figure 3.29. The feature model is partitioned to features and properties: a Prop-
erty represents a kind of a feature which conforms with another feature, and has a
literal value associated with it. The interpretation of the value is domain-specific
and depends on the semantics of the corresponding feature. A property which
conforms to a feature representing temporal availability may have a value range
consisting of week-days, for example.

Endpoint features are used in the intensional definitions of endpoint entities.
Endpoint features declare the characteristics for a kind of a interaction endpoint.
The service ecosystem meta-model defines endpoint address kinds as a specializa-
tion of endpoint features. An endpoint address kind provides a declaration of the
addressing scheme used with an endpoint kind, such as URI-based addressing °.

Service features include categories for expressing intensional definitions for
business and component services. The service ecosystem meta-model does not in-
clude any specializations for business service features. However, business service
features can be utilized for declaration of (business) domain-specific character-
istics of business services for example with industry taxonomies such as North
American Industry Classification System (NAICS) [106].

The service ecosystem meta-model includes a sub-category of component

>Uniform Resource Identifier: http://www.ietf.org/rfc/rfc2396.txt

82 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package ecosystemmodel[ServiceConversationDiagramy

T
BehaviouralPattern <}— ServiceConversation patiern

Action

ComponentServiceFeature q—‘ {redefines stages} T
1 *

+stages

ety ServiceActivity acivity *stage ConversationStage
1 0.*
+activity |0..* J7
BusinessDocumentKind ¥l StructuralElement
+document

Figure 3.30: Service conversation diagram.

service features, namely service conversations. Service conversations are be-
havioural pattern specifications which comprise a collection of conversation stages.
The ServiceConversation model constructs defined in the meta-model are illus-
trated in Figure 3.30. Each service conversation stage is associated with a service
activity, which are specified in the interaction schemes of service endpoint kinds.
The service conversation stages comprise a partially ordered set of actions.

Information features are used in intensional definitions of information entity
kinds. The service ecosystem meta-model includes an information feature special-
ization named BusinessDocumentType, which is used for representing the types of
business documents exchanged in service interactions.

Facility features define the characteristics of cooperation facilities and thus,
the abstract platform. There are two categories of facility features, namely binding
port types and channel features. Binding port types are used for specifying the
intensions of binding types. Each binding port type represents an endpoint of an
interaction relationship. A binding port type can be associated with an endpoint
entity kind (e.g. a service endpoint), or another binding port type. These different
associations of binding port types provide representations for typical interaction
and exogenous coordination patterns, correspondingly.

The intension of a channel type is declared by an ordered set of channel fea-
tures. The ordering is provided by the predecessor-association inherited from the
concept of Event. Each channel feature declared in a channel type intension is as-
sociated with a binding port type defined in a binding type. This effectively makes
the set of channel features a bipartite collection, each feature now belonging to a
set associated with one of the two binding port types.

Cooperative features represent a category of service ecosystem features that
regulate the activities of legal entities. Cooperative features essentially declare

3.7 Intension model 83

constraints that are bindable to service roles. Cooperative features are further cat-
egorized into rule bases and reputation kinds. Rule bases declare different kinds
of rule collections, namely business models, policy frameworks and legislation.

Business models are collections of business rules, which are declarative state-
ments defining or constraining some aspect of a business. Policy frameworks
comprise operational policies, or practices, that are characteristic for a certain
kind of organization or individual. Operational policies regulate the use of busi-
ness functionality and knowledge provided by a legal entity, such as an enterprise.
For example rules addressing accessibility, authorization, trust and privacy with
respect to the provided business services and information are typical examples of
organizational policies. Legislation comprises legal acts that must be obeyed by
the corresponding kind of legal entities.

Reputation kinds are utilized for describing means for evaluating the trust-
worthiness of legal entities acting in service roles. Different kinds of reputation
models or criteria, such as recommendations or ratings, can be categorized under
the concept of reputation kinds.

Cooperative features are utilized in the decision-making phase of collabora-
tion establishment processes for evaluating the feasibility of a potential service
provider. During the operation of a business network community the rules de-
clared by cooperative features are monitored dynamically. Finally at the dissolu-
tion phase of a community the reputation of community members can be updated
corresponding to the quality of their performance [85].

Cooperative features address the pragmatic interoperability issues, that is,
policies and methods of decision-making on collaborations, such as risk, busi-
ness value, trust and reputation. Again, there is need to define policies that are
commonly understandable but dependent on all business domains involved. Co-
operative properties are subject to business service owners’ autonomic intentions.
For cooperative properties to be truly usable within an open business service eco-
system, facilities for identity, trust and reputation management should also exist,
since assertions of cooperative features can not usually be validated in advance.

The category of qualitative service ecosystem features includes contractual
and extra-functional features. Contractual features represent qualitative character-
istics of business service transactions. Contractual features comprise availability
constraints and different charging styles, in addition to different models for set-
tling about the service usage. In addition, contractual features include a category
for coordination of business transactions. Contractual features are instantiated to
contractual properties. A contractual property is a declaration of a concrete value
or value constraint over some contractual feature. For example, response time
can be considered as a temporal availability feature with values declared in mil-
liseconds; now the corresponding property can be for example a declaration of the

84 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package contractualfeatures [CoordinationStructureKindDiagramu

+coordinationtransaction | gusiness Transaction

1
EontraciaalFeature +coordinatedtransaction |1
+coordinationkind
0“*
CoordinationStructureKind |0.*

Zﬁ‘ +coordinationkind

| |

CompensationKind | | TransactionCoordinationKind

Figure 3.31: Coordination structure kind diagram.

constraint “response time must be less than 200 ms”.

Coordination structure kind is a category of contractual features which pro-
vides means for specification of business transaction coordination. A coordination
structure kind associates a coordination transaction with a coordinated transac-
tion, as illustrated in Figure 3.31. The coordination transaction includes additional
business actions that are related temporally with the business actions of the coor-
dination transaction. The service ecosystem meta-model defines two categories
of coordination transaction kinds: /) compensation kinds, and 2) transaction co-
ordination kinds. Compensation kinds represent coordination structures with no
interleaving allowed between activities in coordination and coordinated transac-
tions. Typically an external trigger (rule) is provided in the coordination trans-
action to initiate the compensation transaction. Transaction coordination kinds
represent coordination structures where the actions in coordination and coordi-
nated transactions may interleave. Transaction coordination kinds can be utilized
for example to introduce a notary protocol over a business transactions defined in
a service choreography.

Extra-functional features represent qualitative characteristics of cooperation
facilities. We identify two categories of extra-functional features: interaction
features and communication features. Interaction features defines intensions of
binding types and they represent interaction characteristics, such as functionality
related to messaging and encoding. Communication features define intensions of
channel types and represent functionality such as encryption, decryption or moni-
toring of behaviour. Communication features must be introduced in a certain order
to be feasible, that is, they can have mutual ordering dependencies: information
monitoring must be executed before encryption, for example.

3.7 Intension model 85

Extra-functional features address semantic and technical interoperability is-
sues relevant for managing the dependability of the underlying communication
platform. These features are controllable by the service realisation provider by
using the computational platform. Modifying these features requires technical ad-
ministrative authority over the local communication platform, and they are closely
intertwined with the computational services administered within administrative
domains. Extra-functional features manifest static aspects of interaction and com-
munication that are selectable during service binding and collaboration contract
establishment.

Contractual features address especially the semantic interoperability concerns
related to the qualitative characteristics of business services and operations. Con-
tractual features are agreed upon during the negotiation phases of collaboration
establishment life cycles. The features and property values that have been agreed
upon negotiations are used during the operational phase of the community as mo-
nitoring criteria. If the agreed qualities are not met, compensations or other mech-
anisms for recovering from the contract breach can be used. Contractual features
are controllable by the business service provider and modifying these features re-
quires business administrative authority over the service. Moreover, for enabling
loosely coupled and dynamic business collaborations, contractual features should
be dynamically configurable in the local systems.

Finally, the service ecosystem meta-model includes a notion of engineer-
ing features utilizable for expressing the characteristics of engineering domains.
There are two kinds of engineering features available: /) method chunks, and
2) tool types. Method chunks are autonomous and coherent parts of methods [103].
Tool types are utilized for representing the kinds of engineering tools that are re-
quired for delivery of product parts in engineering domains. Method chunks and
tool types are elaborated in Section 3.8.

The feature model for service ecosystems is summarized in Table 3.1 and Ta-
ble 3.2. The tables include all the features defined in the service ecosystem meta-
model in an alphabetical order. Names of abstract features (i.e. not instantiable in
service ecosystem architecture models) are written in emphasis. The categoriza-
tion of features is represented by division of the tables. Direct generalizations of
features are defined in the second column of the table. Finally, for each feature the
corresponding property is specified in the third column of the table. The property
conforms to the corresponding feature given in the first column.

As an example, a BusinessModel is a specialization of RuleBase in the feature
category of cooperative features; the property corresponding to a business model
is represented by a conformance point. It should be noted that there are no prop-
erty level elements defined for engineering or extra-functional features. Both of
these preceding feature categories are strictly type-level concepts with no feasible

86

3 A META-MODEL FOR SERVICE ECOSYSTEMS

Feature name Generalization Instantiation
CooperativeFeature Feature CooperativeProperty
RuleBase CooperativeFeature | ConformancePoint
BusinessModel RuleBase ConformancePoint
PolicyFramework RuleBase ConformancePoint
Legislation RuleBase ConformancePoint
ReputationKind CooperativeFeature | EntityReputation
EndpointFeature Feature EndpointProperty
EndpointAddressKind EndpointFeature EndpointAddress
EngineeringFeature Feature N/A
ToolType EngineeringFeature | N/A
MethodChunk EngineeringFeature | N/A
Method MethodChunk N/A
FacilityFeature Feature FacilityProperty
BindingPortType FacilityFeature BindingPort
ChannelFeature FacilityFeature ChannelPhase

InformationFeature Feature InformationProperty

BusinessDocumentElement

BusinessDocumentType | InformationFeature

Table 3.1: Hierarchy of service ecosystem features and properties.

conformance relationships defined in the meta-model.

3.8 [Engineering model

The engineering model included in the service ecosystem meta-model defines
modelling constructs addressing especially the concerns associated with service
engineering. The modelling constructs formalize assets required for supporting
well-advised service engineering practices. Well-advised practices are supported
by providing means for specification of methods and tools required for domain-
specific service engineering, and by associating the these engineering capabilities
with business- and engineering-driven product models. The engineering model
constructs are used for specification of service ecosystem engineering knowledge.

Engineering models are formalized in the service ecosystem meta-model with
constructs illustrated in Figure 3.32. An engineering model comprises engineering
model elements, which are further categorized into engineering spaces, engineer-
ing elements and product models, product parts and product elements.

The notion of engineering space defined by the service ecosystem meta-model

3.8 Engineering model

87

CompensationKind

TransactionCoordinationKind

CoordinationStructureKind

CoordinationStructureKind

Feature name Generalization Instantiation
QualitativeFeature Feature N/A
ContractualFeature QualitativeFeature ContractualProperty
AvailabilityKind ContractualFeature Availability
Spatial AvailabilityKind AvailabilityKind SpatialAvailability
Temporal AvailabilityKind AvailabilityKind Temporal Availability
CoordinationStructureKind ContractualFeature CoordinationStructure

Compensation

TransactionCoordination

ServiceConversation

ComponentServiceFeature

SettlementModelKind ContractualFeature SettlementModel
ChargingStyle ContractualFeature Charging
ExtraFunctionalFeature QualitativeFeature N/A
InteractionFeature ExtraFunctionalFeature N/A
CommunicationFeature ExtraFunctionalFeature N/A
ServiceFeature Feature ServiceProperty
BusinessServiceFeature ServiceFeature BusinessServiceProperty
ComponentServiceFeature ServiceFeature ComponentServiceProperty

MessageExchange

Table 3.2: Hierarchy of service ecosystem features and properties (continued:
qualitative and service features).

88 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package engineeringmodel [Eg EngineeringModeIDiagramu

+model
1

Model K——EngineeringModel

{redefines elements}

+elements |0..*

M odelElement <} EngineeringM odel Element
EngineeringElement ProductModel ProductElement
0..*| +element +productmodel
i 1
{redefines element} BroductPart
1 |+engineeringspace
B EngineeringSpace
+elementOf

{redefines elementOf}

Figure 3.32: Engineering model diagram.

aligns with the concept of technical space. A technical space is “a working con-
text with a set of associated concepts, body of knowledge, tools, required skills and
possibilities” [83]. All engineering domains are associated with a corresponding
technical space comprising domain-specific best practices and tools that are ap-
plied for the engineering activities. Correspondingly, each service ecosystem do-
main is associated with an engineering space. An engineering space is formalized
in the meta-model by the modelling construct of EngineeringSpace, as illustrated
in Figure 3.32. It comprises a collection of engineering elements and is associated
with a product model.

Specializations of engineering elements include modelling constructs for spec-
ification of identifiers and tool types, methods and their parts, and binding models.
The corresponding class hierarchy is illustrated in Figure 3.33. Identifiers are used
in service ecosystem domains for resolution of service ecosystem elements, such
as entities and their features. An Identifierlype can be utilized for specification
types of identifiers, such as URI:s or subsets of thereof. An Identifier is consid-
ered as a simple string-valued element, which conforms to an identifier type. The
conformance rules with respect to syntax and semantics of identifiers and their
types are domain-dependent.

3.8 Engineering model 89

package engineeringspace [| £ EngineeringElementDiagram]
&=

AbstractSystem L |EngineeringElement

I [L [[

Identifier IdentifierType Method BindingSpecification
+value : String [1]
i ifi +conformsTo | 1
+identifier | 1 +cn’oodeJ ToolType e e —
+element | 1 {redefines conformsTo} ‘L
IdentifiedElement Capability o EngineeringCapability

Figure 3.33: Engineering element diagram.

Engineering capabilities are used in the conceptual model for service ecosys-
tem to denote engineering abilities available for ecosystem domains. They are
formalized in the service ecosystem meta-model as abstract systems and special-
ization of the capability element, as illustrated in Figure 3.34. There are two kinds
of engineering capabilities: tool types and methods. A tool type represents a ca-
pability to enact and take part in a coherent set of engineering activities. ToolType
is formalized as a collection of EngineeringActivity-elements (see Figure 3.34)
where each engineering activity is defined as a kind of activity that produces a
product element based on an optional set of product elements consumed as input.

Engineering methods are prescribed using a situational method engineering
framework based on the notion of method chunks [103]. A method chunk is
a reusable engineering asset utilizable for constructing engineering methods. A
method chunk is an autonomous and coherent part of a method supporting real-
ization of engineering activities [103]. As illustrated in Figure 3.34, a Method is
composed of one or more MethodChunk elements.

The service ecosystem meta-model formalizes engineering methods and meth-
od chunks with model elements illustrated in Figure 3.35. The constructs are
based on the situational method engineering approach introduced in [103]. How-
ever, some alternations of the original concepts have been made. Especially, in the
service ecosystem meta-model the guidelines are classified to simple and produc-
tion guidelines. The class of production guidelines includes tactical guidelines of
the original work [103], and a new class of engineering guidelines. Engineering
guidelines are associated with engineering activities, as illustrated in Figure 3.35.

A MethodChunk represents a reusable, coherent part of an engineering method.
Each method chunk comprises a single guideline and is associated with a product

90

3 A META-MODEL FOR SERVICE ECOSYSTEMS
package engineeringcapability [EngineeringCapabiIityDiagramu
AbstractSystem «—— EngineeringCapability
*ooltype I ToolType || Method +method
1 0.
Activity
+activities +chunk|1..*
‘f e L___r/MethodChunk
+activity | EngineeringActivity
0..* |*description : String [1] EngineeringFeature |4
+activity |0..*
+input [0..*
aklpul ProductPart
1

Figure 3.34: Engineering capability diagram.

package engineeringcapability [I\/IethodChunkDiagramy

+chunk
1 +guide |1

UK M\ e thodChunk *guideline [ideline
1. G L. +body : String [1]
+composition | 0..*]

StrategicGuideline |ProductionGuideline [fguideline

I.*

[
Sim ple Guideline
| +composition

|SequenceGuideIine| IOrGuideIine| |EngineeringGuideIine| |TacticaIGuideIine |
B |] |]!

+intention | 0..*! ——]
+guideline |0..*
Intention |AndGuideIine | g
+verb : String [1] +activity |1

+productpart,|1
ProductPart

*

=

+input [0..* +target | 1

+situation | 0..” .
Situation grmannent String [1] EngineeringActivityKind |ChoiceGuideIine |
+descriptor : String [1]] +intention |1 +description : String [1]

|Com positionGuideline |
[]

+situation | 1 +guideline | 1
+guideline Guideline
1 +body : String [1] ProductElement
—]

Figure 3.35: Method chunk diagram.

3.8 Engineering model 91

part. The associated product part represents the outcome of a successful enact-
ment of the method chunk.

A Guideline represents a specification of a method fragment. There are two
kinds of guidelines defined in the service ecosystem meta-model: strategic and
tactical guidelines. A StrategicGuideline provides a strategic view of the engi-
neering process by telling which intention can be achieved following which strat-
egy [103]. Strategic guidelines are further classified into sequences and alterna-
tives (AndGuideline and OrGuidelinne). Production guidelines are classified to
tactical guidelines and engineering guidelines. A tactical guideline comprises a
complex, tree-structured set of production guidelines [103]. Tactical guidelines
are classified into choices and compositions (sequences). An EngineeringGuide-
line provides means for specification engineering instructions associated with a
kind of an engineering activity. Finally, a SimpleGuideline represents a simple
declaration of methodological advice, which can be utilized in strategic guide-
lines.

Each guideline is associated with specifications for a reuse situation and an
intention. The reuse situation is formalized by the element named Situation, as
illustrated in Figure 3.35. A reuse situation specification provides a description
when the corresponding guideline is applicable, and identifies the reuse context
as an association to the appropriate product part. The intention of a guideline is
represented by the element named Intention. The intention defines what has to be
done (verb) and how it should be enacted (manner).

Product models are utilized in situational method engineering approaches [103]
for representation of the engineering artefacts. The service ecosystem meta-model
formalizes product models with modelling constructs that are illustrated in Fig-
ure 3.36. A ProductModel is considered as a set consisting of product parts. Each
ProductPart represents a coherent set of product elements which is applicable
for utilization in engineering methods. Product elements are presented with the
modelling construct named ProductElement; product elements include features,
structural elements, and feature interactions. Typically an intensional definition
of an ecosystem concept would constitute a single product part.

The service ecosystem meta-model supports control over the dynamism of
service ecosystems, and specification of abstract service platforms with so-called
binding models. The notion of abstract service platform is similar to the more
generic notion of abstract platforms described in [2]. An abstract platform defines
an ideal platform from an application developers’ point of view and declares the
platform’s characteristics [2]. Similarly, the abstract service platform defines the
characteristics of the service ecosystem platform especially from the viewpoint
of stakeholders associated with service delivery (i.e. service providers, service
consumers, and service engineers). Binding models declare the rules for encapsu-

92 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package engineeringspace [ProductModeIDiagramu

{redefines elementOf}

+elementOf
0.* {redefines element}

& +part [0..*
Set (4 ProductPart

ProductModel

+part {redefines elementOf}

0.* {redefines element}
+productelement 0..*
AbstractSystem K+—— ProductElement

lﬁ
|

Feature Featurelnteraction

Structural Element

Figure 3.36: Product model diagram.

lation of services interactions with bindable features: binding specifications pre-
scribe what kinds of features can be bound to service roles, business transactions
or service connections, for example.

The binding models are specified as part of the engineering models discussed
previously. Binding models comprise bindable elements and binding specifica-
tions, both of which are specializations of EngineeringElements illustrated in
Figure 3.33. Binding elements are classified into bindable features and bindable
properties. The category of bindable features includes cooperative and qualitative
features that were discussed in Section 3.7. Correspondingly, bindable properties
include cooperative and contractual properties.

Binding specifications are formalized in the service ecosystem meta-model
with constructs that are illustrated in Figure 3.37. Binding specifications are fur-
ther classified into feature bindings and property bindings. A FeatureBinding is
formalized as a modelling construct which associates a feature binding target with
a set of bindable features. Correspondingly, a PropertyBinding associates a prop-
erty binding target with a set of bindable properties.

Feature and property binding specifications are elaborated in Table 3.3. The
first column of the table specifies the names for the binding specifications, the
second column denotes the binding targets, and third column the category of bind-
able features or properties. The tables are divisioned with respect to the binding

3.9 Knowledge management model 93

package bindings [BindingSpecificationDiagramu

BindingSpecification BindableProperty
ZF +bindableproperty | 1..*
o +binding |0..*
FeatureBinding +binding PropertyBinding
0.
+binding |0.." 4pindablefeature | 1..* +binding (0..*
BindableFeature
+arget | 1 +target |1
FeatureBindingTarget PropertyBindingTarget

Figure 3.37: Binding specification diagram.

specification constructs. Emphasized terms denote abstract classes in the service
ecosystem meta-model. Indentation is utilized in the binding target columns for
expressing generalization hierarchies; e.g. BusinessServiceKind is a specializa-
tion of the ContractualFeatureTarget class in the meta-model. The first three
rows in Table 3.3 describe binding specifications that are specializations of the
FeatureBinding class illustrated in Figure 3.37. The latter three rows correspond
to specializations of the PropertyBinding class.

3.9 Knowledge management model

Especially in open service ecosystems, a coherent knowledge management infras-
tructure is required for enabling interoperation of dynamically formed, loosely
coupled service collaborations. Consequently, the service ecosystem meta-model
defines constructs for instrumentation of service ecosystems with domain-specific
knowledge management infrastructure. The constructs are defined in the knowl-
edge management model whose main elements are illustrated in Figure 3.38. The
knowledge management model comprises a collection of knowledge management
elements. Knowledge management elements are further classified into knowledge
repositories, knowledge item types and knowledge relationship types.

94

3 A META-MODEL FOR SERVICE ECOSYSTEMS

Binding name Binding target Bindable feature

ContractualFeatureBinding ContractualFeatureTarget ContractualFeature
BusinessServiceKind ContractualFeature
BusinessTransaction ContractualFeature

CooperativeFeatureBinding

CooperativeFeaturelarget

CooperativeFeature

ServiceRole

CooperativeFeature

ExtraFunctionalFeatureBinding

ExtraFunctionalFeatureTarget

ExtraFunctionalFeature

ContractualPropertyBinding

ServiceConnection ExtraFunctionalFeature
ContractualPropertyTarget ContractualProperty
BusinessService ContractualProperty

CooperativePropertyBinding

CooperativePropertyTarget

CooperativeProperty

LegalEntity

CooperativeProperty

Table 3.3: Binding specifications in service ecosystem meta-model.

package know ledgemanagementmodel [Know IedgeManagementModeIDiagramy

KnowledgeManagementModel ——— > Model

IdentifiedElement

Zr +elements | 0..*

+model | 1

{redefines elements}

KnowledgeM anagementElement —> M odelElement

A

KnowledgeRepository

KnowledgeRelationshipType

KnowledgeltemType

Figure 3.38: Knowledge management model diagram.

3.9 Knowledge management model 95

package repositories [ModeIRepositoryDiagramy

Digital System

T

+repository ModelRepository +repository
1 1

+container |1

+modeltype |1

ModelContainer

+container | 1
TLdels Model

0.*

ReferenceModel

Figure 3.39: Model repository diagram.

A knowledge repository is considered in the service ecosystem meta-model
as a kind of a model repository. A model repository is defined as a digital system
which comprises a model container and is associated with a reference model, as
illustrated in Figure 3.39. A ModelContainer is simply a collection of Models.
Each model included in a container of a model repository must conform to the
reference model associated with the repository. That is, the model repository,
when implemented, is responsible for validation of the conformance relationship
between the models in the container and the associated reference model.

Knowledge repositories provide the backbone for facilitating sustainable ser-
vice ecosystems. Knowledge repositories are considered as infrastructure ser-
vices that maintain the semantics of ecosystem knowledge bases. The service
ecosystem meta-model formalizes the notion of knowledge repositories with the
modelling constructs that are illustrated in Figure 3.40. Knowledge repository is
associated with a knowledge item type which is a representation of a product part.
In a typical service ecosystem each intensional definition of a concept is provided
with a product part, as well as the bindable features and properties are included in
appropriate product parts. Consequently, management of these service ecosystem
features shall be handled by corresponding knowledge repositories.

In addition to providing means for sharing knowledge about product parts,
the knowledge repositories are responsible for maintaining relationships associ-
ated with the respective product parts. These relationships are formalized in the
knowledge management model with the notion of KnowledgeRelationshipType.

96 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package repositories [;9; KnowIedgeRepositoryDiagramﬂ
ModelRepository +engineeringspace EngineeringSpace
1
ZF +container | 0.* ReferenceModel
+repository KnowledgeRepository +repository
ModelContainer 1 1 T
+repository |1 HETERIery: |1 +modeltype,T
+container |1 KnowledgeltemType
KnowledgeltemContainer +itemsets |0..* +source M +arget| +model
KnowledgeltemSet 1 0.~
+container |1 +container |1
+relationship [0..* 0..*| +sourceOf
+conformsTo, : : "
+models +relationships| " KnowledgeRelations hipType |0..
0.* 0.* +cmodel [0..* T —Ts +argetOf
n 7 +model [0..*
Knowledgeltem || KnowledgeRelations hip o/ ModelRelationship Ak
J7 0.* 0.7 ProductPart
remodel | +know ledgeitem .
Model g. +representationOf | 1
+suppliery||ge ntity Relationship
+conformsTo
1
KnowledgeltemType

Figure 3.40: Knowledge repository diagram.

3.9 Knowledge management model 97

A knowledge relationship type is considered as a binary model relationship be-
tween knowledge item types. A knowledge relationship type is a representation
of some other relationship. There are in essence two kinds of relationships that
should be formalized with knowledge relationship types: concept relationships
defined in domain ontologies and feature interactions defined in intensional mod-
els. A knowledge repository should provide means for maintaining these kinds
of relationships that are associated with the corresponding intensional definitions
and feature definitions.

A KnowledgeltemContainer maintains a set of knowledge items and knowl-
edge relationships. Knowledge items must conform to the knowledge item type,
which is considered as a reference model, of the knowledge repository. The sup-
pliers of knowledge items are identified with a reference to their identity. A
KnowledgeRelationship is a binary model relationship between knowledge items
which conforms to a knowledge relationship type maintained by the correspond-
ing knowledge repository.

While all knowledge items are included in the knowledge item container, an
additional grouping mechanism over the knowledge items is defined as a col-
lection of knowledge item sets. A KnowledgeltemSet is defined as a set which
includes knowledge items. Each knowledge item set is a representation of another
set. Especially, for each artefact set defined in the service ecosystem model a
knowledge item set must be provided. The knowledge item sets are utilized for
maintaining the different roles of knowledge items in different phases of service
ecosystem life cycles.

The semantics of service ecosystem artefacts are enforced in the knowledge
item sets of the knowledge repositories. For example, the Pilarcos service offer
repository [85] is a knowledge repository which maintains knowledge items con-
forming with the intensional definition of service offers. Correspondingly, the
Pilarcos service offer repository includes knowledge item sets representing arte-
fact sets for available services and interoperable services [143].

98

3 A META-MODEL FOR SERVICE ECOSYSTEMS

Chapter 4

Tools for model-driven service
ecosystem engineering

This chapter defines tools that enable rigorous analysis and design of service eco-
systems, and efficient service ecosystem instrumentation. The tools provide im-
plementations for an architecture framework and a model-driven methodology for
service ecosystem engineering. The architeture framework can be utilized by do-
main experts for the analysis and design of service ecosystems, as was illustrated
in Figure 1.1. The model-driven methodology for service ecosystem engineer-
ing can especially be used for infrastructure development, as was discussed in the
home-automation service ecosystem example.

The Service Ecosystem Architecture Framework (SEAF) defined in this chap-
ter facilitates rigorous service ecosystem engineering by providing means for ser-
vice ecosystem analysis and design based on explicit and formal architecture mod-
els. Explicit service ecosystem architecture models are needed for enabling effi-
cient architecture analysis and design practices, assessment of architectural prop-
erties with respect to design principles, and traceability of design decisions, for
example. The applicability of the architecture framework is evaluated with a case
study in Chapter 5.

Sustainability of service ecosystems requires efficient means for instrumen-
tation of domain-specific service ecosystems. Such means are provided by the
model-driven methodology for service ecosystem engineering developed in this
chapter. The methodology is realized with a series of model transformations that
refine and convert service ecosystem architecture models to more detailed and
technology-specific models. The methodology is implemented over the Eclipse
development platform [38]; however, the model-driven approach of the method-
ology is technology agnostic.

SEAF is defined in Section 4.1. First an overview of the architecture frame-
work is given. The overview is followed with specification of the viewpoints in-

99

100 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

cluded in the architecture framework. The model-driven methodology for service
ecosystem engineering is described in Section 4.2.

4.1 The Service Ecosystem Architecture Framework

Architectural analysis and design of complex systems can be facilitated with use
of architecture frameworks. An architecture framework “establishes a common
practice for creating, interpreting, analyzing and using architecture descriptions
within a particular domain of application or stakeholder community” [72]. The
domain of application in this context is that of service ecosystems with the stake-
holder community as identified in Chapter 2.

An architecture framework consists essentially of architecture viewpoints and
correspondence rules between the viewpoints, as well as instructions, best prac-
tices and guidelines for architecture work [72]. More specifically, an architecture
framework must provide: /) identification of one or more concerns with respect to
the system of interest, 2) identification of one or more stakeholders having those
concerns, 3) one or more architecture viewpoints that frame those concerns, and
4) any correspondence rules needed for ensuring the consistency of architectural
descriptions [72].

In this section the Service Ecosystem Architecture Framework is defined.
First an overview of the architecture framework is given in Section 4.1.1. The
overview briefly characterizes architecture viewpoints and correspondences be-
tween them. The architecture framework for service ecosystems comprises sev-
eral viewpoint specifications that are defined in Section 4.1.2. The viewpoint
specifications prescribe the kinds of models, tools and practices required for de-
scribing service ecosystem architectures. The models and tools are based on the
conceptual model and the service ecosystem meta-model defined in the previous
chapters. The UML modelling language and its extension mechanism, that is,
UML profiles, are utilized for implementing the modelling notations required by
the viewpoints.

4.1.1 Elements of the architecture framework

SEAF provides means for creating service ecosystem architecture descriptions,
and for utilizing the descriptions for instrumentation of sustainable service ecosys-
tems. The architecture framework defines seven viewpoints for specifying service
ecosystems: /) ecosystem capability viewpoint, 2) service choreography view-
point, 3) life-cycle viewpoint, 4) domain-ontology viewpoint, 5) concept intension
viewpoint, 6) engineering viewpoint, and 7) knowledge management viewpoint.
The ecosystem capability viewpoint frames the concerns of service ecosys-
tem purpose, scope and structure. The primary concepts used in this viewpoint

4.1 The Service Ecosystem Architecture Framework 101

are ecosystem capabilities, ecosystem domains, life cycles and infrastructure ser-
vices. Ecosystem capabilities define the purpose of a service ecosystem. Eco-
system domains provide means for structuring service ecosystems with different
scopes of authorization, visibility or social relationships (e.g. trust), for example.
Service ecosystem capabilities are realized with ecosystem life cycles, infrastruc-
ture services and qualitative features, as discussed in Section 2.1.

The service choreography viewpoint frames the concern of ecosystem be-
haviour. The primary concepts used in the service choreography viewpoint in-
clude service choreographies and business transactions. Service choreographies
specify service roles, their connections and business actions exchanged between
participants acting in the roles. A business transaction defines a coherent set of
business actions which achieves some business objective in the corresponding do-
main of interest.

The life-cycle viewpoint frames the concerns of ecosystem responsibilities,
knowledge propagation, and behaviour. The life-cycle viewpoint addresses es-
pecially pragmatic interoperability [6] concerns during ecosystem operation by
prescribing the behaviour expected from ecosystem members. Service ecosys-
tem responsibilities are declared by specifying domain-specific actors and their
participation in ecosystem life cycles. Knowledge propagation between life cy-
cles, their separate phases, and actors are declared by specification of artefacts and
their inter-dependencies with the previous elements. Finally, ecosystem behaviour
is declared by defining temporal dependencies between life-cycle phases.

The domain-ontology viewpoint frames the concern of establishing an ex-
plicit, domain-specific, shared conceptualization. The shared conceptualization
addresses especially semantic interoperability concerns, and sharing of interoper-
ability knowledge during ecosystem operation. The shared conceptualization is
specified by declaring concepts, concept sets and their inter-relationships. The
conceptual framework and the corresponding formalization as a domain ontology
model provides means for the definition of these domain ontologies: they define
top-level concepts such as entities, features and choreographies, which can be
extended in domain-specific ontologies (e.g. an ontology for home automation
service ecosystems).

The concept intension viewpoint frames the concerns of sharing engineering
knowledge, enabling domain-specific modelling practices, and tool interoperabil-
ity. While the domain-ontology viewpoint is utilized for prescribing concepts and
their mutual relationships, the intensional viewpoint defines the meaning of the
concepts by declaring their structural properties. For example, the intensional
definition for a service endpoint may declare that the corresponding endpoints
support REST-like [56] activities.

The engineering viewpoint frames the concern of enabling well-advised and

102 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

efficient service engineering in service ecosystems. Well-advised and efficient
service engineering is supported by prescribing reusable engineering assets and
following a situational method engineering [103] approach. Engineering assets
include definitions for product models and binding models. Product models pre-
scribe artefacts and their compositions appropriate to be utilized in service en-
gineering methods. Typically the decompositions of artefacts would follow the
structure of knowledge items, but other kinds of structuring allowing more effi-
cient engineering efforts can also be utilized. Methods are composed of method
chunks which are autonomous and coherent parts of methods [103]. Binding mod-
els declare the rules for late encapsulation of services with bindable features: bind-
ing specifications prescribe what kinds of features can be bound to service roles,
business transactions or service connections, for example.

The knowledge management viewpoint frames the concerns of enabling eco-
system knowledge management and establishing coherent service ecosystem knowl-
edge bases. Service ecosystem knowledge management is enabled by specifying
knowledge repositories responsible for maintaining sets of concepts. The pri-
mary concepts addressed in the knowledge management viewpoint are knowledge
bases, knowledge repositories, knowledge items, and knowledge item relation-
ships.

4.1.2 Viewpoint specifications

In the following, the previously described viewpoints used are formally specified.
The specifications follow the conventions laid in the ISO 42010 standard [72].
Following the conventions, an architecture viewpoint shall specify

1. one or more concerns framed by the viewpoint,
2. typical stakeholders for concerns framed by the viewpoint,
3. one or more model kinds used in the viewpoint, and

4. for each model kind, the languages, notations, conventions, modelling tech-
niques, analytical methods and/or other operations to be used for models of
this kind [72].

SEAF is implemented over a UML modelling tool. Correspondingly, the
model kinds (i.e. different modelling notations used in viewpoints) are imple-
mented using the profiling mechanism of the UML standard [113]. The UML
stereotypes providing modelling notations for the model kinds are described as
part of the viewpoint specifications.

4.1 The Service Ecosystem Architecture Framework 103

Ecosystem capability viewpoint

The ecosystem capability viewpoint enables description of service ecosystem pur-
pose, scope. The elements of the conceptual framework referred to in this view-
point are ecosystem capabilities, ecosystem domains, life cycles and infrastructure
services.

Typical stakeholders for this viewpoint include ecosystem providers and in-
frastructure providers. Ecosystem providers utilize the capability viewpoint for
design and analysis of service ecosystems. Infrastructure providers utilize the ca-
pability viewpoint for identifying functional and non-functional requirements of
infrastructure services by analysis of the expected ecosystem capabilities and life
cycles. The ecosystem capability viewpoint is summarized in Table 4.1.

Framed concerns Ecosystem purpose, scope and structure

Typical stakeholders | Ecosystem provider; Infrastructure provider

Concepts Ecosystem capabilities, domains, life cycles and in-
frastructure services.

Model kinds Ecosystem capability specification

Table 4.1: Ecosystem capability viewpoint.

The ecosystem capability viewpoint is implemented using a model kind named
Ecosystem Capability specification. The Ecosystem Capability specification model
kind is implemented over UML Structure Diagram notation [111]. The stereo-
type definitions, their correspondences with the service ecosystem meta-model
elements, and associated constraints are defined in Table 4.2.

Service choreography viewpoint

The service choreography viewpoint addresses the concern of service ecosystem
behaviour. This viewpoint is utilized for defining the kinds of service roles, busi-
ness actions and business transactions available in the service ecosystem.

Typical stakeholders associated with the service choreography viewpoint in-
clude ecosystem providers, service providers and service engineers. Ecosystem
providers use the viewpoint to declare the kinds of business transactions supported
in the ecosystem. Service providers and service engineers utilize the service
choreography viewpoint for directing business service design to conform with the
business transactions accepted by a service ecosystem. The service choreography
viewpoint is summarized in Table 4.3.

The service choreography viewpoint is implemented using four different model

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

104

Meta-model element name | Stereotype name Parent stereotype UML metaclass Constraints

Capability s_capability Element

EcosystemCapability s_ecosystemcapability s_capability Interface Owner is an ecosystem
model or domain.

EcosystemDomain s_ecosystemdomain Package Owner is an ecosystem
model or domain.

EcosystemModel s_ecosystemmodel Package

FunctionalCapability s_functionalcapability s_ecosystemcapability Interface

InfrastructureServiceKind s_infrastructureservicekind Actor

LifeCycle s_lifecycle Component

QualitativeCapability s_qualitativecapability s_ecosystemcapability Interface

N/A capability_uses_capability Dependency Source and target must be
similar kinds of capabilities
(i.e. functional or qualita-
tive).

N/A ecosystem_domain_provides Dependency From domain to capability.

N/A ecosystem_domain_requires Dependency From domain to capability.

N/A infrastructureservicekind- Association From infrastructure service

_realizes_capability to capability.
N/A s_lifecycle_realizes_capability| InterfaceRealization | From lifecycle to capability.

Table 4.2: Stereotypes for Ecosystem Capability specification (UML notation: Structure (Component) Diagram)

4.1 The Service Ecosystem Architecture Framework 105

Framed concerns Ecosystem behaviour

Typical stakeholders | Ecosystem provider; Service provider; Service engi-
neer

Concepts Service choreographies, roles and service connec-
tions; Business actions and business transactions.

Model kinds Service Choreography Structure specification; Static
/ Dynamic Choreography Behaviour specification;
Business Transaction specification.

Table 4.3: Service choreography viewpoint.

kinds: 1) Service Choreography Structure specification, 2) Static Choreography
Behaviour Specification, 3) Dynamic Choreography Behaviour Specification, and
4) Business Transaction Specification.

Service Choreography Structure specification is implemented using the UML
Composite Structure Diagram notation extended with the stereotypes defined in
Table 4.4.

The Static Choreography Behaviour specification is implemented with UML
Sequence Diagram notation which is extended with the stereotypes defined in
Table 4.5.

The Dynamic Service Choreography Behaviour specification is implemented
with UML Class Diagram notation which is extended with the stereotypes defined
in Table 4.6.

The Business Transaction specification is utilized for defining the kinds of
business transactions acceptable in a service ecosystem. This model kind is im-
plemented over UML Class Diagram notation with the stereotypes characterized
in Table 4.7. Each business transaction is modelled as a UML Interface extended
with the s_businesstransaction_interface; the action tagged value defines the set
of business actions included in the corresponding business transaction.

Service interactions define acceptable message exchanges for component ser-
vices. Static service interactions are modelled using two model kinds: /) Ser-
vice Interaction specification, and 2) Service Conversation specification. The first
model kind is used for modelling interaction schemes and service protocols uti-
lizing the schemes. The second model kind is used for modelling service conver-
sations of the service protocols.

The Service Interaction specification is implemented with UML Class Dia-
gram notation with the stereotypes described in Table 4.8.

Service conversation specifications are used for modelling service conversa-

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

106

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
ServiceChoreography s_servicechoreography Element
s_servicechoreography s_servicechoreography Class
_class
ServiceConnection s_serviceconnection Element Owner must be of kind
s_servicechoreography.
S_serviceconnection S_serviceconnection Connector Owner must be of kind
_connector s_servicechoreography
_class.
ServiceRole s_servicerole Element
s_servicerole_property s_servicerole Property UML::Property::type must

refer to a model element of
kind s_actor.

Table 4.4: Stereotypes for Service Choreography Structure specification (UML notation: Composite Structure Diagram)

107

4.1 The Service Ecosystem Architecture Framework

(uwrexger(q 2douanbag :uonejou TAN) uonedyroads noraeyeg Aydeidoaroy)) oneis 103 sadK10a191§ G4 QR

‘Kjaadosd 21042014495~
pury Jo JUSWII[
[epow B 0} I9JoI ISnu

QuII

SpuasaLdad: :2ul]ofi7: TN QuI[AJI J[OJIIIAISS ™S J[OIIIAIIS™ S
JudwATg 2]042I1ALIS™S J[OYAIIAIS
‘Kydp180240Y22210425™S
puny{ JO JUSWQR [opow uonoeIAUI
B 9Qq Jshw Joumo QU uonodrIANU[Aydei30910Yd01AIIS™S
Jonpoddajofoafif—s
pun{ JO JUSWQR [opow
ue 0] Iojar jsnuwt Ayedoid
Juaumndap::a8vssapy [euondo
UL woyouds 10 p)
-OUASy IS ST JU0§IIDSSIUL 93eSSON uonoessauIsng s a8essow uonoessauIsnq~ s
JuwArg UONODSSIUISNG ™S uonoyssaursng

SjurRIISU0))

ssepeRW AN

3d£10019)s yudaeq

dueu 3d£)0319)§

JUIBU JUIUII[[SPOU-BIIA[

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

108

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
BusinessAction s_businessaction Element
s_businessaction_class s_businessaction Class Tagged value commitment must
refer to a model element of kind
s_servicecommitment. Tagged
value transaction must refer
to a model element of kind
s_businesstransaction.
ServiceChoreography s_servicechoreography Element
s_servicechoreography s_servicechoreography Class The element must own at least
_class one model element of kind
s_businessaction_class and
s_businesstransaction.
ServiceCommitment s_servicecommitment Element
s_servicecommitment s_servicecommitment Class Tagged value connection must re-

_class

fer to a model element of kind
s_serviceconnection. Tagged val-
ues creditor and debtor must re-
fer to a model element of kind
s_servicerole. Tagged value prod-
uct must refer to a model element
of kind s_lifecycleproduct.

Table 4.6: Stereotypes for Dynamic Service Choreography specification (UML notation: Class Diagram)

109

4.1 The Service Ecosystem Architecture Framework

(uwrexder(J sSe[) :UONEBIOU TIA) uonedyrdads uonoesueli], ssaursng I0J sad4L100191S 1/ 9[QRL

"SUONOBSURT)
ssouisnq 9y} Ul papnpoul
suonoe ssoursng Ay Jurugop
uoyovssauIsng s pury Jo
SJUSWIA[® [9pPOW I0W IO QUO
0] SI9Jo1 uo1oY anJeA pag3e],

‘Kydp.180240Y22210425™S
Yum padA10019)s JUSWIQLR

[epowr © 9q Isnw JumMQ QoeJIau] UONOBSURIISSAUISN] S [90BJIJUT UOTORSURINSSIUISN] ™ S
JjuswId[H QOﬁommﬁmﬁmeGMmSmﬁlm uonoesuely ssauisng
sjureIISuo)) | sseprPW TN 3d£10019)s yuaaeq dueu 3d£)0319)§ AUIBU JUIWI[D [OPOW-BIIA

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

110

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
InteractionScheme s_interactionscheme Element Owner must be a
model element of kind
s_serviceendpointkind.
s_interactionscheme s_interactionscheme Class Tagged value activities must
_class refer to a model element of
kind s_serviceactivity.
ServiceActivity s_serviceactivity Element The owner must be a
model element of kind
s_interactionscheme.
s_serviceactivity s_serviceactivity Class Tagged value docu-
_class ment must refer to a
model element of kind
s_businessdocumentkind.
ServiceProtocol s_serviceprotocol Element The owner must be a
model element of kind
s_componentservicekind.
s_serviceprotocol s_serviceprotocol Class Tagged value scheme must

_class

refer to a model element of
kind s_interactionscheme.
Tagged value conversation
must refer to one or more
model elements of kind
S_serviceconversation.

Table 4.8: Stereotypes for Service Interaction specification (UML notation: Class Diagram)

4.1 The Service Ecosystem Architecture Framework 111

tions which are a feature of component service kinds. Static service conversations
are modelled Static Service Conversation Specification; this model kind is im-
plemented with the UML Activity Diagram notation extended with stereotypes
defined in Table 4.10. Dynamic service conversations are modelled with the Dy-
namic Service Conversation Specification model kind described in Table 4.10.

Life-cycle viewpoint

The life-cycle viewpoint is used for describing service ecosystem life cycles and
their structure, actors and their responsibilities, and required artefacts. Artefacts
are used to propagate knowledge elements between life-cycle actors, that is, eco-
system members and infrastructure services. Artefact sets are described in the
life-cycle viewpoint; they provide means for specifying the consistency rules for
the different roles of knowledge elements in ecosystem life cycles. In the im-
plementation of the architecture framework defined in this thesis the consistency
rules are not explicitly addressed. The artefact sets can be associated with de-
scriptions of the consistency rules (e.g. as comments associated with UML model
elements), and further utilized as requirements documentation for the correspond-
ing infrastructure service implementations.

Typical stakeholders associated with the life-cycle viewpoint include ecosys-
tem providers, infrastructure provider, service providers and consumers, and en-
gineering tool providers. Ecosystem providers use the life-cycle viewpoint to
declare the behaviour of the service ecosystem, as well as the propagation and
semantics of knowledge elements. Infrastructure providers utilize the life-cycle
viewpoint for guiding the design and implementation of infrastructure services.
Service providers and consumers can use the views provided by the life-cycle
viewpoint for identifying the responsibilities associated with different actors dur-
ing ecosystem operation. The life-cycle viewpoint is summarized in Table 4.11.

The life-cycle viewpoint comprises two model kinds: /) Life-cycle structure
specification, and 2) Life-cycle behaviour specification. The UML-based mod-
elling language for Life-cycle structure specification is implemented with stereo-
types described in Table 4.12; UML Use Case diagram [111] is used as the basis
for the notation. The Life-cycle structure specification provides means for de-
scribing the actors (including infrastructure services), artefacts, artefact sets, life
cycles, and their inter-dependencies in a service ecosystem.

The Life-cycle behaviour specification provides means for modelling the be-
haviour of ecosystem life cycles. Each life cycle comprises one or more life-cycle
phases with temporal dependencies. The Life-cycle behaviour specification is im-
plemented with the stereotypes defined in Table 4.13. The notation is based on
the UML State Machine diagram [111].

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

112

Meta-model element name | Stereotype name Parent stereotype UML metaclass Constraints
ServiceConversation S_serviceconversation Element
S_serviceconversation S_serviceconversation Activity The owner must be a model
_activity element stereotyped with
s_serviceprotocol.
ConversationStage s_conversationstage Element
s_conversationstage s_conversationstage CallOperationAction | The operation of the Cal-

_calloperationaction

10perationAction must be an
Operation stereotyped with
s_serviceactivity in the Inter-
face that is realized by the
owner of this Activity.

Table 4.9: Stereotypes for Static Service Conversation specification (UML notation: Activity Diagram)

113

4.1 The Service Ecosystem Architecture Framework

(uwrex3er(sser)

:UONBIOU IA[]) UONEBIYIAdS UONBSIIAUO)) IITAIRS dTuIRUA(J 10J $adA100191S 0T ¥ 9IqRL

“£11419D 23144258
pury JO JUSWI[[opOW & 0} 13 Sse[o
-a13snut £714270p aneA pag3e], sse[D 931)SUONIBSIOAUOD™ S 93BISUONBSISAUOD™ S
Juowog 93BISUONBSIOAUOD ™S 93BISUONEBSIOAUOD)
"SSD]OT2SDISUOIDSAIAUOI ™S
puny Jo JUOWd[@ [opowl ®
0] IJJI IsSnW §23Dis IN[BA
pa33ey, *1020304d2214.12S™ S
Yum padA10019)s JUSWIQLR Sse[o”
[epoW © 9q ISNUW ISUMO Y], sse[D UOIIBSIOAUOIIDIAIIS™ S UOIIBSIOAUOIIDIAIIS™ S
Juowo[g UOIIBSIOAUOIIDIAIIS ™S UOIIBSIOAUODIIAIS
sjureIISuo)) | ssepePW TN 3d£10019)s yuaaeq dueu 3d£)0319)§ AUIBU JUIWI[D [OPOW-BIIA

114 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

Framed concerns Ecosystem responsibilities; knowledge propagation;
pragmatic interoperability.

Typical stakeholders | Ecosystem provider; Infrastructure provider; Service
provider; Service consumer

Concepts Life cycles, actors, artefacts, artefact sets.

Model kinds Life-cycle structure specification; Life-cycle be-
haviour specification

Table 4.11: Life-cycle viewpoint.

Domain-ontology viewpoint

The domain-ontology viewpoint is utilized for defining service ecosystem-specific
concepts and their relationships. Service ecosystem domain ontologies are based
on the the conceptual model and the domain ontology model described in previ-
ous chapters. The domain ontologies extend on the concepts and model elements
prescribed in the domain ontology model. The domain ontologies especially serve
the purpose of establishing semantic interoperability (see Section 2.2) in service
ecosystems. Domain ontologies provide unified vocabulary in service ecosys-
tems, as well as define consistency rules to be maintained in the (distributed)
ecosystem knowledge base. Especially, the domain ontologies enable sharing of
interoperability knowledge: service ecosystem-specific domain ontologies enable
knowledge sharing about service compatibility with other services and their ap-
plicability with respect to different models of collaboration, for example.

Typical stakeholders utilizing the domain-ontology viewpoint include ecosys-
tem providers, infrastructure providers, service providers and consumers, as well
as service engineers. Ecosystem providers typically define the ecosystem domain
ontologies. Infrastructure providers use these definitions to implement infrastruc-
ture services which maintain the service ecosystem knowledge bases and establish
semantic interoperability in the service ecosystem. Service providers and con-
sumers use the domain ontologies as a foundation for maintaining and sharing
interoperability knowledge during ecosystem operation.

Concepts used in the definition of domain ontologies include ecosystem con-
cepts, concept sets, and concept relationships. A domain-ontology for service
ecosystems must provide definitions for at least service liaisons, service con-
tracts and service offers. Domain ontologies are defined using the model kind of
Domain-ontology specification. The domain-ontology viewpoint is summarized
in Table 4.1.2.

The Domain-ontology specification model kind is implemented over UML

115

4.1 The Service Ecosystem Architecture Framework

(wreager(] 9se)) 9s() :UONLBIOU A) Uoneoyrdads axmonns d[AI-aJ1T 10§ $ad£K103191S 71 QIqRL
195 JoBJoIE
10 108J9)e 0) oseyd o[0kdo9)I] ® WOl UONBIDOSS Y ndino—oseydo[oLo9)1] V/N
195 JoBJoIE
10 108J0)e JOo oseyd o[0A09JI] B WOl UONBIDOSS Y nduraseydo[oAo9y1] V/N
-aseyd 9[9499]1] ® 0] 10J0® UB WOI] UONBIDOSS Y oseyd™ sojedronted1ojo® V/N
JUSWIRH jonpo1daoKkooJi[s 1ompo.1ga1o£0afi7
ase)asN aseydookooyi| s 9seoasn aseydo[oAo9JI[s
Juowd[g aseydookooyi| s SBYJO[OK09J1]
jusuodwo) Q[OKIJI[S Juauodwod 9[OKIJI[S
JuowId[g Q[OKIJI[S Q[oKo9J1]
*12810Df214D”S 10 UIDULOPUIIISAS0II™S
‘lapouiwiajs£s02a~s pury Jo SI IdumQ a3eyoeq | 1onpordo[okoos J9S)ORJIIILS 19S108JY
*12S10Df214D”S 10 UIDULOPUIIISAS0II™S
‘opoutuais{s022=s pury] Jo SI IUM(Q) sse[) | 1onpoido[okooyis 10JOlIETS JoBJOLY
1010V I0308”S I0)0810)08”S
1010V JOJoR™S | JO)OB PUIYOIIAIISAINIONISRIJUT S
doedsowreN I0308”S 1010V
sjurex)suo)) | ssepepw A | 2d£)0d19)s judaeg dwieu 3d£)0313)§ | dWIBU JUIWI[I [PPOW-BIIA]

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

116

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
Lifecycle s_lifecycle Namespace
s_lifecycle_statemachine s_lifecycle StateMachine Owner must be a model
element stereotyped with
s_lifecycle_component.
LifecyclePhase s_lifecyclephase Element
s_lifecyclephase_initialnode s_lifecyclephase InitialNode
s_lifecyclephase_pseudostate | s_lifecyclephase Pseudostate
s_lifecyclephase_state s_lifecyclephase State
N/A lifecycle_transition Transition From a model element of kind

s_lifecyclephase to another.

Table 4.13: Stereotypes for Life-cycle behaviour specification (UML notation: State Machine Diagram)

4.1 The Service Ecosystem Architecture Framework 117

Framed concerns Establishing a domain-specific shared conceptualiza-
tion; semantic interoperability; sharing interoperabil-
ity knowledge.

Typical stakeholders | Ecosystem provider; Infrastructure provider; Service
provider; Service consumer

Concepts Ecosystem concepts, concept sets, and concept rela-
tionships.
Model kinds Domain-ontology specification

Table 4.14: Domain-ontology viewpoint.

Class Diagram notation. The stereotype definitions associated with the Domain-
ontology specification are summarized in Table 4.15 and Table 4.16. In the sum-
mary tables the top level of the generalization hierarchy for s_concept stereotype
is described. Each model element defined in the service ecosystem meta-model
is represented in the model kind as a UML Stereotype with tag definitions re-
flecting the meta-model structure. Relationships between concepts defined in the
service ecosystem meta-model are obligatory and represented as tag definitions
in the corresponding stereotypes. Reflecting the service ecosystem meta-model,
the stereotype s_concept has a boolean tag definition named isDynamic which
declares if the corresponding concept (e.g. entity kind or service contract) is a
dynamic (i.e. a template to be instantiated during ecosystem operation) or a static
concept.

Each concept defined with the Domain-ontology viewpoint must be a repre-
sentation of (a tagged value in the stereotypes) of at least on life-cycle product
(i.e. artefact or artefact set).

Concept intension viewpoint

The concept intension viewpoint is used for providing the intensional definitions
of concepts defined in a service ecosystem domain-ontology. The intensional def-
initions are specially used for sharing engineering knowledge, enabling domain-
specific modelling practices, and for facilitating engineering tool interoperabil-
ity. The service ecosystem meta-model defined in this thesis provides templates
for the definitions of concept intensions. The pre-defined templates can be ex-
tended in an additive manner using the concept intension viewpoint. Conse-
quently, the concept intension viewpoint facilitates model extension [11] within a
well-defined, restricted part of the service ecosystem meta-model. The intensional
definitions prescribe abstract syntaxes for a family of domain-specific languages,

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

118

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints

Concept s_concept Element Boolean tagged value isDynamic
has a default value of false. The
owner must be a model element of
kind s_domainontology.

s_concept_class s_concept Class Optional tagged value representa-

tionOf must refer to a model ele-
ment of kind s_artefact.

ConceptRelationship s_conceptrelationship Association Applicable only between sub-
types of s_concept stereotype.

ConceptSet s_conceptset s_concept Package Optional tagged value representa-
tionOf must refer to a model ele-
ment of kind s_artefactset. Each
artefact set and their hierarchies
must be provided with a corre-
sponding concept sets and their
hierarchies.

CooperationFacility s_cooperationfacility s_concept_class Element

DomainConcept s_domainconcept s_concept_class Class

DomainOntology s_domainontology Package Owner must be a model element
of kind s_ecosystemmodel.

Entity s_entity s_concept_class Element

EntityKind s_entitykind s_concept_class Element

Table 4.15: Stereotypes for Domain-ontology specification (UML notation: Class Diagram)

119

4.1 The Service Ecosystem Architecture Framework

(panunuod ‘weIdeI(] SSB[)) :UOnEIou TIAM)) uonedyrdads A3o1ojuo-urewo(] 103 sadA102191S (91 1 9[qRL

*$SD2”1d20U0J™S PUTY JO SIUSW
-9[0 [opowr udamjaq orqeorddy

UOIBIO0SS Y

drysuonefor—
1doouoo—s

V/IN

*$SD)OT1d20U0I”S pury
-qns Jo puny Je[Iwis SurAey S}uSW
-9[0 [opouwr udamjaq oqeorddy

UOIIRZI[BIQUAL)

UONBZI[BIOUT
1doouoo—s

V/IN

sse[D

sse[o 1doouoo”s

[QUUBYOIIIIAISS™ S

[oUUBY)IOTAIDS

*901442SSSIUISNG ™S
ym padA)oa1d)s juowoe [opowr
© 0] I9JI ISNUWI 2014425 QNJBA
pas3ey, CmuawSa)—s Ym padA)
-00I0)S JUSWI[® [opowW B 0} I9f
-1 isnwt J4apiaosd onjea pagTel,

sse[D

sse[o 1doouoo”s

JOJJOIIIAISS ™S

I9JJOIIAIS

]oUUDYIIIINLIS™S
pun{ JO SJUSWQR [opouwl QJoul
I0 QUO 0} I9Jo1 ISnul JUUDYD
onfea peSSe], UOSINIIIALIS”S
pun{ Jo JUSWOQ [opow B 0} I9J
-9I jsnwl uosipy onfeA pagTel,

sse[D

sse[o1doouoo”s

JORIJUOIIITAIIS™ S

JOBIUO)IOIAIOS

*asp2asn asvydajoLafi)”s
pun| JO JUSWIO [9poW B 0] I9J
-o1 jsnw aspyd onjea pagTel,

sse[D

sse[o1doouoo”s

UOSTRI[QOTAISS™ S

UOSIBITOIIAIS

sjureaysuo))

ssepeRW AN

3d£10019)s yuaaeq

Juieu 3d£)03139)§

JUIRU JUIUII[[APOUW-BIIA[

120 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

thus providing means for developing corresponding domain-specific modelling
infrastructures. Moreover, the set of concept intensions serves enables tool in-
teroperability: mappings to these unifying meta-models can be utilized to bridge
organization and domain specific modelling notations and languages.

Typical stakeholders associated with the concept intension viewpoint include
ecosystem providers, engineering tool providers, and service providers. Ecosys-
tem providers declare the meaning of ecosystem concepts by providing their inten-
sional definitions. Service engineers can utilize the concept intension viewpoint
to extract meta-models enabling model-driven production of ecosystem-specific
services. Finally, engineering tool providers can utilize this viewpoint for iden-
tifying relationships between different linguistic elements, and requirements for
integrating service engineering tools with the ecosystem infrastructure (e.g. life-
cycle support and bridging modelling languages).

The primary concepts involved in this viewpoint include features and feature
interactions. Concept intensions are defined in this conceptual and architecture
framework with features. The feature definitions as well as declarations of rela-
tionships between different features, or feature interactions, are defined in using
the concept intension viewpoint defined in Table 4.17.

Framed concerns Enabling domain-specific modelling practices; uti-
lization of engineering knowledge; tool interoperabil-

1ty.

Typical stakeholders | Ecosystem provider; Service engineer; Engineering
tool provider

Concepts Features and feature interactions.

Model kinds Feature specification

Table 4.17: Concept intension viewpoint.

The Concept Intension specification model kind is implemented over UML
Class Diagram notation with the stereotypes defined in Table 4.18. Only the upper
layer of the generalization hierarchy for the stereotypes is described in Table 4.18
and Table 4.19. For each concept defined in the domain-ontology a corresponding
intension is provided as a UML Class or UML Enumeration (see [111]). Using
this notation hierarchies of features can be declared. Feature generalization is
utilized for specifying structural variations of concept intensions, €.g. sequence,
choice or primitive types for business document types. UML Classes are utilized
for defining dynamic features of concepts while UML Enumerations are used for
defining static features.

4.1 The Service Ecosystem Architecture Framework 121

All features defined with the Feature specification model kind must be owned
by a model element stereotyped with a subtype of s_concept_class. Only features
that are compatible with the consistency rules declared by the service ecosystem
meta-model can be provided for a concept; for example, endpoint features are
acceptable as elements owned by a model element representing an endpoint kind.

Engineering viewpoint

The engineering viewpoint addresses the concerns of enabling efficient service
engineering, utilization of engineering knowledge, and tool interoperability. This
viewpoint is used especially by engineering tool providers and service engineers
for enabling their operation, as it describes the methodological elements available
in the service ecosystem. The primary concepts used in the engineering viewpoint
include engineering spaces, product models, binding models and engineering ca-
pabilities.

Engineering spaces are used for declaring engineering elements utilized in the
service ecosystem for enabling service engineering practices. Engineering ele-
ments represent technical artefacts that are needed for instrumenting sharing of
engineering knowledge and tool interoperability. In the current service ecosystem
meta-model and the architecture framework, engineering elements include defini-
tions for the types of identifiers and tools that are utilized in the service ecosystem.

Product models define engineering artefacts used as inputs and outputs of en-
gineering activities. Typically the composition of engineering artefacts align with
the ecosystem knowledge element structures, but other decompositions can also
be utilized if required by the engineering methods. A product model comprises
products parts (e.g. a meta-model representing business services), which again
are composed of product elements (e.g. model elements of the business service
meta-model). The concepts of product models, product parts and product ele-
ments as methodological artefacts are based on an approach of situational method
engineering [103].

Bindings models prescribe what kinds of features are available for dynamic
binding in engineering spaces associated with ecosystem domains. A binding
model declares binding specifications which associate feature binding targets (e.g.
service roles or business transactions) with appropriate bindable features (e.g. co-
operative or contractual features).

Engineering methods are prescribed using a situational method engineering
framework based on the notion of method chunks [103]. A method chunk is
a reusable engineering asset utilizable for constructing engineering methods. A
method chunk is an autonomous and coherent part of a method supporting real-
ization of engineering activities [103].

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

122

Meta-model element name

Stereotype name

Parent stereotype

UML metaclass

Constraints

Feature s_feature Element The owner of the feature must
of a model element stereotyped
with s_concept_class.

s_featuretype s_feature Element

s_featuretype_class s_featuretype Class

s_featuretype s_featuretype Enumeration

_enumeration

s_featuretype EnumerationLiteral | Owner must be a

_enumerationliteral model element of kind
s_featuretype_enumeration.

Property S_property s_feature Element Tagged value conformsTo must
refer to a model element of kind
s_featuretype.

s_property_class S_property Class

S_property S_property Enumeration

_enumeration

S_property EnumerationLiteral | Owner must be a model element
|055§0HN¢OB:HOHN~ of kind s_property_enumeration.

Table 4.18: Stereotypes for Feature specification (UML notation: Class Diagram)

123

4.1 The Service Ecosystem Architecture Framework

(ponunuod

‘wreager(J SSe[) :uoneou A N) uoneosygroads axmea 10§ sadA10a191S (611 QIqRL

*(sad&) yuownoop ssoursnq ‘3-9)
sad£)0019)s [EOTIUAPT YIIM SIUSW
-9[0 Jopow UAIMISq ATUO I[qEd

-ddy -atmpaf~s pury jo sjuowr uonezIeIduas
-9[0 Tepowr ulamlaq [qeoriddy UOIIBZI[BIUIL) QIMedJ” S V/N
‘24npafs pury
JO SJUSWIJLR [9pOW 0} JJJAI JSnu SSe[o
1234p) pue 224n0s sonea 3FeJ, sse[) UonoRIAUIAINIB] S UOTIORIUISINIB] S
‘241p2fs Puy JO SJUIWI[UOTRIO0SSE
[epowr woomjaq Auo o[qeorddy UoneIOSSY UOTIORIIUIAINIRIJ S UOTIORIDIUISIMBJ S
JuowA[yg UOTIORIIUIAINIRIJ S UOTIORIUIAINIBI]
“UONYDAIUNUI ™~
JU2W2]24951” S PUTY JO [eI9)I[UOT)RIOWINUD
JUQWIQL [9pOW B 3q Isnul UM | [eldylIuonerswrnuyg JUSWId[AIasSN™ S
uoneruNU
uonerownug JUSWId[AIasSN™ S JUSWId[AIasSN™ S
SSe[o™
sse[) JUSWId[AIasSN™ S JUSWId[AIasSN™ S
JuoWA[g JUQWID[QIAST™ S JUSWIA[HIAS)
SjureIISuU0)) ssepoelRwW TIAIN 3d£10019)s yuaaeq duieu 3d£)0319)§ AUIBU JUIWI[D [OPOW-BIIIA

124 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

The engineering viewpoint is implemented with four model kinds: /) En-
gineering space specification, 2) Product model specification, 3) Binding model
specification, and 4) Engineering method specification. The engineering view-
point is summarized in Table 4.20.

Framed concerns Enabling efficient service engineering; instrumenting
utilization of engineering knowledge; tool interoper-
ability.

Typical stakeholders | Engineering tool provider; Service Engineer

Concepts Engineering spaces, product models, binding models,
engineering methods

Model kinds Engineering space specification; Product model spec-
ification; Binding model specification; Engineering
method specification

Table 4.20: Engineering viewpoint.

The Engineering space specification model kind is implemented using the
UML Class Diagram notation extended with the stereotypes defined in Table 4.21.

The Product model specification model kind is implemented using the UML
Class diagram notation extended with the stereotypes defined in Table 4.22.

The Binding model specification model kind is implemented with the UML
Class diagram notation extended with the stereotypes defined in Table 4.23, Ta-
ble 4.24 and Table 4.25.

The Engineering method specification model kind is implemented over the
UML Class Diagram notation with the stereotypes defined in Table 4.26 and Ta-
ble 4.27.

Knowledge management viewpoint

The knowledge management viewpoint is utilized for enabling management and
sharing of knowledge in a service ecosystem. The knowledge management view-
point is used for defining the knowledge repositories, knowledge items and knowl-
edge item sets required for maintaining the knowledge base for the service eco-
system. Knowledge repositories represent infrastructure services that maintain
the consistency of the domain-ontology and validate correctness of intensional
descriptions (e.g. service descriptions) to be published in the service ecosystem.
Knowledge items and knowledge item sets provide means for encoding and
managing the different roles of knowledge elements in service ecosystem life cy-
cles, and relationships between their ontological and intensional interpretations.

125

4.1 The Service Ecosystem Architecture Framework

(wrexder(J Sse[) :uoneIou TAN) uonedyroads aoeds Sunesurduy 103 sadA102191S (171 QI9RL
200dsSu1122u13UI” S
puny{ JO JUSWQR [opowr
1 9q jsnuw RumQ QoBJIU] odK1j007”s adA 00
200dsSu1122u13UI”S
puny{ JO JUSWQR [opowr
e 9q jsnur RumQ sse[D adAuaynuapr s adA 1 I0ynuapy
"A1An1o®R
Suneouidus ay3 Jo uondrrosop
[ENJX3) B SUIBIUOD JUIBIISUOD
UL, A11a13003UI20uUISUITS
puny{ JO JUSWQR [opowr uonduosap™
B 9Qq Jshw Joumo QU JUIeIISUO)) A1Anoe3uroauI3uas V/N
‘uondii1osap™
£1417903uL122U13U2™ S puLy
JO JUSWA[UB UMO ISn uon
-exado oy, yuawajazonpold s
puny jo 2q jisnu Iojowrered
ndino oy, ‘ruswzjajonpoid-s
puny{ Jo 9q Jsnw SId0
-wered ndur [euondg
‘2df3jo0oj”s pury JO JUIWI
[epow B 9q ISnW IoUM(Q uonerado A1Anoe3uroauI3ua”s A1Aanoy3uneourug
‘Japoutgonpoid s pury JO JUSW
-9[9 ® }IM PIIBIOOSSE 2q SN
jopoungonposd onfea pa33e], a3eyoed oeds3uroouISua~s soedg3urioauiuyg
sjureI)Suo)) | ssepePW AN 3d£10019)s yuaaeq Jueu 3d£)0319)§ JUIBU JUIWI[d [OPOW-BIIIA

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

126

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints

ProductModel s_productmodel Package

ProductPart s_productpart Class The owner must be a
model element of kind
s_productmodel. The
tagged value productele-
ment must refer to one or
more model elements of kinds
s_productelement.

ProductElement s_productelement Element

Table 4.22: Stereotypes for Product model specification (UML notation: Class Diagram)

127

4.1 The Service Ecosystem Architecture Framework

(uwrex3er(q sse[) :uoneIou AN uonedyroads jopow Surpurg 10j sadA102191S (€71 J[qR],

JUSWIA[H QINJBIJI[qepUIq” S INjeaJeuonOUNJRNXa” S 2UNIDA] [PUOIUN JDAIXT]
JUSWIA[H QINJBIJI[qepUIq” S QINJBIJENIORNUOD ™S NIV [PNIODAIUO))
JUSWIA[H INJBIJO[qepUIq” S aImeajoaneradoos™s 24nIpa.J241p42doo))
oedsoweN 19318)10IN)BOJ[RUONOUNJRIIX S UOT}OUUOIIIATIS ™S UOJIIUUO) II1ALIS
JUSWIA[H 19318)10INJBOJ[RUONOUNJRIIX™S | 184D 24NID] [DUOIUN JDAIXT
JuwATg 19318)10IN)BAJ[BNIOBIUOD S QITAIISSSAUISNG™ S 2014425 SSPUISNG
oedsoweN 19318)10IN)BOJ[BNIOBIUOD S uornoBSuULIISSAUISNG™ S UONIDSUDL]SSIUISNG
JUSWIA[H 19318)10IN)BAJ[BNIOBIUOD S J23AD] 24NV IDNIODAIUO))
JUSWII[H 1o31e10INIBoJoANRIAd00 ™S J[OIIITAIIS ™S 2]0y2214495
JUSWId[H 1o31e)10INIBoJoANRIad00 ™S 12840 [241102, 241D12d00))
‘Knjiqodpoaanyvipnb™s pury
JO JuswR[o [opolr & 0O} J9jal jsnuu
sap1aoad anpea pag3e) reuondo sy, JuoWwA[yg QINJBIJI[qRpUIq” S 2AnInaJa1qupulg
JUSWIS[H uonvoyivadssuipuiq—s SurpurqoImesy s SuIpuIgaAnIna]
*200ds 3u1429U18U7”S PUTY JO JUdW
-9[3 [9powW B 3q ISNW I3UMO Y], JUSWIS[H uoneoywads3urpurq—s uonvoYioadSuipulg
sse[oe)aw
sjurexjsuo)) TINN 3d £)0919)s Judaeg Jueu 3d£)0319)§ AUIRU JUIWI[D [SPOW-BIIA

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

128

Meta-model element name

Stereotype name

Parent stereotype

UML
metaclass

Constraints

CooperativeFeatureBinding

s_cooperativefeaturebinding

s_featurebinding

Class

Tagged value feature must re-
fer model elements of kind
s_cooperativefeature. Tagged
value farget must refer to a
s_cooperativefeaturetarget.

ContractualFeatureBinding

s_contractualfeaturebinding

s_featurebinding

Class

Tagged value feature must
model elements of kind
s_contractualfeature. Tagged
value farget must refer to a
s_contractualfeaturetarget.

ExtraFunctional-
FeatureBinding

s_extrafunctional-
featurebinding

s_featurebinding

Class

Tagged value feature must re-
fer to model elements of kind
s_extrafunctionalfeature. Tagged
value farget must refer to a
s_extrafunctionalfeaturetarget.

Table 4.24: Stereotypes for Binding model specification (UML notation: Class Diagram); continued

129

4.1 The Service Ecosystem Architecture Framework

ponunuod ‘{(WeI3del(J SSB[)) :UOnEIoU TIA) uonedyrdads [opow Surpurq 103 sadA102191S (G717 9[QRL

*12840163412d04dIpNIODLJUODTS
pun| JO JUSW [9pOoW B 0] I9J
-1 Isnw j284pj onjea pa33el,
‘Quadosdipniovaguod™s pury Jo
JUQWIA[O [9POW UO JSBI[JB 0 I9J

-a1 jsnwr iadosd anfea pagser, sse[D Surpuiqormes)—s | JurpuigAiredoidenioenuosTs SurpurgAyadoidrenioenuo))
128401 112d0o1doayp.12doos™s
PuR{ JO JUSWIQR [dpowW B 0) IJJ
-1 Isnw j284vj onjea pa33el,
‘(j42dosdaarniodood™s pury Jo
JUlWII[e [opowW AUO jSed[e 0] I3)

-a1 jsnwr adosd anfea pagser, sse[D SurpuiqAyadord™s | SurpuiqAlredordoanerodoos™s SurpurgAyradoigeaneradoo)

sse[D 1o31e1k110doadenyoenuoos Q01ATSSSaUISNG ™ S QIATGSSauIsNg

JUSWIS[H 1o31e1k110doadenyoenuooTs J234p] K142doa g onion.sjuo))

Juowo[g 1o31e1k110doidoanerodooo™s Amuore3or s Amnugeso|

JUSWISLH 1o31e1k110doidoanerodooo™s 12841 42doagaanniadoo))

JudwATg Kyadoxdojqepurqs Kadoidremoenuoo™s Gaadot Jipnovauo))

JudwATg Kadoxdojqepurqs Kradoadoanieradoos™s Guadoigaayviadoo))

JudwATg Kradoxdarqepurq—s Quadoigajqopurg

JuwATg uonvoyioadssuipuiq—s SurpuiqAedordTs Suipmgadosd
*20pdsSuli22u13us™s pury JO JudW

-39 [9pOUI B dq ISNW IAUMO 3], Juowo[g uoneoyoadsgurpuiq s uonvoYioadSuipulg

sjurensuo)) | SSeRBPW TIAN 3d£10019)s yudaeq dueu 3d£)0319)§ dUIBU JUIWI[A [PPOIA-BIPIN

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

130

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints

MethodChunk s_methodchunk Class Tagged value guide must re-
fer to a model element of kind
s_guideline. Tagged value pro-
ductpart must refer to a model el-
ement of kind s_productpart.

Method s_method s_methodchunk Class Tagged value chunk must refer
to at least one element of kind
s_methodchunk.

Guideline s_guideline Element The element must own ex-
actly two UML::Constraint
elements of kind s_intention and
s_situation. Tagged value body of
type UML::String must provide
a generic description for the
guideline.

StrategicGuideline s_strategicguideline s_guideline Element Tagged value guideline must refer
to one or more model elements of
kind s_guideline.

SequenceGuideline s_sequenceguideline s_strategicguideline Class

AndGuideline s_andguideline s_strategicguideline Class

OrGuideline s_orguideline s_strategicguideline Class

TacticalGuideline s_tacticalguideline s_guideline Element Tagged value guideline must refer
to one or more model elements of
kind s_guideline.

CompositionGuideline s_compositionguideline s_tacticalguideline Class

ChoiceGuideline s_choiceguideline s_tacticalguideline Class

Table 4.26: Stereotypes for Engineering method specification (UML notation: Class Diagram)

131

4.1 The Service Ecosystem Architecture Framework

ponunuod ‘{(wreider(J SSe[) :uoneiou TA) uoneoygroads poyow Suresurduy 10j sadKA10a191S L7 QIR

‘Javdionposd=—s
pun{ JO SJUSWQR [opouwl Jou
Jo 019Z 0} SI9Ja1 Jndur onjea
peS3e], ‘uonemIs s, oUIAPING oY)
Jo 403diiosap o) se pojardiojur
ST JUIBNSUOD AU} JO UOmeoyIoads
QUL ‘ounepndTs purny| Jo judw
-9[0 [opowWl B 2q ISnW JoUumQ

JUIeI}ISUO))

uonemiIs s

uonenIs

‘Javdionposd=—s
puD| JO JUSWIA[Q [OPOW & 0} I9JaI
ysnu 12843 anfea pagse], [opow
BJOW QISAS00Q Q1 Ul paulap
se ‘uoneoyads o) Jo Jouupw
a1 se uoneonroads pue nonuAUL
Ay Jo quaa gy se pajrdioyur St
QWeN JUIRISUOD Y} IO POpIA
-oxd oq isnw woneoyads pue
owreu yog ‘ounopms pury jo
JUSWILA [9pOW B 3q ISNUW IUMQ)

JUIeI}ISUO))

uonuxur s

uonuAuUJ

*£71413008UL122UISUI ™S
pury Jo JUOWI [opowW B 0) I9f
-o1 Jsnw A714120v onfea pagTel,

sse[D

aulopmss

aurpepm3orduis—s

aurpepmpo[durg

sjureaysuo))

ssepeW AN

3d£10019)s yuaaeq

dueu 3d£)0319)§

JUIRU JUIUII[[SPOU-BIIA]

132 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

For example, in the Pilarcos service ecosystem [87, 85, 86] a business network
model (BNM) has different roles in distinct phases of the eContract establishment
life cycle: at the beginning of the population phase it serves as a contract template,
after successful population as a contract proposal, and after successful negotiation
as a community contract. The intensional meaning of the BNM is similar during
all these roles, however, the consistency rules and interpretation about the role of
the BNM differs in all these phases. It is the responsibility of knowledge reposito-
ries to provide the means for establishing coherent service ecosystem knowledge
bases which especially address the multiple interpretations of knowledge elements
in ecosystem life cycles. The knowledge management viewpoint is defined in Ta-
ble 4.1.2.

Framed concerns Enabling ecosystem knowledge management and
sharing; establishing coherent service ecosystem
knowledge bases

Typical stakeholders | Ecosystem provider; Infrastructure provider

Concepts Knowledge repositories, knowledge items and their
types, knowledge item sets, knowledge item relation-
ships

Model kinds Knowledge repository specification; Knowledge item
specification

Table 4.28: Knowledge management viewpoint.

The knowledge management viewpoint is implemented with two model kinds:
1) Knowledge repository specification, 2) Knowledge item specification.

The Knowledge repository specification model kind is described in Table 4.29.
Each knowledge repository provides a representation of a domain-ontology con-
cept and is responsible for maintaining the consistency rules associated with the
corresponding concept sets. A knowledge repository may implement one or more
concept sets and does not have to represent all the concept sets associated with a
domain-ontology concept. The semantics of a concept can be distributed between
a set of knowledge repositories, one repository for each concept set definition, for
example. Such distribution of concept semantics is useful in situations where the
role of the corresponding concept in ecosystem life cycles implies different poli-
cies with respect to trust or privacy, for example. However, all concept sets defined
in a service ecosystem domain-ontology must be provided with knowledge item
set representations.

133

4.1 The Service Ecosystem Architecture Framework

(uwrex3er(J sse[) :uoneIou TA) uonedyroads Aroyrsodar a3pajmouy] 10§ sadA100191S (67 1 AIqRL

*1251d2ou02s pury Jo
JUSWIJ[[pPOW B 0] I9JAl IsnW fQuoyniuasaidar anfea
pas3e], ‘1aswanadpajmouy s 10 L105180daia8pajmouy”s
puny JOo JUAWR[® [Qpow B SI IdUMQ

a3eyoed

JoswalIagpaymouy|” s

JoSwal a3 pa[mouy|

2d(1drysuonv)asadpajmouy s
PUDY JO SJUAWI[S [SPOW IOW JO OIIZ O} SIJaI sdiysuony
-vja4 anfeA pa33e], ‘2ovdsSuli2aulSus”s pury| Jo JUIW
-[0 [opowW B I19Jo1 1SN 22vds3uiiaaurdua anfea pa3de],
*2d{1u21128pajmouy s pury JO JUIWA[S [POW € 0} IJaI
ysnw adqzjapows anfea pa33e], 1daouoo™s pury Jo JuUSW
-[0 [opow & 0} I9jaI1 }snw fouonpiuasaidas anfea pa33e],

a3eyoed

K1oy1sodora3pomouy” s

K1oy1sodoye3pojmousy

sjuren)suo))

ssepeRW AN

3d£10019)s yuaaeq

dweu 3d£)0319)§

JUIRU JUIUII[[SPOU-BIIA]

134 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

The Knowledge item specification model kind is implemented using the UML
Class Diagram notation extended with the stereotypes defined in Table 4.30. The
Knowledge item specification is used for defining domain-specific representations
of concept intensions. For example, representations of business service kind in-
tension may differ in web services architecture or cloud computing-based envi-
ronments. The knowledge item types in essence define the meta-models for rep-
resentations of (technology-specific) intensional definitions. The correspondences
between knowledge item types and the intensional definitions are not specified in
this version of the architectural framework. However, such mappings are essen-
tial for instrumenting tool interoperability and mappings between domain-specific
languages, as they provide means for unifying different representations to the
common intensional definitions. These correspondences could be specified and
implemented with use of Declarative QVT [114]; such an approach for defining
correspondences between models and modelling elements has been applied for
example in [129].

4.2 A model-driven methodology for service ecosystem
engineering

The model-driven methodology for service ecosystem engineering enables effi-
cient production of infrastructure services and engineering tools required by spe-
cialized service ecosystems. Model transformations are utilized in the methodol-
ogy to produce first refined versions of the service ecosystem architecture models.
The refined architecture models are then applicable as input for model transfor-
mations which produce technology-specific engineering artefacts. Technology-
specific engineering artefacts include Java interfaces and classes for infrastructure
services, deployment descriptors for different middleware and cloud computing
environments, and definitions for domain-specific modelling languages, for ex-
ample. The methodology can be extended with additional or refined model trans-
formations by service ecosystem stakeholders. Such model transformations cre-
ated by service ecosystem stakeholders may be targeted to utilize specific software
product lines [33] or technology platforms, for example.

4.2.1 Engineering activities

The implementation of the model-driven methodology for service ecosystem en-
gineering is founded on the application of SEAF, explicit service ecosystem mod-
els, and a collection of model transformations. The methodology comprises four
primary engineering activities: /) ecosystem analysis and design, 2) architecture
model refinement, 3) ecosystem instrumentation, and 4) ecosystem operation, as

135

4.2 A model-driven methodology for service ecosystem engineering

(wreader(y SSe) :uoneIou A N) uonedyroads walr a3pajmouy] 10§ sadA100191S :0€ ¥ QI9RL

“diysuoja.jdaouos—s
pUDY JO JUOWIR[® [opowW B 0] JJJaI

snw fouonyvjuasatdas onjea pag3e], UONIBIDOSS Y adfydiysuonejeradpomouy s | adArdrysuone[oyespajmouy]
“(]opow TN 2y ut uon
-IUOp TRUOISUIUI JO UOHEIO[JY) SIUYIP)
$§D]OT1d20U00S PUTY JO JUSUIS[[9POW & 0)
19Ja1 Isnwt fouonyvjuasaidas anfea pa33e], sse[D od Aywore3pamouy s odA1 wapegpamouy]
sjurexjsuo)) | ssepepw A | 2d£)0d19)s judaeg Jwieu 3d£)0319)§ | JWIBU JUIWI[I [PPOW-BIIA]

136 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

illustrated in Figure 4.1. The activities are complex, that is, they a composed of
other more simple engineering activities. The primary activities cover the service
ecosystem engineering phases (analysis, design, instrumentation and operation)
introduced in Chapter 1.

ECOSYSTEM DESIGN & ANALYSIS ARCHITECTURE MODEL REFINEMENT

UML2 - ecosystem. ecosystem. Service
metamodel uml xmi ecosystem
metamodel

UML2SEAM

(c2: MOF) (uses service
ecosystem

rofile)

(c2: Ecore)

ECOSYSTEM INSTRUMENTATION

ServiceKind.
:) ecore
\ : Platform-specific
S - finfact: Abstract syntaxes (c2: Ecore)
Eclipse -projects for a DSL family &l
’ (EMF Ecore models) ‘

MyService
Kind.dsl

ECOSYSTEM OPERATION

q?m

Domain-specific
modelling tools

Service-engineering
tools

Figure 4.1: Primary and secondary engineering activities in the model-driven
methodology for service ecosystem engineering.

The primary activities in the methodology are model-driven: models of ser-
vice ecosystems and its components are considered as the primary artefacts of
engineering activities. The models created and consumed by the engineering ac-
tivities are explicit and machine-readable, and thus can be utilized efficiently by
different engineering tools.

The current methodology implementation covers the primary engineering ac-
tivities of ecosystem design and analysis, architecture model refinement, and eco-
system instrumentation. The specifics of service ecosystem deployment and op-
eration, e.g. provisioning of infrastructure services and resources such as service-
engineering and modelling tools or runtime management of service ecosystems, is
not addressed by the current methodology implementation. Runtime management
of service ecosystems has been addressed in previous publications [143, 140, 87].

4.2 A model-driven methodology for service ecosystem engineering 137

The primary activities are connected by three secondary engineering activities
depicted in Figure 4.1: 1) UML2SEAM, 2) SEAM2PSM, and 3) Deployment.
These secondary engineering activities enable transitioning between the primary
activities. The transitioning is enabled by transforming engineering artefacts of
the preceding engineering activities to engineering artefacts required in succeed-
ing activities.

The secondary engineering activities of the methodology are also model-driven:
they are implemented as a series of model-transformations consuming and pro-
ducing models from and to the primary engineering activities. Both model-to-
model and model-to-text transformations are utilized for implementation of the
secondary engineering activities.

During the ecosystem design and analysis activity depicted in Figure 4.1 the
conceptual framework and SEAF developed in this thesis are utilized for produc-
ing a UML-model of the service ecosystem. For this purpose, a UML-modelling
tool 1s used in conjunction with the UML-profile defined in Section 4.1. In Fig-
ure 4.1 the resulting UML model is represented as a document named “ecosys-
tem.uml”. Conformance relationships between models and their meta-models are
represented with black arrows between documents when applicable, and with
annotations in the documents: the ecosystem.uml conforms to the UML2-meta-
model [113], while the UML2-meta-model conforms to the MOF [112] (annota-
tion c2: MOF in the figure).

The secondary engineering activity named UML2SEAM (see Figure 4.1) takes
the UML-model of the service ecosystem and transforms it to an EMF [39] Ecore
model. During the same engineering activity, the Ecore representation of the ser-
vice ecosystem (named “ecosystem.xmi” in Figure 4.1) is refined, since the UML-
based service ecosystem description does not include all elements of the service
ecosystem meta-model defined in Chapter 3. The UML-model does not include
any elements of the knowledge management model described in Section 3.9, and
includes only binding model specifications of the engineering model described in
Section 3.8. Moreover, default knowledge repository elements are produced dur-
ing the UML2SEAM engineering activity for each domain ontology concept that
is not explicitly associated with one in the UML-model. Such a design choice in
the methodology implementation was made, since a large portion of the knowl-
edge management and engineering models can be deduced from other parts of
the service ecosystem architecture model. In this way the work load of service
ecosystem designers can be considerably decreased and made more efficient.

During architecture model refinement the Eclipse EMF model can be refined
by service ecosystem engineers. Such refinement may include for example addi-
tion of service ecosystem specific methods, and annotating the Ecore model with
declarations that could be utilized in succeeding engineering phases. Model anno-

138 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

tations may include for example definitions of constraints over the model and the
service ecosystem itself with languages such as the Object Constraint Language
(OCL) [110] or different business rule languages. In the current implementation
of the methodology, such model annotations are not taken into account.

The service ecosystem model provided by the architecture model refinement
activity is consumed by the secondary engineering activity named SEAM2PSM
in Figure 4.1. The SEAM2PSM activity takes the EMF Ecore model of the ser-
vice ecosystem and produces several platform-specific outputs. The outputs es-
pecially include Ecore models defining meta-models for the service concept in-
tensions, a set of Eclipse projects for the required knowledge repositories, as well
as OSGi [120] and Java programming language artefacts for implementation of
the repositories. The infrastructure services generated from service ecosystem
architecture models are based on the OSGi [120] industry standard, and Java pro-
gramming language. OSGi [120] is a standard maintained by the OSGi Alliance'
for creating modular and dynamic component-based platforms.

While the UML2SEAM engineering activity provides a refining model trans-
formation at the same abstraction level (platform-independent level), the SEAM2-
PSM engineering activity transforms the platform-independent service ecosystem
description to a set of platform-specific models and other engineering artefacts.

Ecosystem instrumentation is a primary service ecosystem engineering ac-
tivity where the artefacts produced by SEAM2PSM activity are utilized for de-
veloping the necessary infrastructure services and tools. This activity especially
involves implementation of the knowledge repository logic using the Java-classes
generated by the SEAM2PSM activity. The other engineering artefact, such as the
generated OSGi descriptions, are also subject to refinement by service ecosystem
engineers and software developers. The sub-activities of ecosystem instrumen-
tation may involve additional platform-specific model transformations that either
refine the artefacts provided by the SEAM2PSM activity, or generate additional
software engineering artefacts from the service ecosystem model. The develop-
ment activities taken inside the ecosystem instrumentation are not in the focus of
this thesis and thus not discussed further.

During the deployment activity the artefacts produced during ecosystem in-
strumentation are installed and configured into a (OSGi-based) service platform.
For example, an enterprise service bus (ESB) such as the Apache ServiceMix 2
could be used as a the target platform for deploying the generated OSGi-bundles
(the Eclipse projects).

Finally, service ecosystem operation includes engineering activities for man-
aging and governing the service ecosystem [143]. The infrastructure services

"http://www.osgi.org
*http://servicemix.apache.org/

4.2 A model-driven methodology for service ecosystem engineering 139

developed and deployed during the previous activities are utilized by ecosystem
members for maintenance of service ecosystem knowledge, service delivery and
establishment of service collaboration networks, for example. The service ecosys-
tem model can be utilized for progressing interoperability in the service ecosystem
with model-based interoperability approaches (see for example [13, 89]). Service
engineers and service developers utilize ecosystem specific tools for increasing
the efficiency of service delivery and development. Implementations of these tools
are based on the platform-specific models and software engineering artefacts de-
veloped during the service ecosystem instrumentation activity. Especially, the
domain-specific models created with ecosystem specific modelling languages and
tools can be founded on the meta-models generated in the SEAM2PSM activity.

4.2.2 TImplementation details

A collection of software engineering tools have been developed for supporting
and implementing the activities of the service ecosystem engineering methodol-
ogy. The tool implementations are based on utilization of open, industry-adopted
standards and frameworks, such as UML [111] modelling language, Eclipse [38]
framework, Java programming language and the OSGi [120] industry standard.
Implementation details of these tools are next discussed following the order of the
service ecosystem engineering activities described above.

For supporting the service ecosystem analysis and design a SEAF tool was im-
plemented. The SEAF implementation was developed over MagicDraw UML *
which is a commercial UML-modelling tool. First, a UML-profile conforming
with the definitions given in Section 4.1 was developed for providing a modelling
notation for service ecosystem architectures. The MagicDraw UML tool provides
means for extending the the tool with modelling notation specific user interface
elements and thus creating UML-based domain-specific languages. This capa-
bility of the tool was utilized for enhancing the user experience of the resulting
service ecosystem modelling tool. For example, the different model kinds speci-
fied in Section 4.1 were provided with specialized diagrams and model elements
applicable in them. Instead of using generic UML diagrams, its modelling ele-
ments and attaching appropriate stereotypes manually to the modelling elements
the end-user of the modelling tool can now directly model with concepts such as
“Actor” or “Dynamic Service Choreography”.

The service ecosystem meta-model and the UML-profile developed with the
UML-modelling tool were exported to Eclipse UML2 models, and further, to
EMF [39] Ecore models. The Ecore models were then utilized for developing
a generator plugin for the Eclipse framework. The generator plugin extends the

*http://magicdraw.com

140 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

Eclipse-tool with operations implementing the secondary engineering activities of
the service ecosystem engineering methodology. Basically the plugin provides an
user interface for initiating the UML2SEAM and SEAM2PSM engineering activi-
ties discussed in Section 4.2.1.

The user-interface of the generator plugin provides service ecosystem engi-
neers with three operations: /) UML2SEAM, 2) SEAM2PSM, and 3) SEAM2-
Java. The UML2SEAM-operation implements the similarly named ecosystem
engineering activity. It takes as an input as service ecosystem architecture model
that conforms with the Eclipse UML2 meta-model and which utilizes the service
ecosystem architecture UML-profile defined in Section 4.1. As an end-result of
running the operation a new project is created in the Eclipse workspace which
includes an EMF Ecore representation of the service ecosystem architecture.

The UML2SEAM operation produces default product models, engineering
methods and tool types, and product models that represent creation of knowledge
items in the service ecosystem. For each concept intension in the UML model
a product part is created which includes features of the intensional definition.
The default method includes a single method chunk which produces a product
part corresponding to an intensional definition. For each intensional definition a
tool type is generated which includes engineering activities producing the features
and with no inputs required. The default elements generated by the UML2SEAM
model transformation can be re-factored and complemented manually by service
ecosystem architects.

The UML2SEAM-operation comprises a collection of sub-activities that are
implemented as QVT-transformations. The different transformations for imple-
menting the UML2SEAM-operation are summarized in Table 4.31. Each row in
the table summarizes a model transformations by defining its name, kind (M2M
or M2T for model-to-model and model-to-text transformations correspondingly),
input and output models, and abstraction levels involved in the transformation. All
model-to-model transformation are implemented using QVT [114] and model-to-
text transformations with the Eclipse Acceleo* which is an implementation of the
OMG MOF Model to Text Language (MTL) [115].

Input and output columns denote the meta-model or artefact kind consumed
and produced by the transformation: UML denotes the UML?2 meta-model of the
Eclipse framework [38], SEMM denotes the service ecosystem meta-model (its
Ecore-based implementation), Ecore denotes the EMF Ecore meta-model while
GenModel denotes the EMF Ecore Generator meta-model [39], OSGi the OSGi
service descriptors [120], and finally Java denotes that a file containing source
code in the Java programming language is generated.

For representation of abstraction levels the three-level abstraction hierarchy

*http://www.eclipse.org/acceleo/

4.2 A model-driven methodology for service ecosystem engineering 141

Name | Description Kind Input Output | Abs. levels
UML2SEAM | Creates an Ecore model from the | M2M UML SEMM PIM-PIM
UML model
SEAMRefinement | Refines the Ecore model M2M | SEMM SEMM PIM-PIM

Table 4.31: UML2SEAM transformations.

of the OMG’s MDA (Model-Driven Architecture) [53] industry standardization is
used. The MDA abstraction levels include (from most abstract to most concrete
level): 1) CIM (Computation-Independent Model), 2) PIM (Platform-Independent
Model), and 3) PSM (Platform-Specific Model). CIM is usually considered as a
business model or domain model which dictates what the system under consid-
eration should do. PIM is typically considered as a model which describes how
the goals and requirements stated in a CIM can be achieved. PIM is still plat-
form and technology agnostic and defines for example abstract service interfaces
or different kinds of abstract behaviour. Service ecosystem architecture models
in this thesis considered primarily as PIM-level models, although some model
elements are typical CIM elements, such as service ecosystem capabilities and
actors (as stakeholders). Finally, PSM is a technology-specific model. In this the-
sis the PSMs include for example OSGi models and Java code (which can also
be considered as a sort of model as a representation of a system). For example
a PIM-PIM transformation in Table 4.31 is a abstraction-preserving transforma-
tion, while PIM-PSM transformation creates a more concrete model from a more
abstract model. The additional information required for such abstraction level
change is encoded in the model transformation implementations.

The SEAM2PSM-operation comprises a collection of activities that generates
platform-specific software artefacts from the EMF Ecore service ecosystem ar-
chitecture model. First, the SEAM2PSM-operation creates Eclipse projects for
knowledge repositories. The projects are structured and configured as Eclipse
Java projects. Required build scripts and configuration files are provided for each
project individually. Especially, dependencies between the knowledge repository
projects are configured in the generated files, such as the Eclipse plugin descrip-
tors and OSGi service descriptors.

The transformations implementing the SEAM2PSM operation are described
in Table 4.32. The SEAM2PSM transformations operate both between abstraction
levels (PIM to PSM transformations) and within the PSM abstraction level as
refining transformations.

After the SEAM2PSM-operation the user is provided with Eclipse projects for
all knowledge repositories defined in the service ecosystem architecture model.
More over a EMF Ecore GenModel for generating Java-code corresponding to the

142 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

Name | Description Kind Input Output Abs. levels

SEAM2EMF | Creates a meta-model representing | M2M | SEMM Ecore PIM-PSM
concept intension within a knowl-
edge repository project.

SetReferences | Creates model-to-model references | M2M Ecore Ecore PSM-PSM
between distinct Ecore models.

CreateGenModel | Creates an EMF GenModel from an M2M Ecore Genmodel PSM-PSM
Ecore model

Table 4.32: SEAM2PSM transformations.

Name | Description Kind Input Output Abs. levels

SEAM?2Java | Generates the Java in- M2T SEMM | Java PIM-PSM
terface and class files.

SEAM20SGi | Creates an OSGi com- | M2T | SEMM | OSGi PIM-PSM
ponent description for
a knowledge repository
project.

SEAM2Manifest | Generates an Eclipse | M2T | SEMM | MANIFEST.MF PIM-PSM
plugin descriptor for
the knowledge reposi-
tory project.

Table 4.33: SEAM?2Java transformations.

individual Ecore models generated by the SEAM2EMF model-to-model transfor-
mation is provided. The user can now do changes to the GenModel, if necessary.
As the final activity in the SEAM2PSM-operation, the user applies the default
EMF code generation functionality over the provided GenModel for generating
model management code for the knowledge repositories.

The SEAM2Java-operation implements rest of the SEAM2PSM engineering
activity and comprises a set of model-to-text transformations. The model transfor-
mations especially generate files containing code for Java interfaces and classes
for the knowledge repositories. The knowledge repository interfaces are based on
the REST-idiom [56]. The transformations are summarized in Table 4.33.

The operations described above are launched from the developed Eclipse plug-
in. The plug-in enables ecosystem developers to generate the required develop-
ment projects for infrastructure services. A pop-up action is accessible in the
Eclipse user interface for launching the operations, as illustrated by the screen-
capture in Figure 4.2. In the figure, an ecosystem engineer has executed the
UML2SEAM and SEAM?2PSM operations: there are a collection of generated
projects available in the Eclipse workspace. In the figure the ecosystem engineer
is about the execute the SEAM2Java operation over the EMF Ecore representation
of the service ecosystem model.

143

4.2 A model-driven methodology for service ecosystem engineering

12U3+

<

Wvasziwn 1
W3dZWvas ‘

end ewvas <

53149 00¢
WX Ppow-wa1sAs0d3/japouwl/uowwed-sodle)id odur

WX |3PoW-W3a1sAs0d3

owwodsodse)id-oounbio/aredsyiom-101ei3uab/sisayl-ayd /ysieasal/soopfloyoniyy/awoy/ .
asjey

0E:1LS’L1 Z1L0Z J3quiad3q 0Z

ann

asjey |

u:_m_)“

Oe o

=} | ”memEn_ mu . 52 satadoid _M_.u_mum 54

</ AIBATId, =3WeU ,88F6 990182 £LS99F6RFELPEL 6/E€03G4 2 0 /1 . =PT:TUX , 3384 193U]
</,A1T4N385, =3WRU 996 BB LPE /PEBEGBFELPEL 6/£07G4 ¢ 0 Z1 w=PTiTUX ,3384437U]
puadagIuaT]d ., ISNIL, =SWeU ,FPP6 L968L5 089FIGBFELFPEL 6L£02G4 ¢ 0 L1 w=PTiTUX ,3384483U]
T07£1 L =4aTTddnS |, =3WeU ,01F6 9FO8S) BZILEBRFELVEL BLEDIGE Z 0 £1 . =PT:Tux ,Aouspusdaq «
uaTT2 LA2ITTIqEpUadaq, =aWeU 8866 SLEQ9 GLPBS8REYELPEL 6£E09G4 € 0 1 .=PT:IWX ,83e4.183U}
TOLL L =4eTddNS |, =SWeU FSE6 LFOSSE GRPILESFELVEL 6LE02G4Z 0 /1. =pT:Tux ,Aduspusadal
</ AIBAT[3Q8ITAISS, =3WEY ,ZEEE OEE9L GLLIZIRBYELVEL 6LE03G4 ¢ 0 £1 w=pT:TWX ,338f133U]
ST[2 ,UOT1E40Qe[[0], =3WelU ,SHE6 ELO66F B9IPEERBYELPEL 64603G4 2 0 Z1 . =PT:TUX ,338/431U] 219

<uUTEWOJS0IJET Id, =dUWBY ,EZZ6 06091 6986L98VELFEL 66070472 0 L1 . =PT:TUX ,258)3

12d
ATHID

</u0 #TWNA1e1q1T "52dAL2ATITWTIIdeAer /STTYVYEIT Wi/ / - dewyyed, =331y , [2pol
<, e1eqsadAantll 5

5

D

</u0 #[un Aieiqr] - sadA1eaTI TWTId TNN/STTHVHEIT N/ / i dewyred, =431y L TEPOH ppsapy+1d
<,e1egsodA|s
.

€4

"0Z:EL ZLOZ E"EC:paleald
* TOjONJYY : JoyIny<Apogs o
<u L TOEFSELTELEOOLLIOPSFOL T3S, =JUBWATIPSIEIOUUR ,6/9) 5186 CEGZSIIOSEEEL 64E02G4 7170741, =PT I TUX JUSWWOIPIUMO> =)
=JUTOOMSTA , S0D1ETTd., =3WeU , L 9EPSEL ELEDOLLOPSFOL 933, =pT
B3 SUT - BUWSYIS TNX/ 1002 /840 £m My 7 ! d130,, =TSX SUTWX , | *Z/TWX/29ds /810" Swo* ewayss// :d2 34, =TWX I SUTWX | *Z, =UOTSISAITWX THX:TWX> &
<¢.8-41n.=8UTpOdUS 0" . =UOTSIBA TWXi>

saijsadouduibnyd mi

O 52 JWn'sode)id ¥ owwod'sodejd-oupbio |

« [merm RS

s OUHBRL SIS LiBT S50

Twx Tapo)

eldwijaswalabpajmouninNg S._ Jepowuab ucwwod

saipadoid

fianodsig
a2nos
2aujbuz waysAsong

yaim adejday
yiim atedwod
weaj

sy 3)joid

sy bBngag

sy uny
33eplieA

5335 BupyJom ubissy
ysaujay
=odxg
~-j10duwy
JopR3Y

Yied pjing

312)2Q
a1sed

awen paynend Adod
Adod

upmoys

yumuado

uado

MaN

Iqun> s

J2pow/uowwosodle)id-0upbio - jlwxjapow-walsAsoda +d

fuonsodaspunyjenpiaipursedsepd-ooup-bio £ J,
fioyisodaiainjeayjeuoizoungesyxesadle)id-odunBio £ 4
fuojisodasyiodaizauapadxe sedse)id-ooup bio i L
fioyisodaipupjirodaizauapadxe sodse)id-ooup o 7% 4
fioyisodaipupjasudiauasodse)id-ooupBio £7 4
fioj1s0daiaseqabpajmousaie|dwalinesuoda sode)id-oounbio £ 4
Asojisodaiaiejdwaiypesjuodatsease)d-ooupbio &7 4
Asojisodaiperjuodasodseyd-osupbio £ ,
fioj1sedaisfysadordaaneladoodsoaeyd-ooupbio £ 4
fioyisodasaineajsaneladoodsodseyd-oouBio % L
Eo.:man_m_ﬁ_maaa_mBuE.Eou.mntm__n_.euc_u.mho1h_w L
fionsodaiaimesjjenypenuodsodse)id-oouabio 5 L

sanJadoud-fioyisodal

Jwxuibnd £

sanJadosduibnid §

Jwx°ping [

saiiadoad-pying

Jwx'sapolsodal-pling [

ANIDSO =7

g

12powuab-uowwod [

31033 UoWWod B

Ppow 4 &

ANIFVIIW 4 4

[s€7 09 1ipl] Areaqiy waishs Jur v «

sanuapuadaq ui-bnijd T 4

2USE 4
uowwodsodse)d oduBiof 4
fiojisodaquawndopssauisng-sodueyid-ooubio = A"
fioyisodaipupppuawniopssauisng-sodse)d-odupbio &4 4
faoyisodaiwugsoie)d-odupbio &5 J

soduejid-aser'odunbio e 4

8loo -

&% g 52 Jasojdx3 abexded |

s/epE|lvoeda[oala “d

wiojie)d asdi3 - jwnsodie)id/|2pow/soded-ases-ooujabio - eaer

10n

bout the execute the SEAM2Java operat

1meer a

An ecosystem engi

.

Figure 4.2

in the Eclipse environment.

144 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

Chapter 5

Validation and evaluation

Validation and evaluation of the model-driven approach for service ecosystem
engineering comprises several assessments. The feasibility of the approach is val-
idated by assessing the technical implementability of the individual artefacts. The
applicability of the approach is validated with respect to the practical usability of
the artefacts for service ecosystem analysis, design and instrumentation. For this
purpose a case study is conducted where a state-of-the-art service ecosystem is
first modelled. The resulting service ecosystem architecture model is then utilized
within the model-driven methodology for service ecosystem engineering. The re-
search method followed in this dissertation is design science [62] whose goal is
to provide utility for system stakeholders. The utility of the approach is evalu-
ated with respect to the needs of service ecosystem stakeholders and requirements
stemming from the definition of service ecosystem sustainability and vision of
open service ecosystems.

In this chapter, the model-driven approach for service ecosystem engineering
is assessed. The research process that has been conducted and the evaluation ap-
proach is first discussed in Section 5.1. After that in Section 5.2 SEAF is utilized
for analysis and design of the Pilarcos service ecosystem. The resulting archi-
tecture model is used in the model-driven methodology for service ecosystem
engineering for generating engineering artefacts representing Pilarcos-specific in-
frastructure services. Evaluation results are presented in Section 5.3. The chapter
is concluded with a discussion and comparison of related work in Section 5.4.

5.1 [Evaluation approach

The primary research question underlying this academic dissertation is how to en-
able transition from ad hoc service ecosystems to sustainable service ecosystems
and to support the vision of open service ecosystems. Ecosystem sustainability

145

146 5 VALIDATION AND EVALUATION

was defined as the quality of a service ecosystem to support continued viabil-
ity (see Definition 2.1 in Section 2.3). The transition is enabled by facilities for
rigorous service ecosystem engineering developed in this thesis. Viability of ser-
vice ecosystems must be addressed during the system engineering life cycles; this
implies that the concerns of primary stakeholders must be addressed during the
analysis, design, instrumentation phases. Continuation of viability must be estab-
lished by supporting the activities required for ensuring relevance and sensibility
of ecosystem operation.

Methodologically the research process that has been conducted follows the
design science paradigm [62]. Design science “...seeks to create innovations ...
through which the analysis, design, implementation, and use of information sys-
tems can be effectively and efficiently accomplished” [62]. The main innovation
of this thesis is the model-driven approach for service ecosystem engineering. In
the approach service ecosystems are considered as holistic systems; this is some-
thing that is missing in the current state-of-the-art approaches, as will be identified
in Section 5.4. The benefits of applying model-driven principles in this context
are two-fold. First of all, formalization of service ecosystem concepts as a unified
meta-model enables management of the inherent structural complexity of service
ecosystems. Secondly, the model-driven artefacts developed in this thesis facil-
itate rigorous service ecosystem engineering by providing means for supporting
analysis, design, instrumentation (implementation) and operation of service eco-
systems. In the context of this academic dissertation, the information systems
under study are service ecosystems.

In the design science approach, purposeful artefacts are built and evaluated to
address unsolved problems [62]. In this thesis, facilitation of service ecosystem
sustainability is the unsolved problem to be tackled with. Towards solving this
problem, this thesis has defined an approach for service ecosystem engineering
comprising four artefacts: /) a conceptual model characterized in Chapter 2, 2) a
service ecosystem meta-model described in Chapter 3, 3) an architecture frame-
work described in Section 4.1, and 4) a model-driven methodology introduced in
Section 4.2.

In the rest of this chapter, the feasibility, applicability and utility of the ap-
proach for service ecosystem engineering are evaluated. The feasibility of the
approach is validated by assessing the technical implementability of the individ-
ual artefacts. The applicability of the approach is validated with respect to the
practical usability of the artefacts for service ecosystem engineering. The goal
of design-science research is utility [62]. The utility of the approach is evaluated
with respect to the needs of service ecosystem stakeholders, and requirements
stemming from the definition of service ecosystem sustainability defined in Sec-
tion 2.3.

5.2 Evaluation case: Pilarcos service ecosystem 147

5.2 Evaluation case: Pilarcos service ecosystem

The Pilarcos framework has been selected as the evaluation case for assessing
the completeness of the conceptual model and applicability of the model-driven
approach for service ecosystem engineering. The Pilarcos framework [87, 85] ad-
dresses several aspects required in open service ecosystems, such as dynamic col-
laboration establishment, trust and reputation management, and ecosystem evolu-
tion. Due to these characteristics and their inherent structural complexity, Pilarcos
is considered especially suitable for evaluating the approach.

In the evaluation the concepts of the Pilarcos service ecosystem are first for-
malized with SEAF. The corresponding architecture models are constructed using
a UML tool and an UML profile [111] implementing the viewpoints and model
kinds described in Section 4.1.

In the following, a representative selection of the Pilarcos architecture mod-
els are described with a discussion of their characteristics. The primary concepts
and characteristics of the Pilarcos service ecosystem are first described in Sec-
tion 5.2.1. After that, the Pilarcos service ecosystem architecture models are pre-
sented in Section 5.2.2.

5.2.1 Pilarcos service ecosystem

The Pilarcos framework [87, 85] for open service ecosystems provides concepts
and infrastructure for managing loosely coupled inter-enterprise collaborations.
The framework uses federation for establishing interoperability between auto-
nomous ecosystem members, and repositories providing consistency and confor-
mance of interoperability knowledge. The infrastructure services include [87]:

e services for establishing, modifying, monitoring, and terminating collabo-
rations, or looking from the business service point of view, operations for
joining and leaving a collaboration either voluntarily or by community de-
cision and leaving a trace in the global business world about the success of
the collaboration; and

e a set of repositories for storage of collaboration models, and ontologies of
service types and services, for example, to support interoperability valida-
tion.

The Pilarcos framework proposes a model of inter-enterprise collaborations
as business networks consisting of independently developed business services. A
business service denotes a set of functionalities provided by an enterprise to its
clientele and partners. It is governed by the enterprise’s own business rules and
policies, as well as by business contracts and regulatory systems controlling the

148 5 VALIDATION AND EVALUATION

business area. Business services are developed independently, and the provided
Pilarcos infrastructure services are used to ensure that technical, semantic, and
pragmatic interoperability is maintained in the business network.

A business network is established dynamically to serve a certain business sce-
nario or opportunity that is made commonly known by publishing a business net-
work model (BNM) [87]. The business network model captures the roles and
business processes that are relevant for the business scenario, for example.

A network management agent (NMA) [85] represents a collaboration member
in the business network. It handles negotiations with potential new members and
re-negotiations if members are changed, it keeps up status information for the
collaboration, and determines the suitable reaction to collaboration events such as
contract termination. Every member of the service ecosystem has its own network
management agent, and they are considered to be fully trusted local agents [85].

The collaboration establishment life cycle in the Pilarcos framework is explicit
with service selection, population, negotiation and dissolution phases [87, 143].
When a new service collaboration needs to be established, a service ecosystem
member first calls the populator [85] which is an infrastructure service responsi-
ble for executing collaboration establishment processes. The populator chooses
the most suitable candidates for each role from the set of available service offers.
The service offers are maintained by service offer repositories. Conformance with
the constraints and requirements defined by the business network model and the
collaboration initiator are used for selecting the set of interoperable service offers.
Based on the collaboration proposals given by the populator, the initiating ecosys-
tem member runs a negotiation with the service providers delivering the service
offers [85].

After service discovery, the populator chooses the most suitable service of-
fers for each role from the set of dependable services. Conformance with the
constraints and requirements defined by the business network model and the col-
laboration initiator are used for selecting the set of compatible services. Based
on the collaboration proposals given by the populator, the initiating NMA runs a
negotiation with the NMAs of the other proposed partners [85].

During the business service publication phase service types [139] are used
for validating conformance of business services with available component service
kinds. A service type defines the characteristic features for a kind of component
service by expressing its behavioural and non-functional features. Service types
are used to constrain the behaviour of business services, to validate consistency of
cooperation abstractions, and for verifying behavioural substitutability and com-
patibility between kinds of services [135].

The interoperability management approach is a federated one: all business
services are developed independently, and the provided infrastructure services are

5.2 Evaluation case: Pilarcos service ecosystem 149

used to ensure that technical, semantic, and pragmatic interoperability is main-
tained in the business network. A shared service ecosystem architecture model
representing the Pilarcos framework provides consistency and conformance crite-
ria to be maintained by the knowledge repositories. This is invaluable for enabling
collaboration establishment life cycles in open service ecosystems with autonomic
participants.

5.2.2 Modelling Pilarcos service ecosystem architecture

In the following, the architecture model for the Pilarcos service ecosystem is de-
scribed. A selection of the UML-diagrams presenting the architecture model are
illustrated and explained. The selection of diagrams provides a representation
of the foundational elements of SEAF as well as the Pilarcos service ecosystem.
The discussion is structured in accordance with the viewpoints presented in Sec-
tion 4.1. It should be noted, that the knowledge management viewpoint is not
utilized in the case study, since the refining model transformation (UML2SEAM)
described in Section 4.2 automatically generates the required knowledge manage-
ment model elements.

Pilarcos ecosystem capabilities

The Pilarcos service ecosystem exposes two fundamental capabilities: /) collabo-
ration, and 2) trust management. The collaboration capability represents the abil-
ity of the Pilarcos ecosystem for dynamically building up business networks from
the available business services offered by autonomous ecosystem members. The
collaboration capability is supported by the qualitative trust management capabil-
ity. Collaboration is considered as a functional capability while trust management
is a qualitative capability of the Pilarcos ecosystem. The capabilities are realized
by corresponding life cycles and supported by specialized infrastructure services
(see [143, 87, 85, 133]).

The Pilarcos capabilities, their realizing life cycles and their inter-relationships
are modelled using the Ecosystem capability specification model kind; the re-
sulting model is illustrated in Figure 5.1. The capabilities and the collaboration
coordination life cycle are contained in an ecosystem domain named PilarcosDo-
main. The trust management coordination life cycle is contained in a sub-domain
named ReputationSystem. The ecosystem domains are associated with a domain
ontology and an engineering space that are described later in this section.

Pilarcos ecosystem life cycles

Collaboration capability and trust management capability are realized by collabo-
ration coordination and trust management coordination life cycles. The life cycles

150 5 VALIDATION AND EVALUATION

package PilarcosDomain [PilarcosCapabilitySpecificationU

Figure 5.1: Specification of Pilarcos service ecosystem capabilities.

5.2 Evaluation case: Pilarcos service ecosystem 151

are modelled using the Life-cycle viewpoint of SEAF which comprises life-cycle
structure specification and life-cycle behaviour specification model kinds. The
corresponding models are presented and discussed below.

The Pilarcos collaboration coordination life cycle comprises four phases:

1) Population, 2) Negotiation, 3) Collaboration and 4) Dissolution [143], as illus-
trated in Figure 5.2. The population phase is associated with actors named [Initia-
tor, Populator and ServiceOfferRepository, the two latter representing infrastruc-
ture services. The population phase inputs a business network model, modelled
with an artefact named BNM, and a set of available services. The AvailableSer-
vices artefact set represents the collection of all service offers available in the
service ecosystem. The population phase produces two artefacts sets: 1) eCon-
tractTemplates including a set of eContract templates and 2) InteroperableSer-
vices including the set of service offers compatible with the BNM given as input
for the population phase.

The negotiation, collaboration and dissolution phases involve only service
providers. They consume and produce artefacts and artefact sets as illustrated in
Figure 5.2. Finally, the Dissolution phase provides a collection of ExperienceRe-
ports, which are consumed in the RSOperation phase of the trust management
coordination life cycle discussed below.

The Pilarcos collaboration coordination life-cycle behaviour defines the phas-
ing between the life-cycle phases. The corresponding model is illustrated in Fig-
ure 5.3. The behavioural semantics of ecosystem life cycles and their transitions
are domain-specific.

The trust management life cycle is contained in the ReputationSystem eco-
system domain, as illustrated in Figure 5.1. The life cycle includes three phases
named RSJoin, RSOperation, and RSLeave [143]. The life-cycle phases enable
service providers to join a reputation system, deliver reputation information, and
leave a reputation system, correspondingly. The trust management coordination
life-cycle structure is defined using the Life-Cycle structure specification; the re-
sulting model is illustrated in Figure 5.4.

In the RSJoin phase the service provider joins a chosen reputation system and
signs a reputation system contract. The signed reputation system contract provides
the service provider with access to the knowledge contained in the reputation sys-
tem [143, 133]. Other reputation system members may have a veto right to not
allow the service provider to join the system [143].

In the RSOperation phase the service provider makes semi-automated trust
decisions based on set trust-management policies [132]. To support the trust de-
cisions, the service provider uses reputation information from the reputation sys-
tem, as well as first-hand experiences about other service providers’ behaviour in
on-going service collaborations [132, 143]. The service provider shares the ex-

152 5 VALIDATION AND EVALUATION

use case CollaborationCoordination [CollaborationCoordinationStructureD |
«ArtefactSet»
AvailableServices

«Artefacty ="
BNM

«Lifecycle»
CollaborationCoordinati

«InfrastructureServiceKind»
«LifeCyclePhase» Populator

Population

Initiator

[.

«ArtefactSet» «ArtefactSet»
eContractTemplates InteroperableServices

«Know ledgeRepository»
Service OfferRepository

«LifeCyclePhase»
Negotiation

—

«ArtefactSet»
CommittedServices

«Artefacty
eContract

«LifeCyclePhase»
Collaboration

\ «ArtefactSet» «ArtefactSet»

iledServices SuccessfulServices

«LifeCyclePhase»
Dissolution

«ArtefactSet»
Reputationinformation

ServiceProvider

Figure 5.2: Specification of Pilarcos collaboration coordination structure.

periences with the other members via the reputation system in accordance to the
reputation system contract [143].

Finally, a service provider may discharge itself from its reputation system
membership; such behaviour takes place in the RSLeave phase [143].

The behaviour of the trust management life cycle is illustrated in Figure 5.5.
After joining a reputation system, the service provider can operate in it until she
decides to discharge her membership. Leaving a reputation system is possible
after joining it.

Pilarcos service choreographies

Service choreographies are used in SEAF to define the roles, connections and in-
teractions of service-based collaborations. Service choreographies are associated

5.2 Evaluation case: Pilarcos service ecosystem

153

state machine CollaborationLifecycleBehaviour [CoIIaborationLifecycIeBehaviouru

| «LifeCyclePhase» «LifeCyclePhase» ‘ [«LifeCyclePhase» | «LifeCyclePhase»
Population Ne gotiation Collaboration ’ Dissolution

Figure 5.3: Specification of Pilarcos collaboration coordination behaviour.

use case TrustManagementCoordination [Trustl\/lanagementCoordinationDiagramﬂ

= «Lifecycle»
«Artefact» = TrustM Eoerdint
RSContractProposal rustManagementCoordination
K
«LifeCyclePhase»
e] RSJoin

ServiceProvider

«Artefacty | \Sl\ne%er
RSContract /R

«ArtefactSet» i «LifeCyclePhase»
Reputationinformation RSOperation
\
ey
Notary
«Artefacty :\E‘
RSContract e -
«LifeCyclePhase»
RSLeave

Figure 5.4: Specification of the trust management life-cycle structure.

154 5 VALIDATION AND EVALUATION

state machine TMCoordinationBehaviour-notes [TMCoordinationBehaviourﬂ

?«Lifecycle transition»
«LifeCycIyePhase» «Lifecycle transition»
~
RSJoin
«Lifecycle transition» \L«Lifecycle transition»

«LifeQ/cIePhase»' «Lifecycle transition» V«LifeCycIePhase»
RSOperation RSLeave

«Lifecycle transition»

Figure 5.5: Specification of trust management life-cycle behaviour.

to life-cycle phases with the concept of service liaison. The service choreogra-
phies can be either static or dynamic, as discussed in Chapter 3. Static service
choreographies represent life-cycle phase behaviour with roles and interactions
determined during the design of the service ecosystem. Dynamic service chore-
ographies represent life-cycle phase behaviour whose roles and interactions are
determined via choreography descriptions published during the service ecosys-
tem operation.

In the Pilarcos ecosystem, the population, negotiation and dissolution phases
have static service choreographies. The population choreography defines inter-
actions between a collaboration initiator, populator and service offer repositories.
The negotiation choreography defines a multi-lateral negotiation protocol between
service providers [85]. The dissolution choreography defines how service provi-
ders deliver their experiences about a collaboration to the reputation management
system.

As an example of a static service choreography specification, the Pilarcos pop-
ulation choreography structure and behaviour is presented. In the Pilarcos service
ecosystem, service-based business networks are established dynamically using the
process of population [85], which involves three actors: initiator, populator, and
service-offer repository. The initiator is a legal entity willing to establish a busi-
ness network and initiating the population process. Populator and service-offer
repository are infrastructure services provided by the Pilarcos service ecosystem.

The structure of the Pilarcos population service choreography is illustrated
in Figure 5.6. The model is specified using the Service choreography structure

5.2 Evaluation case: Pilarcos service ecosystem 155

class PopulationChoreography [@ PopulationChoreographyu

«ServiceRole» [2P «ServiceRole»
initiator : ServiceProvider [1] | | populator : Populator [1]
«ServiceConnection» P2R
«ServiceConnection»

«ServiceRdIe» -
sorepository : Service OfferRepository [1] |

Figure 5.6: Specification of the Pilarcos population service choreography struc-
ture.

specification model kind, and it comprises service roles and service connections
representing the service choreography roles, actors eligible to act in the roles,
and relationships between the roles. Each service role is typed by an ecosystem
actor: the initiator role is bindable only to actors of the kind ServiceProvider in
the Pilarcos ecosystem, for example.

The static service choreography behaviour of the population process is illus-
trated in Figure 5.7. The population process begins with the initiator sending a
pre-filled eContract template to the populator. The eContract template may pro-
vide initial values for the collaboration roles and features. The populator infras-
tructure service then queries a service offer repository about service offers that can
be used for filling the roles of the business network model defined in the eCon-
tract template. The service offer repository returns a set of interoperable service
offers to the populator. After receiving the set of interoperable services, the pop-
ulator uses a constraint-satisfaction algorithm to come up with a set of eContract
templates where each of the business network roles are filled with appropriate ser-
vice offers [85]. The set of templates is then returned to the initiator. The initiator
refines the eContract templates with multi-lateral negotiations [85]. If the negotia-
tions are successful, an eContract is signed between the service providers offering
the services, after which the actual collaboration can be started.

In the Pilarcos ecosystem the Collaboration phase is associated with dynamic
choreographies. A dynamic service choreography prescribes schemata, or a meta-
model, for modelling choreographies within a life-cycle phase. In the Pilarcos ser-
vice ecosystem the choreography models associated with the collaboration phase
are called business network architectures. The architecture model representing

156 5 VALIDATION AND EVALUATION

interaction PopulationBehaviour [PopulationBehaviouru

«Actory «InfrastructureServiceKind» * «Know ledgeRepository »
initiator : ServiceProvider populator : Populator sorepository : Service OfferRepository

T L . T T
| «BusinessAction» |

! 1: populate(eContractTermplate) .

«BusinessAction»

I
I
I
I
2. getOffers(BNM) I

«BusinessAction»
3. offers(InteroperableServices)

«BusinessAction»
4: termplates(eContractTemplates)

Figure 5.7: Specification of the Pilarcos population service choreography be-
haviour.

the Pilarcos business network architecture concept is illustrated in Figure 5.8.

The business network architecture concept is formalized using the Dynamic-
ServiceChoreography-stereotype by providing corresponding tagged values with
references to appropriate model elements. A service choreography is defined in
the service ecosystem meta-model as a concept comprising a set of service roles,
service connections, business actions, and business transactions. Business roles
are associated with one or more ecosystem actors that are allowed to fulfill the
corresponding kinds of roles. The denotation of a service role is prescribed by a
set of service commitments. Each service commitment is associated with a debtor
and creditor role, life-cycle product (e.g. an eContract or a business document in
the Pilarcos ecosystem), and a service connection utilizable for discharging the
commitment. Business actions are partially ordered events labelled with service
commitments that define role interactions. Finally, business transactions compose
individual business actions into coherent wholes that can be offered by business
services.

The Pilarcos service ecosystem defines two kinds of business transactions,
represented in the model with elements BusinessTransaction and Epoch. One or
more business transactions are provided for each business network architecture
for structuring the business actions in coherent wholes. Typically a business net-
work architecture defines a single epoch which includes all business actions in the

5.2 Evaluation case: Pilarcos service ecosystem 157

class BusinessNetw orkArchitecture [;,;" BusinessNetworkArchitectureDiagramy - . -
«DynamicServiceConnection»
«DynamicServiceChoreography» 2 «DynamicServiceRole» Bu.smessNeh_NorkConnectlon
BusinessNetworkArchitecture BusinessNetworkRole BERIEE RIS SiesshcworkRole)
factions = BusinessNetworkAction , actor = ServiceProvider
connectlon§ = BusinessNetworkConnection commitments = BusinessNetworkCommitment } s lansaction» O
roles = BusinessNetworkRole , . .
i . . BusinessTransaction
transactions = Epoch , BusinessTransaction} 3 7 5
«DynamicBusinessAction» {action = BusinessNetworkAction }
BusinessNetworkAction
«DynamicServiceCommitment» {commitment = BusinessNetworkCommitment - - —
BusinessNetworkCommitment ransaction = Epoch , BusinessTransaction} «BusinessTransaction» ®
connection = BusinessNetworkConnection Epoch
creditor = BusinessNetworkRole , {action = BusinessNetworkAction }
debtor = BusinessNetworkRole ,
product = BusinessDocumentKind }

Figure 5.8: Specification of the Pilarcos business network architecture.

choreography. Pilarcos epochs denote periods of activity where the structure of
the eCommunity is stable [85]. Separate epochs can be used for breach recovery
or otherwise well-limited activity with different sets of roles still progressing the
work of the eCommunity [85].

Pilarcos domain ontology

The Pilarcos domain ontology formalizes the conceptual framework presented in
Section 5.2.1. The domain ontology includes specifications of concepts represent-
ing legal entities, services and contracting concepts. These foundational concepts
of the domain ontology and their SEAF-based specifications are presented in the
following.

In the Pilarcos framework legal entities are categorized in three groups: indi-
viduals, organizations, and enterprises. This categorization is specified with the
concept generalization hierarchy between legal entity kinds as illustrated in Fig-
ure 5.9. The entity kinds and entities are dynamic in the Pilarcos service ecosys-
tem: for example new kinds of organizations can be introduced to the ecosystem
during its operation. Every legal entity kind is subject to legislation and reputation
models; these cooperative features are dynamic in nature.

Pilarcos entities represented by the concept of PilarcosLegalEntity conform
to a single legal entity kind, and are associated with conformance point specifi-
cations. Each conformance point specification represents means for assessing the
conformance of the legal entity with respect to operational policies (PolicyConfor-
mancePoint), business rules (BusinessModelConformancePoint), and legislative
acts (LegislationConformancePoint).

The dynamic conformance point specifications associated with Pilarcos le-
gal entities are illustrated in Figure 5.10. Conformance points are cooperative

158 5 VALIDATION AND EVALUATION

|-

package PilarcosOntology [5 PilarcosLegaIEntityDiagramu

«LegalEntity» «LegalEntity Kind»
PilarcosLe galEntity PilarcoslLegal EntityKind
{conformsTo = PilarcoslegalEntityKind) {actor = Initiator , ServiceProvider,
cooperativeproperty = PolicyConformancePoint , cooperativefeature = DynamiclLegislationCategory
LegislationConformancePoint, BusinessModelConformancePoint, ReputationModel,
dentity = Pilarcosldentity dentitytype = PilarcosldentityType
sDynamic} sDynamic}

Lr «ConceptGeneralization»
«ConceptGeneralization» | |

«LegalEntity Kind» «LegalEntityKind»

OrganizationKind +employer 1.* | IndividualKind

+suborganizations feooperativefeature = DynamicBusinessModelCategory , |g_* +employee {isDynamic}

0..* IsDynamic}
+subOrganizationOf |0..* T«anceptGeneraIization»
«ConceptRelationship» «LegalEntityKind>»
Enterprise

{isDynamic}

Figure 5.9: Specification of Pilarcos legal entities

properties that conform to corresponding cooperative features, as defined in the
service ecosystem meta-model. The cooperative features, i.e. business models,
policy frameworks and legislation, are dynamic in the Pilarcos framework. The
evidence for conformance claims are provided in the Pilarcos service ecosystem
by the DischargeBusinessAction elements which represent activities specified in
Pilarcos business services.

The service entities in the Pilarcos service ecosystem comprise categories for
business and component services. The service entities and their kinds are dynamic
in the Pilarcos framework, i.e. the ontology of services can be extended during
ecosystem operation with both new service kinds and their instances. The Pilarcos
service entities are illustrated in Figure 5.11.

Business service kinds in the Pilarcos ecosystem are represented by the Pilar-
cosBusinessServiceKind specification with corresponding associations defined for
exposing business transactions and identifying the service role. Business services
are represented by the element named PilarcosBusinessService; commitments laid
by service choreographies are discharged with DischargeCommitment elements
that are specified as part of the business service intension. The DischargeCom-
mitment element is a static business service property which discharges business
actions defined in service choreographies (BusinessNetworkAction) with service
operations (ServiceOperation) defined in Pilarcos component service intension.

5.2 Evaluation case: Pilarcos service ecosystem

159

package PilarcosEngineeringSpace [E HlarcosCooperativePropertyDiagramu

«DynamicConformancePoint»
PolicyConformancePoint

{conformsTo = PilarcosPolicyFramework
evaluator = PilarcosLegalEntity
evidence = DischargeBusinessAction }

«DynamicConformancePoint»
LegislationConformancePoint

. {conformsTo = DynamicLegislationCategory
. evaluator = PilarcosLegalEntity

evidence = DischargeBusinessAction }

«DynamicConformancePoint»
BusinessModelConformancePoint

{conformsTo = DynamicBusinessModelCategory
evaluator = PilarcosLegalEntity
evidence = DischargeBusinessAction }

Figure 5.10: Specification of Pilarcos conformance points.

package PilarcosOntology [EE; FﬁlarcosServiceDiagramu

«BusinessServiceKind»

isDynamic,
servicerole = BusinessNetworkRole

PilarcosBusiness ServiceKind

«BusinessService»
PilarcosBusiness Service

conformsTo = PilarcosBusinessServiceKind

commitmentoperation = DischargeCommitment

transaction = BusinessTransaction } |jsDynamic}
«ComponentServiceKind» «ComponentService» «Servicelnterface»

Service Type PilarcosComponentService Servicelnterface
conversation = BusinessProtocol {conformsTo = ServiceType , {conformsTo = PilarcosServiceProtocol
sDynamic, interfaces = Servicelnterface exchange = MessageExchangePattern }
protocol = PilarcosServiceProtocol } isDynamic}

«DynamicMessageExchange»
Message Exchange Pattern

«ServiceOperation»-ServiceOperation{conformsTo = SimpleStage, document = PilarcosBusinessDocument}

Figure 5.11: Specification of Pilarcos service entities.

160 5 VALIDATION AND EVALUATION

package PilarcosOntology [Eﬁ HlarcosServicelnteractionDiagramu

«ComponentServiceKind» N «ServiceProtocol» ; «ServiceEndpointKind»
Service Type Pilarcos Service Protocol Pilarcos EndpointKind
{conversation = BusinessProtocol {conversation = BusinessProtocol addresskind = URL ,
sDynamic, scheme = DocOrientedScheme } sDynamic,
protocol = PilarcosServiceProtocol } scheme = DocOrientedScheme }
«InteractionScheme» «DynamicServiceActivity Kind» «DynamicServiceActivity Kind»
DocOrientedScheme Send Receive
{activitykinds = Receive , Send} | {document = PilarcosBusinessDocumentKind } | {document = PilarcosBusinessDocumentKind }

Figure 5.12: Specification of Pilarcos service interactions.

Component services and their kinds are represented in the Pilarcos service
ecosystem architecture with by elements of PilarcosComponentService and Ser-
viceType, correspondingly. Both component services and their kinds are dynamic
in the Pilarcos framework. A PilarcosComponentService conforms to a Service-
Type, and exposes message exchange patterns through a service interface speci-
fied by element Servicelnterface. The Servicelnterface 1s defined as part of the
Pilarcos component service intension; it conforms with PilarcosServiceProto-
col and realizes exchanges with MessageExchangePatterns. The communication
paradigm followed in the Pilarcos framework is document-oriented. Document-
orientation is reflected by the MessageExchangePattern specification which de-
fines a single service operation with a payload as defined by a business document
specification.

Component service kinds in the Pilarcos service ecosystem architecture are
specified with the element named ServiceType. A ServiceType delivers behavioural
capabilities as specified by the PilarcosServiceProtocol service protocol illus-
trated in Figure 5.12. The service protocol utilizes a document-oriented inter-
action scheme to realize behavioural pattern as specified by the BusinessProto-
col element. The document-oriented interaction scheme is defined as comprising
Send and Receive service activity kinds, as illustrated in Figure 5.12.

The service conversations delivered by Pilarcos component services are de-
fined with the PilarcosServiceProtocol element illustrated in Figure 5.13. The
service conversations in the Pilarcos framework comprise BusinessProtocolStage
elements. A BusinessProtocolStage is further classified into simple and choice
stages. Simple stages represent atomic message-sending and reception activities
while choices are composite stages that represent mutually exclusive alternatives
between a collection of business protocol stages. Business protocol Choice is an
abstract element with two concrete children: a Branch corresponds to an input

5.2 Evaluation case: Pilarcos service ecosystem 161

class ServiceType[2] BusinessProtocoIDiagramu

«DynamicServiceConversation» «DynamicServiceConversationStage»
BusinessProtocol BusinessProtocolStage
{stages = BusinessProtocolStage }

lr +stages |0..*

+selection |0..*

«DynamicServiceConversationStage» «DynamicServiceConversationStage»
SimpleStage Selection
{rec = BusinessProtocolStage }

: I

«DynamicServiceConversationStage» «DynamicServiceConversationStage»
SendMessage Branch
{activity = Send }

«DynamicServiceConversationStage»
ReceiveMessage
{activity = Receive }

«DynamicServiceConversationStage»
Choice

Figure 5.13: Specification of Pilarcos business protocols.

guarded choice while a Selection represents its dual operation of consisting of al-
ternate output activities. Consequently, the business protocols define behavioural
patterns that align with the syntax of session types [63, 55, 162, 23] which under-
lies the notion of Pilarcos service types [139, 134, 135].

The Pilarcos contracting concepts include business network architectures, busi-
ness network models, eContracts and service offers [87, 85]. These artefacts are
represented in the Pilarcos ecosystem architecture by the elements of BusinessNet-
workArchitecture (discussed above and illustrated in Figure 5.8), PilarcosLiaison,
PilarcosContract and PilarcosServiceOlffer, correspondingly. In the following,
the three latter concepts included in the Pilarcos domain ontology are described.

The elements defined in business network architectures are utilized in Pilarcos
business network models (BNM) [87]. A BNM composes a set of service roles
and connections to represent a business scenario within the service ecosystem.
The Pilarcos business network models comprise [87]:

162 5 VALIDATION AND EVALUATION

e A set of business network architectures associated with

— role assignment rules for guiding the populator to retrieve suitable
service offers from the service offer repository

— arecovery process to be used in case of contract breaches.

e role association requirements expressing how a business service is required
to simultaneously act in named roles; this allows functional slicing of the
model for reuse and design purposes;

e policy rules overarching the business network model providing invariants
that need to be fulfilled;

e breach recovery process name and type (type for example "dissolving",
"restarting"”, or "continuable with sanctions")

The Pilarcos BNM is modelled using the concept of PilarcosLiaison, as il-
lustrated in Figure 5.14. The specification defines the structure and contents of
Pilarcos liaisons, and is declared as a representation of the BNM artefact spec-
ified in the Pilarcos life-cycle model. The PilarcosLiaison is a dynamic con-
cept which defines that in the Collaboration phase of the Pilarcos collaboration
coordination life-cycle service choreographies conforming with the BusinessNet-
workArchitecture specification are used. Moreover, the PilarcosLiaison declares
that liaisons in the Pilarcos framework are subject to five kinds of feature bind-
ings: BNMFeatureBinding, PolicyFrameworkBinding, EFFBinding, EpochTran-
sitionBinding and BusinessRoleAssociationBinding. These feature bindings are
specified in the Pilarcos binding model which is discussed later in this section.

The Pilarcos service contract is defined by the PilarcosContract model el-
ement in Figure 5.14. PilarcosContract specification defines a service channel
to be used (PilarcosServiceChannel), a commitment operation to discharge ser-
vice choreography commitments (DischargeBusinessAction), a liaison to follow
(PilarcosLiaison). Moreover, the specification declares bindings for associating
endpoints (EndpointBinding) and service ports (PilarcosPortBinding) that enable
structured service interactions in the Pilarcos framework.

The service channels in the Pilarcos framework are specified as defined in the
PilarcosServiceChannel element. A Pilarcos service channel comprises a set of
channel phases (ChannelPhase) and binding ports specified in intensional defi-
nitions of Pilarcos channel types and service offers, correspondingly. The inten-
sional definition of PilarcosServiceChannel provides specifications for endpoint
bindings and service links utilizable in the Pilarcos service ecosystem.

The commitment operations and port bindings in service contracts are taken
from service offers published by service providers. The service offers of the Pi-
larcos framework are defined by the PilarcosServiceOlffer element illustrated in

5.2 Evaluation case: Pilarcos service ecosystem 163

package PilarcosOntology [jg HlarcosContractingDiagramU T

Pilarcos Service Offer

«ServiceContract»

Pilarcos Contract
{channel = PilarcosServiceChannel
commitmentoperation = DischargeBusinessAction
isDynamic,
liaison = PilarcosLiaison ,
propertybinding = EndpointBinding , PilarcosPortBinding,
representationOf = eContractTemplate , eContract}

{bindingport = PilarcosBindingPort
commitmentoperation = DischargeBusinessAction
sDynamic = false ,

portbinding = PilarcosPortBinding

provider = PilarcosLegalEntity
representationOf = ServiceOffer

service = PilarcosBusinessService }

«ServiceLiaison» M «ServiceChannel»
PilarcosLiaison i Pilarcos Service Channel
choreography = BusinessNetworkArchitecture channelproperty = ChannelPhase |, PilarcosBindingPort,
featurebinding = BNMFeatureBinding , PolicyFrameworkBinding, endpointbinding = EndpointBinding
EFFBinding, EpochTransitionBinding, BusinessRoleAssociationBinding, nteractionbinding = InteractionBinding
isDynamic, sDynamic}
phase = Collaboration ,
representationOf = BNM }

Figure 5.14: Specification of Pilarcos contracting concepts.

Figure 5.14. A service offer in this architecture framework is defined as a concept
which associates a business service with a legal entity. Moreover, a service offer
specifies service ports as sets of service operations and their bindings to service
endpoints, and commitment operations provided by the business service to fulfill
the commitments defined in a service choreography.

It should be noted that concepts in SEAF domain ontologies can be declared
as representations of multiple life-cycle artefacts. Such one-to-many relationship
between concepts and life-cycle artefacts is needed for encoding different roles of
knowledge in service ecosystem life cycles. This enables formalization of context-
and situation-specific interpretations for concepts and variable consistency criteria
for their intensions. For example, the PilarcosContract concept in Figure 5.14
represents two life-cycle artefacts, eContractTemplate and eContract, which have
different roles and consistency criteria in the collaboration coordination life cycle.

Pilarcos engineering space

The Pilarcos engineering space provides a definition of the binding model used
in the service ecosystem. A binding model includes specifications for bindable
features and feature bindings utilized in the ecosystem. Essentially, the binding
model declares what kinds of features are bindable (dynamically) to the differ-
ent contractual subjects of the service ecosystem. Engineering methods, product
models or other elements of engineering spaces are not defined using the UML-
based modelling tool. Instead, default versions of these service ecosystem archi-
tecture model elements are generated automatically by the model transformations,
as discussed in Section 4.2.

164

5 VALIDATION AND EVALUATION

package PilarcosEngineeringSpace [g%: PilarcosFeatureBindingDiagramu

«ContractualFeatureBinding»
BNMFeatureBinding
{contractualfeature = PilarcosChargingStyle
PilarcosSettlementModelKind,
arget = BusinessTransaction }

«ContractualFeatureBinding»
EpochTransitionBinding
{contractualfeature = EpochTransitionCoordinationKind
arget = Epoch }

«ContractualFeatureBinding»
BusinessServiceFeatureBinding
{contractualfeature = PilarcosSpatialAvailabilityKind
PilarcosTemporalAvailabilityKind, PilarcosChargingStyle,
arget = PilarcosBusinessService }

«ContractualFeatureBinding»

BreachRecoveryBinding
{contractualfeature = BreachRecoveryCoordinationKind
arget = BusinessTransaction }

«CooperativeFeatureBinding»
PolicyFramew orkBinding
{cooperativefeature = PilarcosPolicyFramework

«CooperativeFeatureBinding»
BusinessRole AssociationBinding
{cooperativefeature = RoleDependencyPolicyKind

arget = BusinessNetworkRole } target = BusinessNetworkRole }

«BxtraFunctionalFeatureBinding»
EFFBinding
extrafunctionalfeature = InteractionModel
CommunicationFeature,
arget = BusinessNetworkConnection }

Figure 5.15: Specification of Pilarcos feature bindings.

The Pilarcos ecosystem defines four contractual features, two cooperative fea-
tures, and one category of extra-functional features. The corresponding binding
specifications are illustrated in Figure 5.15. Each feature binding specification
declares the source (one or more features) and target (an ecosystem element) of
the binding and the purpose of the binding specification.

The BNMFeatureBinding element is used for binding charging style and set-
tlement model kinds to business transactions in the Pilarcos service ecosystem.
Charging style and settlement model kinds are dynamic contractual features rep-
resented by the elements of PilarcosChargingStyle and PilarcosSettlementMod-
elkind, correspondingly. Dynamic features for declaration of spatial and temporal
availability kinds, as well as charging styles, can be bound to Pilarcos business ser-
vices, as modelled by the BusinessServiceFeatureBinding element in Figure 5.15.
Specifications of EpochTransitionBinding and BreachRecoveryBinding represent
means for declaring processes for epoch transitions [85] and business transaction
recovery as bindable features. As a consequence, service providers may dynam-
ically negotiate about appropriate epoch transition and breach recovery proceed-
ings during the Pilarcos collaboration coordination life cycle.

The Pilarcos service ecosystem architecture declares two binding specifica-
tions that address cooperative features, namely PolicyFrameworkBindings and
BusinessRoleAssociationBindings, as illustrated in Figure 5.15. The PolicyFrame-

5.2 Evaluation case: Pilarcos service ecosystem 165

package PFilarcosOntology [llij PiIarcosFaciIityDiagramu

«BindingType» «StaticInteractionFeature»
PilarcosBindingType InteractionModel
{delivers = WS-* , (PilarcosDomain.Pilarcos EngineeringSpace)

isDynamic = false } | | [nteractionFeature»Ws-*
«BindingPortType»+bindingporttype : DocOrientedScheme [1..*] | | «InteractionFeature»REST

«ChannelType» «DynamicCommunicationFeature»
PilarcosChannelType CommunicationFeature
{channelfeature = PilarcosChannelFeature (PilarcosDomain.Pilarcos EngineeringSpace)
delivers = CommunicationFeature

sDynamic}

«DynamicChannelFeature»
PilarcosChannelFeature
{predecessor = PilarcosChannelFeature }

Figure 5.16: Specification of Pilarcos cooperation facilities.

workBinding defines a binding between Pilarcos policy frameworks and business
network roles. Policy frameworks in the Pilarcos framework are considered as
dynamic collections of operational policies. The BusinessRoleAssociationBind-
ing defines requirements for participation of entities in a business network model.
A Pilarcos role association requirement expresses how a business service is re-
quired to simultaneously act in named roles [87]. For expressing such dependen-
cies the dynamic policy framework named RoleDependencyPolicyKind is used,
which comprises a collection of role association rules. Each role association rule
defines a binary relationship between two service roles. The relationships denote
either a requirement for coincidence or mutual exclusion between roles.

Finally, the Pilarcos binding model provides specifications for extra-functional
feature bindings. The EFFBinding element defines that business network connec-
tions can be associated with extra-functional features named InteractionModel
and CommunicationFeature, as illustrated in Figure 5.15.

The InteractionModel in the Pilarcos service ecosystem architecture is a static
extra-functional feature which specifies two alternatives for service interaction:
WS-*[169] or REST [56], as illustrated in Figure 5.16. The CommunicationFea-
ture element represents a dynamic communication feature which can be used for
declaring requirements for secured communication, for example. The communi-
cation features in the Pilarcos framework are delivered by channel type declara-
tions that conform with the PilarcosChannelType specification.

166 5 VALIDATION AND EVALUATION

5.3 Evaluation results

In this section the feasibility, applicability and utility of the overall approach are
assessed. The feasibility of the approach is validated in Section 5.3.1 by demon-
strating the implementability of the developed artefacts. The applicability of the
approach is evaluated in Section 5.3.2 assessing the practical suitability of the
approach for supporting systems engineering life cycles of service ecosystems.

The foundational utility of the approach is facilitation of service ecosystem
sustainability. Requirements for service ecosystem viability and principles for
supporting the continuation of viability, which were discussed in Section 2.3, pro-
vide the evaluation criteria for the utility and added value of the approach. To
assess the utility, we demonstrate: a) that the approach addresses all relevant ser-
vice ecosystem stakeholder concerns, and b) that the approach enables support for
continuation of service ecosystem viability. These assessments are presented in
Section 5.3.3 and Section 5.3.4, correspondingly.

5.3.1 Validating the feasibility of the approach

The feasibility of the model-driven approach for service ecosystem engineering
defined in this dissertation is implied by the technical implementability of its in-
dividual components: conceptual model, service ecosystem meta-model, SEAF,
and the model-driven methodology. In the following, the feasibility of these con-
structs is discussed.

The feasibility of the conceptual model for service ecosystems is addressed
with respect to two complementary aspects: /) completeness, and 2) consistency.
Completeness of the conceptual model here means that sufficient vocabulary is
provided for expressing the characteristics of service ecosystems. Consistency
of the conceptual model means that the terms included do not conflict with each
other, and that there are no redundant terms in the vocabulary.

The conceptual model for service ecosystems is sufficiently complete for rep-
resenting the concepts of state-of-the-art service ecosystems. This was validated
by the case study presented in Section 5.2 where the Pilarcos framework was
modelled using the vocabulary of the conceptual model. The consistency of the
conceptual model is validated by its rigorous formalization in the service eco-
system meta-model presented in Chapter 3. The formalization as a meta-model
makes explicit the relationships between concepts and their properties, which has
enabled analysis of the dependencies between concepts during the design of the
meta-model. There are no redundant, or orphan, terms in the vocabulary; this has
been validated with the meta-model.

Feasibility as in technical implementability is not an issue when considering
the service ecosystem meta-model, since the meta-model was constructed as an

5.3 Evaluation results 167

technological artefact from the beginning. The meta-model has been designed
using a commercial modelling tool. The UML model of the service ecosystem
meta-model comprises over 260 classes. The UML model was then exported to
an EMF Ecore [39] model for enabling the implementation of the model-driven
methodology for service ecosystem engineering.

The feasibility of SEAF has been validated by the UML-based implementa-
tion. Realization of the model-driven methodology necessitated implementation
of SEAF over an UML tool; the technical implementability of SEAF is thus vali-
dated. Moreover, the model-driven methodology gave evidence of the usability of
SEAF as part of a model-driven service ecosystem engineering process.

Feasibility of the model-driven methodology for service ecosystem engineer-
ing has been validated by implementing a series of model transformations. The
model transformations, as described in Section 4.2, first refine the UML-based
architecture descriptions produced with SEAF. The refined architecture descrip-
tions are realized as EMF models [39]. The refined models are then consumed by
a family of model transformations which generate technology-specific engineer-
ing artefacts, as described in Section 4.2. The family of model transformations
generate Java classes and interfaces, EMF meta-models representing the abstract
syntaxes of domain-specific languages, and OSGi [120] descriptions. The en-
abling efficient implementation of corresponding knowledge repositories. The
selection of technology-specific model transformations validate that service eco-
system models can be utilized for enabling efficient, model-driven engineering of
service ecosystems.

5.3.2 [Evaluating the applicability of the approach

The applicability of the conceptual model is demonstrated by its practical usabil-
ity for service ecosystem design and analysis. The case study conducted in Sec-
tion 5.2 has demonstrated that the conceptual model is applicable for identifica-
tion and decomposition of service ecosystem elements. Moreover, the conceptual
model provides means for well-defined service ecosystem design by providing
concepts such as capabilities, life cycles, and their relationships. The different
conceptual hierarchies contained in the conceptual model, especially those for
different service ecosystem entities and concepts, support service ecosystem anal-
ysis activities.

The applicability of the service ecosystem meta-model is demonstrated espe-
cially by the model-driven methodology for service ecosystem engineering, which
was described in Section 4.2. Moreover, the design of SEAF presented in Chap-
ter 4 and its implementation were aligned with the meta-model. The applicability
of SEAF was validated with its usage in the Pilarcos case study presented in Sec-
tion 5.2. The Pilarcos case study proved the practical suitability of SEAF for con-

168 5 VALIDATION AND EVALUATION

structing service ecosystem architecture descriptions. The viewpoints included in
SEAF provide structuring mechanisms for rigorous design and analysis of service
ecosystem architectures.

The applicability of the model-driven methodology for service ecosystem in-
strumentation is demonstrated by production of proof-of-concept engineering arte-
facts. The selection of engineering artefacts that were produced by the model
transformations represent typical elements needed for implementation of infras-
tructure services (e.g. Java interfaces and OSGi-based [120] deployment descrip-
tors) and engineering tools (e.g. EMF-based [39] meta-models for a family of
DSLs). The generated engineering artefacts enable efficient instrumentation of
the Pilarcos service ecosystem using contemporary technological platforms, such
as Java, OSGi [120] and EMF [39]. Evidently, with different kinds of technology-
specific model transformations (e.g. different deployment descriptors instead of
OSGi) service ecosystems can be efficiently instrumented over cloud computing
platforms, for example.

5.3.3 Evaluating the support for ecosystem viability

Viability is achieved by supporting the operation of stakeholders and addressing
their primary concerns. The service ecosystem stakeholders identified in this the-
sis were: /) service ecosystem provider, 2) infrastructure provider, 3) engineering
tool provider, 4) service engineer, 5) service provider, and 6) service consumer.
The support for ecosystem viability is assessed below by considering the stake-
holder concerns and how they are addressed in the approach.

From a service ecosystem provider perspective, the approach provides means
for analysis and design of service ecosystems. Service-related concepts of SEAF
cover a contemporary SOA reference model [154], as will be demonstrated in
Section 5.4.1. Thus service ecosystem models produced with the approach can
be further analysed with respect to other service-based systems (e.g. local SOA
deployments or contemporary service-based cloud systems) aligning with the OA-
SIS SOA-RM reference model [154]. Especially the conceptual model and SEAF
enable service ecosystem providers to identify required service ecosystem capa-
bilities and elements, e.g. infrastructure service or engineering methods, needed
for delivering those capabilities. The service ecosystem meta-model enables for-
malization and automation of service ecosystem architecture activities. During
service ecosystem operation explicitly available, formal architecture models pro-
vide support for governing the operation of service ecosystems [143].

From a service infrastructure provider perspective the approach developed in
this thesis enables identification and design, as well as efficient production of
infrastructure services. Means for identification and design of infrastructure ser-
vices are addressed by the conceptual model and the architecture framework. The

5.3 Evaluation results 169

model-driven methodology for service ecosystem instrumentation supports effi-
cient production of infrastructure services. Efficiency is gained through utilization
of model-driven engineering [144] practices. With respect to the operation phase
of service ecosystems, the architecture models can be utilized for establishing in-
teroperability between infrastructure services. The architecture models encode
e.g. the dependencies between knowledge items and sharing of duties, as well as
roles of infrastructure services. With application of model-driven methods, such
as the model-driven methodology developed in this thesis, service infrastructure
providers can establish interoperation more effortlessly.

Concerns identified for service engineering tool providers are addressed by
the approach. The conceptual model and the architecture framework enable iden-
tification and design of engineering capabilities that are needed in a service eco-
system for delivery of component services. The identified engineering capabili-
ties are formalized in service ecosystem architecture models, and thus efficiently
shared to engineering tool providers for further analysis, feedback and implemen-
tation.

The model-driven methodology demonstrates that the approach supports effi-
cient production and specialization of engineering tools and languages. The eco-
system architecture models are utilizable for generating abstract syntax definitions
(i.e. meta-models) of a modelling language family for describing the intensional
specifications of concepts. As part of the research evaluation, model transforma-
tions have been implemented in the Eclipse Modeling Framework [39] for produc-
ing meta-models for each intensional definition included in a service ecosystem
architecture model. The abstract syntax definitions provide means for develop-
ing service ecosystem-specific modelling tools manually. The Eclipse Modelling
Framework [39] can then be utilized for implementing model editors with graph-
ical or textual concrete syntaxes for the generated meta-models.

Within more specialized domains, such as vendor-specific product lines, more
specific and complex engineering tool artefacts can be generated. For example,
concrete syntax definitions (e.g. UML profiles), modelling tool specification de-
scriptions (e.g. user-interface configurations) and implementation components
(e.g. Java-classes) could be generated from the ecosystem models. Following
such an approach, the service engineering tool providers can establish model-
driven software product lines (SPL) [33] for efficient tool production and special-
ization. Such a product line architecture can open both economies of scale (i.e.
implementing tools for many ecosystems) and economies of scope (i.e. providing
specialized tools for each ecosystem) for service engineering tool providers. A
similar SPL-based approach would be applicable for other stakeholders, such as
infrastructure service providers and service engineers as well.

With respect to service ecosystem operation, the service ecosystem architec-

170 5 VALIDATION AND EVALUATION

ture models are utilizable for enabling interoperability and integration between
different service engineering tools and languages. In this context, the service eco-
system architecture models are used as unifying, shared models. The processes
and syntaxes of engineering tools and languages utilized locally in enterprises are
mapped to the methods and abstract syntaxes defined in the service ecosystem
architecture models. Model transformations can be utilized for such purposes.

For service engineers the approach developed in this thesis enables well-
advised service engineering practices. As discussed in Section 2.3.1, well-advised
service engineering refers to both correspondence of service engineering with
the business models (“well-advised motivations”) and pragmatics (“well-advised
practices”) of the service ecosystem. With respect to well-advised motivations,
the approach provides a holistic framework which unifies business-level service
choreographies with elements contributing to service engineering, such as differ-
ent kinds of service and interaction features. In service ecosystems the service
choreographies are based on the business networks and business models relevant
in the corresponding business domain. The service engineers can utilize pub-
lished service choreography descriptions for developing services that correspond
closely to the needs of the underlying business models. Service development
based on published service choreography descriptions provides well-advised mo-
tivations for service engineering. Moreover, utilization of domain-specific service
description languages and specialized engineering tools decreases the semantic
gap between service engineering and business engineering domains. The engi-
neering viewpoint of SEAF addresses well-advised practices by providing means
for specification of methods and tools required for instrumenting service engi-
neering.

For service providers the approach provides expressive concepts for speci-
fication of service bundling and service contracting relationships. The service
contracting concepts defined in the conceptual model and the service ecosystem
meta-model enable exploitation of sub-contracting relationships (through com-
mitment operations aligning with [150]), asymmetric contracts (e.g. definition
of consumer-provider, in-sourcing and out-sourcing contracts), and introduction
of value-adding operations by service providers. This facilitates efficient service
delivery by enabling utilization of provider-specific competencies and business
networks (e.g. sub-contracting relationships), autonomy over service bundling, as
well as service provider differentiation.

From a service consumer perspective the approach provides means for en-
abling service identification and selection in open service ecosystems. The con-
ceptual model and service ecosystem meta-model provides means for establishing
ecosystem-specific service categorization, service ontologies and variable features
in service offers. Service categorization is enabled through use of a two-level on-

5.3 Evaluation results 171

tological modelling approach, where services conform to service kinds [135]. The
extendability of the service ecosystem meta-model provides means for specifying
domain-specific relationships and concepts, and thus ontologies, over the core ser-
vice concepts. The feature category included in the conceptual model and formal-
ized in the service ecosystem meta-model enables management of functional and
non-functional features in open service ecosystems [141], and facilitates feature-
based discovery and selection of services.

Table 5.1 summarizes the contributions of this work with respect to service
ecosystem viability. Service ecosystem viability is enhanced by addressing the
fundamental concerns of primary ecosystem stakeholders. In the table, each stake-
holder concern identified in Section 2.2 is associated with an engineering artefact
that addresses the corresponding concerns. While the approach developed in this
thesis does not address service ecosystem operation, the service ecosystem ar-
chitecture models can be utilized in the operation phase for addressing several
stakeholder concerns. Thus, the approach addresses those concerns by enabling
creation of service ecosystem architecture models.

5.3.4 Evaluating the support for continuation of viability

As discussed in Section 2.3.2, continuation of viability is guaranteed during the
service ecosystem operation phase by supporting four fundamental service eco-
system objectives: [) efficient utilization of core competencies, 2) opportunis-
tic and flexible business networking, 3) supporting progressive business environ-
ments, and 4) efficient business decision making. These objectives are supported
by the principles for continued viability which were identified, in conjunction with
their implications, in Section 2.3.2. While the overall approach described in this
thesis does not explicitly consider the service ecosystem operation phase, the sup-
port for continuation of viability enabled by the approach is discussed below with
respect to the principles and their implications.

Two principles for supporting efficient utilization of core competencies in ser-
vice ecosystems were identified in Section 2.3.2: ecosystem member autonomy,
and dependability of service collaborations. The service ecosystem architecture
models can be utilized for facilitating member autonomy. First of all, the architec-
ture models can be used for compatibility analysis and integration between local
engineering processes, methods and tools with the engineering spaces in service
ecosystems. Secondly, the architecture models enable analysis and integration
of business processes and policies with those of the service ecosystems. For
example, analysis between local enterprise architectures (see e.g. [88]) and ser-
vice ecosystem architecture models are enabled. Thirdly, the service ecosystem
models are utilizable as shared, unified representations of services, features, and
other service ecosystem concepts to overcome semantic interoperability problems

Stakeholder

Name

Addressed by engineering artefact

Ecosystem provider

Identification of required ecosystem capabilities and elements sup-
porting the delivery of those.

conceptual model; SEAF

Formalization of service ecosystem architecture descriptions.

service ecosystem meta-model

Supporting service ecosystem governance.

service ecosystem architecture models

Infrastructure provider

Identification and design of required infrastructure services.

conceptual model; SEAF

Efficient production of infrastructure services.

model-driven methodology

Infrastructure service interoperability.

service ecosystem architecture models

Engineering tool provider

5 VALIDATION AND EVALUATION

Identification of engineering capabilities required for component
service production.

conceptual model; SEAF

Efficient tool production and specialization.

model-driven methodology

Tool and language interoperability and integration.

service ecosystem architecture models

Service engineer

Identification of engineering capabilities required for component
service production (shared with engineering tool providers).

conceptual model; SEAF

Well-advised service engineering.

service ecosystem architecture models

Efficient component service production.

service ecosystem architecture models

Service provider

Service bundling.

conceptual model; service ecosystem architecture models

Service contracting.

conceptual model; service ecosystem architecture models

Service consumer

Business service identification, location and selection.

service ecosystem architecture models

Business service dependability.

service ecosystem architecture models

Business service monitoring.

service ecosystem architecture models

Table 5.1: Addressing service ecosystem stakeholder concerns in the overall approach.

172

5.3 Evaluation results 173

between local enterprise and ecosystem domains, that is, the service ecosystem
architecture models enable interoperability approaches based on unification (see
e.g. [138]).

For addressing the dependability of service collaborations, the explicit ecosys-
tem architecture models can be analysed locally for possible conflicts or threats
with respect to the organization’s operation. Moreover, the architecture models
can be utilized for model-driven production and configuration of the local commu-
nication and monitoring infrastructure, and model-driven deployment of services
(see e.g. [4]).

The principle of dynamic business service collaborations was identified in
Section 2.3.2 as the primary means for supporting opportunistic and flexible busi-
ness networking in service ecosystems. Dynamism required for enabling oppor-
tunistic and flexible business networking is addressed in the concept definitions
of domain ontologies. With the structures defined in the service ecosystem meta-
model, each concept can be declared as either static or dynamic. Static concepts
can not be instantiated during service ecosystem operation; they can be utilized
to represent for example immutable services in Infrastructure-as-a-Service cloud
environments. Dynamic concepts are utilizable for expressing extendable service
ecosystem knowledge.

To enable dynamic business service collaborations, means for on-demand es-
tablishment of business service collaborations is needed. Towards this purpose,
the conceptual model and the service ecosystem meta-model include elements
for describing and managing dynamic service choreographies. The mechanisms
and processes for achieving dynamic business service collaborations are domain-
specific. For example in the Pilarcos framework the specifics of dynamic business
service collaboration establishment are addressed in the collaboration coordina-
tion life cycle, as described in Section 5.2.

Dynamic business service collaborations also require means for loose cou-
pling of business services. The conceptual model and the service ecosystem meta-
model are designed from the ground-up for the purpose of enabling late binding
and late encapsulation. This design principle is reflected for example in the cate-
gorization of features and services, different behavioural elements, and the design
of the binding model elements.

For supporting progressive business environments, two foundational princi-
ples were identified in Section 2.3.2: 1) open model of ecosystem participation,
and 2) extendability of ecosystem knowledge bases. The open model of ecosystem
participation is addressed in the overall approach (conceptual model, meta-model,
and the model-driven methodology) by mechanisms that enable declaration of dy-
namism with respect to service ecosystem members (i.e. legal entities) in service
ecosystem models, as discussed above.

174 5 VALIDATION AND EVALUATION

Extendability of ecosystem knowledge bases is addressed in the meta-model
by providing mechanisms that allow service ecosystem specialization, and (dy-
namic) generalization and instantiation hierarchies. Service ecosystem special-
ization is addressed in the service ecosystem meta-model by providing means
for representation of domain-specific extensions of the meta-model. The concept
intensions and ecosystem features can be extended with domain-specific proper-
ties by exploiting the ExtendableElement-modelling element. Generalization and
instantiation hierarchies are enabled with two modelling constructs in the meta-
model: GenerizableElement and InstantiatableElement, as discussed in Chapter 3,
for generalization hierarchies and deep instantiation [7] of intension model ele-
ments, correspondingly.

Supporting efficient business decision making is founded on two principles,
as identified in Section 2.3.2:]) predictability of joining and operating in service
ecosystems, and 2) governability of service ecosystem operation.

With respect to predictability, the approach enables rigorous architectural de-
sign and analysis of service ecosystems. In the case study presented in Section 5.2
SEAF was successfully utilized for defining the concepts of the Pilarcos frame-
work, analysing the nature and properties of required artefacts, and design of the
Pilarcos service ecosystem architecture.

The added value and utility with respect to the contemporary service-oriented
architecture engineering approaches is the holistic approach, and the rigour of
design and analysis the SEAF provides. During the case study several concepts
of the Pilarcos framework were defined more formally than was possible before.
In the Pilarcos case presented in Section 5.2, application of the conceptual model
revealed gaps between Pilarcos concepts related to contracting, epochs, and the
role of contractual and cooperative features in specification of business network
models. The conceptual model for service ecosystems was successfully used for
formalizing and clarifying these relationships between the Pilarcos concepts.

Especially, the Pilarcos binding model was formalized as part of the case
study. With utilization of SEAF a few conceptual gaps were identified in the Pi-
larcos framework related to epochs and their transitions, business transactions and
recovery processes, as well as role assignment rules. The nature and positioning
of these Pilarcos concepts was quite implicit before. With the analysis power of
SEAF the characteristics of these concepts were identified and consequently for-
malized as kinds of contractual and cooperative features bindable with different
kinds of business transactions and business roles.

Service ecosystem architecture models are utilizable for supporting model-
driven interoperability and governance in service ecosystems. For model-driven
interoperability approaches the service ecosystem meta-model provides means for
creation of service ecosystem architecture models; the architecture models can be

5.4 Comparison to related work 175

utilized for establishing interoperability through unification and federation (see
e.g. [137, 140]). Semantic interoperability is addressed by specification of the
domain ontology model which formalizes the conceptual model for service eco-
systems. The domain ontology model definition of holistic, unifying ecosystem
models which are utilizable for establishing semantic interoperability in service
ecosystems. The domain ontology model is extended by service ecosystem archi-
tectures to represent the domain-specific versions of the general concepts. Spec-
ifications of ecosystem life cycles, choreographies (static or dynamic) and con-
tracting concepts in ecosystem models support pragmatic interoperability [6] in
service ecosystems.

Finally, the service ecosystem architecture models enable collaborative model-
based governance practices in open service ecosystems [143]. In the Pilarcos
framework shared service ecosystem architecture models provide consistency and
conformance criteria to be maintained by the knowledge repositories which com-
prise part of the governance infrastructure in the Pilarcos framework. Such co-
herent infrastructure specifications are invaluable for the enabling collaboration
establishment processes and their governance in open service ecosystems with
autonomic participants.

The above discussion about supporting the principles of continued viability is
summarized in Table 5.2 and Table 5.3. As can be seen in the tables, all principles
that are required for establishing continuation of viability, as discussed in Sec-
tion 2.3.2, are supported. As a consequence, the approach developed in this thesis
delivers additional value for service ecosystem stakeholders by enabling means
for efficient utilization of core competencies, opportunistic and flexible business
networking, supporting progressive business environments, and efficient business
decision making.

As a summary of the evaluation results, the overall approach developed in this
thesis enables facilitation of service ecosystem sustainability. The viability of ser-
vice ecosystems is supported by the approach by addressing all the foundational
concerns of service ecosystem stakeholders. Moreover, the approach enables sup-
port for continuation of viability during service ecosystem operation.

5.4 Comparison to related work

The challenge of designing, instrumenting and managing service ecosystems has
been identified in academia, the standardization community and industry, and is
being addressed by different approaches. Moreover, these challenges are consid-
ered fundamental for enhancing the competitiveness of European service-based
business: they are being addressed in the European Commission FP7-ICT Pro-
gramme for Research and Development by objective 1.2 [52] which takes steps

5 VALIDATION AND EVALUATION

176

Principle

Implication

Supporting usage scenario

Ecosystem member auton-
omy

Members can follow their established practices to operate in the eco-
system.

Explicit architecture models enable compatibility analysis and inte-
gration of local engineering processes, tools and methods with those
of the ecosystem.

Facilities are provided for supporting effortless integration and com-
patibility of local practices with ecosystem capabilities and policies.

Explicit architecture models enable compatibility analysis and in-
tegration of local business processes and policies with those of the
ecosystem.

Interoperability service utilities are provided for identifying and
handling interoperability problems between autonomously provided
services, and features and policies associated with them.

The architecture models can be utilized as shared, unified represen-
tations of the services, features, and other concepts to overcome se-
mantics interoperability problems.

Dependability of service
collaborations

Ecosystem provides means for assessing, establishing and monitor-
ing dependability of service collaborations. In open service ecosys-
tems this involves especially the aspects of trust, privacy and secu-
rity.

Explicit ecosystem architectures can be analysed for possible threats
to organization’s operation; The architecture models can be utilized
for model-driven production and configuration of local communica-
tion and monitoring infrastructure.

Dynamic business service
collaborations

Ecosystem provides means for establishing business service collab-
orations on demand.

The conceptual model and the service ecosystem meta-model in-
clude elements for describing and managing dynamic service chore-
ographies.

Mechanisms are provided for loose coupling of business services;
this includes especially late binding and late encapsulation of ser-
vices.

The conceptual model and the meta-model are designed for the pur-
pose of enabling late binding and late encapsulation.

Table 5.2: Supporting the principles for continued viability.

177

5.4 Comparison to related work

‘panunuod AIqerA panunuod 10j sordrounid oy Sunioddng :¢°¢ 9[qel.

‘[¢41] seonoead souruIon0d
QAIIBIOQE[[0D S[QBUS S[OPOU INJIIYDIL WIISKS0 DIAIS J1or[d Xy

‘uonerodo walsAs099 IIIAIIS JO JOUBUIIAOS JANIRIOQR][0D 0]
suedW Y)IM papiaoid a1e sroquiaw W)SAS0dq AN[IQRUIIACS [BqO[D)

-9rdwrexa JoJ ‘sarm
-09)1yoIe 2s11dIua [200] 03 103dSaT YIIM SISA[RUBR-SSOID [BINJOAIYOIR
J10J POZINN 2q UBD S[OPOW AINJOAIYOIB WIISAS0I 991AIdS JOIdXH

‘senyiiqedes pue syuowaInbor
W)SAS009 YITM OUBPIOIIL UT SIINJIIYITR POJUSLIO-9OTAIAS [BIO]
II9Y) UIOAOS 0) 9[qe OIB SIQUIOW W)SAS00 :AIIqRUISAOS [BOO]

‘uone1ado wIsAs009
90TAIOS JO AJ[IQBRUISAOD)

‘spoyjewt oyroads-urewtop oyeridoidde
)M pasK[eue 9 UBD S[OPOW SINJIIYOIR WI)SAS003 9OTAISS JIoT[dXy

"SQINJOIYOTE AOTAIOS
pue ostdioyuo Teooy 0y 3oedsar yim sjuewarnbar pue seniiqedes
II9Y) pUB ‘SWAISAS009 JIAIS JO AII[IQISBR) pue AjLnjewr oy} SuizA|
-BUR JOJ SPOYIOU YIIM POpIA0Id oIe SIOqUIOW WI9ISAS00d ([BTIU)OJ)

“SWo)SAs009
901A19s ul Junerodo pue
Suturol jo - Kipiqesorpaig

-a3po[mouy W)SAS0 IJIAIAS JO UOTN[OAD
(orwreuAp) pue uonezierodds waISAS00d 991AIIS 10J SWISIUBYOIIW
PUB SJUSWI[Q IpN[OUl [POW-BIdW Y} pue [dpow [enidoouod ayf,

‘PUBLIAP UO PIONPONUI Aq UBD
S)I0M]U SSAUISNQ pUe SANI[I0B] U0NeIdd00D ‘SIOIAIIS JO SPUD MIN

"soseq oSpoymouy way
-sAs000 JOo AI[IqepuUdIXH

*so1ydeI30910Ud 9014108
otwreuAp yim payroddns o1 901 901AIOS OTWRUA(] SpULy AU pue
SONUQ OTWEUAP OPN[OUT UBD SOINJOAIYOTE WI)SAS00d 9ITAIAS Y],

's10110d WOISAS099 YIIM 9OUBPIOIIE U ‘WIISAS
-000 9OTAISS 91} UT 9[qR[TEAL O[O AU oe} ABWI SIOQUIOW W)SASO0Hq
YSIm AUl se SwaIsAs009 A9l pue urol Aew sennue drwouoINy

‘uonedroned
wa)s£5099 jo [opow uadQp

or1eudds dgesn sunroddng

uonedrduy

pdnurig

178 5 VALIDATION AND EVALUATION

towards the vision of “Internet of Services”.

In this section a comparison to related work is given. The approach developed
in this thesis is founded on service orientation. Several standardization efforts re-
lated to service orientation have been conducted by organizations such as W3C
(e.g. web services technologies), OMG (e.g. modelling languages), ISO (e.g.
principles and frameworks for service-oriented systems) and OASIS (e.g. refer-
ence models and architectures for service orientation). Since the approach taken
in this thesis is technology agnostic, and concentrates on conceptual and architec-
tural aspects of service ecosystems, the focus of the comparison is on related work
considering reference models and architectural frameworks for service-oriented
systems engineering.

In Section 5.4.1 a comparison between the conceptual model developed in
this thesis and the OASIS SOA-RM [154] is given. OASIS SOA-RM provides a
definition of a reference model for service-oriented architectures. The reference
model comprises a set of concepts and their relationships, and a set of confor-
mance criteria.

Section 5.4.2 discusses the differences and commonalities of this work to the
RM-ODP standardization [90] which is developed and maintained under ISO [69,
67, 68, 70]. The RM-ODP standardization defines an architecture framework for
open distributed systems. The primary concepts, viewpoints and the overall ap-
proach are discussed in the comparison.

The architecture framework developed in this thesis shares commonalities
with so-called enterprise architectures. An enterprise architecture describes a co-
herent set of principles, methods and models for guiding the operation and trans-
formation of an enterprise [88]. In Section 5.4.3, the commonalities and differ-
ences between enterprise architecture frameworks and SEAF are identified.

The vision and challenges underlying the research efforts resulting in this the-
sis align with the current research strategy of the European Commission FP7-ICT
Programme for Research and Development. Related research projects under the
ICT research theme’s Challenge 1: Pervasive and Trusted Network and Service
Infrastructures are discussed and compared in Section 5.4.4. Finally, a discussion
about other related research is given in Section 5.4.5.

Based on the comparison of the related work, it becomes evident that this the-
sis represents a novel approach for service ecosystem engineering. While there
are a lot of seminal work done in the academia, standardization community and
industry, none of them provides means for rigorous service ecosystem engineer-
ing to the extent of this work. Instead, the related work address individual phases
of the service ecosystem engineering life cycles, e.g. analysis and design, in-
strumentation, or operation. The holistic approach of this work with respect to
service ecosystems and their engineering is the most distinguishing feature when
compared to other state-of-the-art research.

5.4 Comparison to related work 179

5.4.1 OASIS SOA Reference Model

The OASIS Reference Model for Service Oriented Architecture (SOA-RM) is a
conceptual model for service-oriented architectures produced by the OASIS stan-
dardization organization [154]. OASIS SOA-RM defines concepts, their interrela-
tionships, and conformance guidelines which can be utilized for assessing confor-
mance of systems and standards with respect to the reference model. The OASIS
SOA-RM essentially defines an ontology for representation of service-oriented
architectures. In the following, a comparison between the conceptual models of
OASIS SOA-RM and SEAF is given. After that, the properties of SEAF are as-
sessed with respect to the OASIS SOA-RM conformance guidelines.

The OASIS SOA-RM includes seven primary concepts related to services,
their visibility and their application environment. A service is defined by the OA-
SIS SOA-RM as a mechanism to access one or more capabilities [154]. A service
is provided by an entity, a service provider, and accessed by service consumers
through service interfaces. The service concepts of SEAF clearly align with the
OASIS-SOA-RM definition of services. However, the definition of services in the
SEAF conceptual model is more specific, and involves a categorization of services
into infrastructure, business and component services.

Invocation of a service realizes one or more real-world effects which are ac-
tualized as returned information or changes in the shared state of defined enti-
ties [154]. In SEAF real-world effects of service invocations are specified explic-
itly by the capabilities associated with a corresponding kind of service. That is,
the real-world effects of infrastructure services, business services and component
services are denoted by ecosystem capabilities, business transactions and service
protocols.

In addition to real-world effects, the OASIS SOA-RM describes dynamics of
services with the notions of visibility and interaction [154]. Service visibility in
OASIS SOA-RM is a relationship between service providers and consumers that
is a composition of willingness, awareness and reachability [154]. Willingness for
interaction is addressed in SEAF with the different rules associatable with services
and legal entities. Awareness refers to a state where one party has knowledge of
the existence of another party [154]. Especially, service awareness requires that
service descriptions and policies constraining their usage are available [154]. One
of the primary purposes of SEAF is to facilitate such awareness in service eco-
systems. Service awareness is addressed explicitly by the concepts of service
offers, for example. Reachability is defined in OASIS SOA-RM as the relation-
ship between service participants where they are able to interact. Reachability in
this sense is addressed in SEAF by the notions of cooperation facilities, service
contracts and features associated with the preceding concepts.

Service interactions in the OASIS SOA-RM are defined as exchange of infor-

180 5 VALIDATION AND EVALUATION

mation according to pre-determined behaviour [154]. The form of service inter-
action is prescribed in the service description, which comprises an information
model and a behaviour model. The information model of a service characterizes
the information that may be exchanged with the service [154]. The information
model describes information structure, structural relationships, and definitions
and semantics of terms used [154]. The domain ontologies and concept inten-
sions in SEAF serve a similar purpose of describing exchangeable information.

In OASIS SOA-RM the notion of service behaviour model denotes the selec-
tion of actions usable and their temporal dependencies in service interactions [154].
The behaviour model includes an action model and a process model. The action
model characterizes the actions that can be invoked against the service [154]. In
SEAF such an action model is subsumed by the concepts of interaction schemes
and service protocols associated with service endpoints and component services,
correspondingly. In OASIS SOA-RM the notion of process model refers to pre-
scriptions of temporal relationships and temporal properties, and events associated
with interacting with services [154]. Similar notions are addressed in SEAF by
concepts of business transactions and service choreographies.

The OASIS SOA-RM proposes concepts that should be included in service de-
scriptions. While the actual contents and structure of service descriptions depend
on the domain of operation and technology used, for example, generic guidelines
about requirements for service descriptions can be identified. The OASIS SOA-
RM identifies that service descriptions should include information about service
existence and reachability, service functionality, constraints and policies affecting
service usage, and how to interact with the service [154]. All these aspects re-
quired for service descriptions are covered in SEAF. Service existence and reach-
ability is addressed by the concepts of service offers and service channels. Service
functionality is prescribed in definitions of different service entities. Constraints
and policies affecting service usage can be associated with services, cooperation
facilities, and contractual elements in SEAF. Finally, interaction and communica-
tion is addressed especially by cooperation facility concepts.

The OASIS SOA-RM considers contracts and policies as foundational notions
of service-oriented architectures. A policy represents a “constraint or condition
on the use, deployment or description of an owned entity as defined by any partici-
pant” [154]. The conceptual model of OASIS SOA-RM identifies three aspects of
policies: /) policy assertions, 2) policy owners, and 3) policy enforcement [154].
Policy assertions are measurable norms regarding service interaction and service
usage context. In SEAF such policy assertions are represented by concepts of
rules and rule bases associatable with different conceptual elements, such as legal
entities, business services or service liaisons. Policy owners, or policy subjects,
can be traced in SEAF through ownership of business services. Policy enforce-

5.4 Comparison to related work 181

ment is not explicitly addressed by SEAF, since policy enforcement mechanisms
are domain-specific design choices.

A contract in the OASIS SOA-RM prescribes an agreement about service
usage between two or more participants. Contracts can cover aspects such as
quality of service, interface and choreography properties, or commercial agree-
ments [154]. In SEAF service contracting is addressed by the concept of ser-
vice liaison which includes elements for describing service quality and service
behaviour aspects. While commercial agreements are not addressed in the con-
ceptual model of SEAF, concepts for expressing such additional aspects of service
contracts can be included in service architecture descriptions with domain-specific
extensions to the corresponding domain ontology.

The conceptual model of the OASIS SOA-RM includes a notion of execu-
tion context for service interactions. An execution context of a service interaction
is described as “the set of infrastructure elements, process entities, policy asser-
tions and agreements that are identified as part of an instantiated service inter-
action, and thus forms a path between those with needs and those with capabil-
ities” [154]. The execution context of service interactions is addressed in SEAF
by the concepts of service contracts and ecosystem domains. Service contracts
define the agreements between interaction participants, while ecosystem domain
descriptions characterize the operational environment of interactions.

Finally, the OASIS SOA-RM standard prescribes conformance guidelines which
state principles for service-oriented architectures aligning with the OASIS defini-
tions. A service-oriented architecture conforming with the OASIS SOA Reference
Model should [154]:

e Have entities that can be identified as services as defined by this Reference
Model;

e Be able to identify how visibility is established between service providers
and consumers;

e Be able to identify how interaction is mediated;
e Be able to identify how the effect of using services is understood;
e Have descriptions associated with services;

e Be able to identify the execution context required to support interaction;
and

e It will be possible to identify how policies are handled and how contracts
may be modeled and enforced.

182 5 VALIDATION AND EVALUATION

It can be seen easily that SEAF is applicable for designing and instrumenting
service ecosystems which align with the OASIS SOA-RM conformance guide-
lines. The conceptual model of SEAF includes concepts of infrastructure, busi-
ness and component services which are associated with corresponding intensional
definitions. Visibility of services between service providers and consumers is
represented by service offers. Mediation of interaction is addressed in SEAF by
concepts of service channel types, binding type, service channels and their corre-
sponding features.

Real-world effects of services are described in SEAF with various kinds of
behavioural descriptions, i.e. business protocols and service operations, and busi-
ness transactions and commitment operations. The service execution context in
the sense of SOA-RM [154] is addressed in the SEAF by the concepts of ecosys-
tem life-cycle definitions, service choreographies, binding models, and definition
of ecosystem artefacts and domain ontologies. Finally, SEAF enables rich expres-
sion of service contracts, e.g. symmetric and asymmetric service contracts, or in-
and out-sourcing contracts, with concepts provided for defining service liaisons,
service contracts and their relationships with ecosystem-specific binding models
and features. Contract enforcement is not addressed at the ecosystem architec-
ture level explicitly; however, contract enforcement facilities can be modelled in
service ecosystem architectures as infrastructure services, for example.

As a summary, SEAF subsumes concepts that comply with the conceptual
model of OASIS SOA-RM. Moreover, the conceptual model underlying SEAF
aligns with the conformance guidelines of OASIS SOA-RM. However, the con-
ceptual model of SEAF addresses additional concerns not included in OASIS
SOA-RM, such as evolution and dynamism in service ecosystems. Moreover,
the concepts of SEAF are more specific and formalized in the service ecosystem
meta-model for enabling instrumentation and governance of service ecosystems.

5.4.2 Reference Model for Open Distributed Processing

The Reference Model for Open Distributed Processing (RM-ODP) is an inter-
national standard jointly created by standardization bodies ISO and ITU-T [90].
The standard provides means for describing and building widely distributed sys-
tems and applications in a systematic way [90]. The systems of interest that the
standardization addresses are called ODP systems in the RM-ODP. This class of
systems includes IT systems, information systems, embedded systems, business
systems, or any other large or complex systems.

The RM-ODP standardization comprises four parts under the general title In-
formation technology — Open Distributed Processing — Reference Model: 1) Over-
view [69] providing overview of ODP, including explanation of key concepts, and
application scenarios and examples, 2) Foundations [67] providing definitions of

5.4 Comparison to related work 183

ODP concepts, 3) Architecture [68] containing the specification of required char-
acteristics for ODP system architectures, and 4) Architectural semantics [70] con-
taining a formalization of the ODP modelling concepts in different standardized
formal description techniques.

The RM-ODP standardization defines an architectural framework for design
and analysis of distributed processing systems with large or complex structure.
As an architectural framework, RM-ODP identifies several stakeholders associ-
ated with ODP system life cycles, and provides definitions for architectural view-
points. The viewpoints are intended to address concerns of five clear groups of
users related to ODP systems. The viewpoints are: /) enterprise viewpoint, 2) in-
formation viewpoint, 3) computational viewpoint, 4) engineering viewpoint, and
5) technology viewpoint [69, 90]. Each of the viewpoints are associated with cor-
responding viewpoint languages [69]. An ODP viewpoint language is defined as
a set of concepts enabling modelling of systems from that viewpoint.

The enterprise viewpoint addresses the organizational situation in which the
design activity of an ODP system is taking place [90]. The enterprise viewpoint
focuses on the objectives, business rules and policies that need to be supported
by the system [90]. The stakeholders associated with the enterprise viewpoint
include owners of the business processes and the managers responsible for the
setting of operational policies [90].

An enterprise specification of an ODP system is a description of the system
and the relevant parts of its environment [66]. A notion of communities is used
in the enterprise viewpoint for structuring and specifying collections of enterprise
objects. An enterprise specification can include one or more community defi-
nitions. Enterprise specification provides descriptions for the roles and processes
enterprise objects take part in; actions are assigned to enterprise objects with roles.

The RM-ODP enterprise viewpoint is used for specifying the purpose, scope
and policies for the ODP system [67]. The purpose of an ODP system is declared
in the RM-ODP enterprise viewpoint primarily with two constructs. Firstly, ODP
communities can be associated with objectives that declare practical advantages
or intended effects, expressed as preferences about future states [66]. Secondly,
the purpose of an ODP system is defined by the behaviour of the system. In SEAF
the purpose of a service ecosystem is defined by ecosystem capabilities and life
cycles: capabilities represent objectives of the ecosystem while life cycles define
the behaviour expected from ecosystem members.

In RM-ODP the scope of a system is defined in terms of intended behaviour
expressed by roles and processes in the enterprise viewpoint [69, 66]. In SEAF
the scope of a service ecosystem is defined by ecosystem domains and service
choreographies. Ecosystem domains enable division of service ecosystems to
sub-systems (corresponding somewhat to the federation community type in RM-

184 5 VALIDATION AND EVALUATION

ODP). Service choreographies associated with life-cycle phases (via service liai-
son specifications) define the kind of behaviour expected from ecosystem partici-
pants.

A policy in the RM-ODP standardization is considered as a set of rules re-
lated to a particular purpose [66]. A single rule can be expressed in RM-ODP
with deontic modalities of obligation, an authorization, a permission or a pro-
hibition [66, Section 6.4.1]. The modality of rules in SEAF is not prescribed.
Instead, domain-specific semantics for rules and rule sets expressing policies are
expected. However, the concept of cooperative features (see Table 3.1) in SEAF
specifies different categories of rules that can be associated with business roles
and monitored through conformance points.

The information viewpoint of RM-ODP addresses modelling of the shared
information manipulated within the system of interest [90]. Information is repre-
sented in this viewpoint by information objects and their inter-relationships spec-
ified by a set of invariant, static and dynamic schemata [69]. Invariant schemata
are used for specification of relationships between information objects that must
hold always in the corresponding system of interest [69]. Static schemata express
assertions that must hold in a single point of time [69]; they are utilizable for ex-
pressing initial values for information objects, for example. Dynamic schemata
define how information may evolve as the system operates [69].

SEAF involves concepts and mechanisms that correspond to the RM-ODP
schemata. Invariant schemata are represented in SEAF by domain ontologies and
concept intensions. One-to-many relationships between concepts and artefacts
in SEAF correspond to static and dynamic schemata of RM-ODP: each artefact
specification defines an assertion that must hold in the corresponding life-cycle
phase. Evolution of the information is described by usage of distinct artefacts in
different life-cycle phases and behavioural contexts.

The computational viewpoint addresses high-level design of the processes and
applications in the system of interest [90]. Object-oriented concepts are utilized
for expressing different computational elements of the system with strong en-
capsulation boundaries and well-defined interfaces. The computational viewpoint
does not prescribe distribution of the processes and applications; the same compu-
tational specification can be implemented differently on different platforms [90].
The computational viewpoint is used for specification of computational interfaces
characterized by a signature, behaviour and an environmental contract [69]. Bind-
ing objects are specified in the computational viewpoint for enabling interaction
between computational objects [69].

Elements of the RM-ODP computational viewpoint correspond to concepts

of service endpoints, component services and service contracts in SEAF. Service
endpoints in SEAF define the kinds of activities that comprise interactions. Com-

5.4 Comparison to related work 185

ponent service specifications declare service protocols and interaction schemes
that describe expected behaviour. Service contracts define expectations about the
environment of service interactions in SEAF.

The engineering viewpoint focuses on how interaction is achieved between
computational objects and what kinds of resources are required to support the
interactions [69]. The engineering viewpoint provides concepts for specification
and analysis of platforms for distributed processing. The major objective of the
engineering viewpoint is to support the distribution transparency requirements of
the computational objects [90]. Distribution transparencies can be regarded as
guarantees provided for computational designers for solving a distribution prob-
lem [90], such as access transparency enabling inter-working across heteroge-
neous computer architectures and programming languages [69].

Concerns aligned with the RM-ODP engineering viewpoint are represented in
SEAF with concepts of cooperation facilities and features associated with them.
With these concepts, a service ecosystem architecture prescribes in a technology-
independent manner how interaction and communication is established between
services, and what kinds of properties affect the communication. SEAF does not
explicitly address distribution transparencies; such capabilities can be expressed
implicitly by specifications of appropriate cooperation facilities, for example.

The technology viewpoint of RM-ODP addresses the choice of technology to
support system distribution [69]. The technology viewpoint is utilized for speci-
fication of information about the existing environment, current procurement poli-
cies and configuration issues [90]. The technology viewpoint specifies how an
ODP system is to be implemented. The implementation of an ODP system is
specified with a configuration of technology objects that represent the hardware
and software components of the implementation [90].

While specifications of endpoint kinds can be considered as technological
artefacts, SEAF is primarily a technology agnostic architecture framework. How-
ever, SEAF does not forbid representation of technology-specific constructs; ap-
propriate interpretation of the abstraction level used in service ecosystem archi-
tecture descriptions is left for the stakeholders to decide.

The fundamental concepts of RM-ODP include object models, instantiation
and refinement of system elements and their specifications, composition, group-
ing, contracts, and policies. ODP system specifications are expressed in terms of
objects which can represent physical elements, human beings, or more abstract
entities, for example [90]. An object is defined as a model of an entity character-
ized by its behaviour, and dually, by its state [67]. Object behaviour is modelled
as a collection of actions and constraints on when they may occur; the object state
prescribes the set of sequences of actions in which the object may take part in a
given instant in time [67]. Interfaces are used for prescribing abstractions of ob-

186 5 VALIDATION AND EVALUATION

ject behaviour; they comprise a subset of the interactions of the object together
with a set of constraints when they may occur.

The domain ontology model underlying SEAF serves a similar purpose to the
object model of RM-ODP. While the object model of RM-ODP is very generic,
the domain ontology model underlying SEAF is more specific and fine-tuned for
the domain of service ecosystems. Entities in SEAF are classified into differ-
ent sub-categories, such as legal entities or service entities; the RM-ODP object
model does not have such conceptual sub-categories due to the more generic fo-
cus of the standardization efforts. The specialized and more structured domain
ontology model enables more efficient design and analysis of service ecosystems,
as more specific concepts offer more expressiveness and stricter semantics when
compared to generic modelling concepts of RM-ODP. Domain-specific concepts
(e.g. “mobile phone”, “resource”) not included in the domain ontology model
explicitly can be specified in SEAF as DomainConcept elements.

Instantiation and refinement of ODP system elements and their specifications
are enabled in the RM-ODP standardization by types, classes and templates. ODP
objects, actions and interfaces are generally specified in terms of their types [90].
A type in RM-ODP is a predicate that characterizes a collection of elements [67].
Specifications of type predicates are given in SEAF by providing behavioural and
feature definitions for concepts. Linguistic instantiation is utilized in SEAF for
introduction of concept instances at the same level of abstraction. In addition
to linguistic instantiation, ontological typing hierarchies are explicitly defined in
SEAF with conformance relationships between concepts. The domain ontology
model for service ecosystems specifies constraints over the ontological typing re-
lationships: entities are typed by entity kinds and properties are typed by features,
correspondingly. The RM-ODP standardization does not specify such ontological
typing relationships or constraints due to the generic nature of the object model.

A class in ODP is the set of all elements satisfying a specific type [67]. In
SEAF, classes in the RM-ODP sense are represented in the conceptual model and
the service ecosystem meta-model by the notion of concept extensions. Extension
of a SEAF concept denotes the set of instances conforming with the semantic and
intensional definition of the concept.

Finally, the notion of template in RM-ODP refers to the specification of an el-
ement, which includes sufficient detail to allow instantiation of the corresponding
kind of elements [90]. For example, in object-oriented programming languages
concrete classes are templates [90]. In SEAF each intensional definition of con-
cept comprises a template in the RM-ODP sense: the intensional definition can be
used for instantiating a corresponding kind of element.

As a conclusion, the RM-ODP standardization and SEAF have many com-
mon characteristics. Many elements defined in the RM-ODP viewpoints have
their corresponding elements in SEAF. However, there are some fundamental dif-

5.4 Comparison to related work 187

ferences between SEAF and RM-ODP. First of all, RM-ODP is constructed for
allowing design and analysis of various kinds of complex or large distributed sys-
tems. SEAF, on the contrary, concentrates on service ecosystems, which is one
kind of a complex and large distributed, service-based system.

Secondly, the conceptual model underlying SEAF is more specific and tar-
geted for addressing service-oriented computing, service delivery and service
engineering concerns; RM-ODP provides more generic concepts based on the
object-oriented paradigm for representing ODP systems.

Thirdly, SEAF is founded on a formal service ecosystem meta-model which
provides means for unified, holistic architecture descriptions that address require-
ments for service ecosystem sustainability. RM-ODP standardization does not
define such a meta-model, but instead provides some guidelines for defining cor-
respondences between different ODP viewpoint models. The RM-ODP standard-
ization is supplemented by the UML4ODP [71] standard, which provides a mod-
elling notation for representation of open distributed systems according to RM-
ODP principles. The UML4ODP defines an UML profile [111] that provides
each RM-ODP viewpoint with a modelling language. In addition, the UML4ODP
defines a notation for description of dependencies between the distinct viewpoint
models and their elements [71].

In practise, the UML4AODP defines a MOF-compliant meta-model for each
RM-ODP viewpoint language [71]. The meta-models define subsets of the cor-
responding viewpoint concepts defined in the RM-ODP standardization [67, 68].
Using the corresponding viewpoint models and a model defining their correspon-
dences, a complete representation of an ODP system can be expressed. However,
the RM-ODP or UML4ODP standardization does not provide practical means for
creation of such a unified and holistic architecture description model from the
individual viewpoint models. As a consequence, utilization of RM-ODP architec-
ture models for instrumentation of ODP systems can be more difficult than that
of SEAF. The design of SEAF is actually driven by utilization of the resulting
holistic architecture models for service ecosystem instrumentation.

Lastly, the SEAF definition includes more viewpoints than the RM-ODP frame-
work: there are seven viewpoints in SEAF while RM-ODP defines five view-
points. For example, in RM-ODP the purpose, scope and policies of an ODP
system are defined using a single viewpoint, namely the enterprise viewpoint. In
SEAF, the purpose, scope and policies associated with a service ecosystem are
addressed by the Ecosystem capability, Service choreography, Life-Cycle, and
Concept intension viewpoints. The more refined division of viewpoints in SEAF
is due to a different and richer conceptual model with respect to the RM-ODP.
More viewpoints are required in SEAF for handling the structural complexity of
the conceptual model, and especially for addressing the aspects of ecosystem dy-
namism and evolution, which are not in the focus of RM-ODP.

188 5 VALIDATION AND EVALUATION

5.4.3 Enterprise Architectures

The Service Ecosystem Architecture Framework shares similarities with so-called
enterprise architectures. In the following the definitions and objectives, applica-
bility, and concepts of enterprise architectures are briefly described and paralleled
with SEAF.

An enterprise architecture can be defined as “a coherent whole of princi-
ples, methods, and models that are used in the design and realization of an en-
terprise’s organizational structure, business processes, information systems, and
infrastructure” [88]. There are several enterprise architecture frameworks devel-
oped in the industry and academia, such as The Open Group Architecture Frame-
work (TOGAF) [118], the US Department of Defense Architecture Framework
(DoDAF) [161], or ArchiMate [119]. TOGAF concentrates on enterprise architec-
ture development processes by definition of the Architecture Description Method
(ADM), but does not provide a complete language for description of enterprise ar-
chitecture models. DoDAF is specialized for description of military organizations
which follow a certain taxonomy of operations and activities; this is reflected in
the DoDAF concepts and selection of viewpoints. ArchiMate provides a method-
ology agnostic and domain-independent enterprise architecture description lan-
guage.

SEAF involves the notion of cooperative features which corresponds to prin-
ciples regulating the operation of service ecosystems and realization of service-
based collaborations in them. Methods for service engineering are specified using
the SEAF Engineering viewpoint. Moreover, SEAF enables representation of ser-
vice ecosystem processes and infrastructure with ecosystem life cycles, service
choreographies, and infrastructure services and capabilities. In this light, the ar-
chitecture descriptions produced with SEAF could be considered as a kind of
enterprise architecture descriptions for service ecosystems. SEAF is a technology
and methodology agnostic architecture framework, and can be applied to different
service ecosystem domains, such as product-driven ecosystems, software applica-
tion ecosystems, or social networking ecosystems.

Enterprise architectures are applied for managing the inherent structural com-
plexity of enterprises, enabling enterprise engineering [65] and directing enter-
prise transformations [58]. In these application scenarios, enterprise architectures
have three different roles: /) regulative, 2) instructive, and 3) informative [58].
Enterprise architectures are applied as regulative prescriptions which state how
enterprises must become. Instructive application of enterprise architectures em-
phasizes their role as high-level designs providing instructions for directing the
activities taking place in development programs and projects. Enterprise architec-
tures are utilized in an informative role for enabling decision making by sharing
knowledge on architecture decisions [58].

5.4 Comparison to related work 189

Similarly to enterprise architectures, SEAF is applicable for managing the
complexity of service ecosystems which are complex, socio-technical systems.
First of all, the conceptual model of SEAF is utilizable for conceptual decomposi-
tion of service ecosystems and for identifying entities and their inter-relationships.
Secondly, service ecosystems can be formally modelled with SEAF for enabling
further refinement and re-factoring of ecosystem concepts, and design and anal-
ysis of ecosystem architectures. While enterprise architectures can be utilized
for enabling enterprise engineering, the ecosystem architectures constructed with
SEAF are applicable for instrumentation of service ecosystems, as discussed in
previous sections.

With respect to enterprise transformations, the ecosystem architectures can be
used in a similar manner to guide development of a service ecosystem to a more
mature system. For example, different versions of service ecosystem architec-
ture descriptions could be used for representation of the current and target states
of service ecosystems. Moreover, the capabilities prescribed in a service ecosys-
tem architecture are not necessarily implemented at the very beginning of service
ecosystem existence. In this setting, such “abstract capabilities” can be consid-
ered as prescriptions for the target state of the service ecosystem; infrastructure
services, service life cycles, and business services delivering the required infras-
tructure service functionality are then developed in a progressive manner to fulfill
the capability requirements.

Service ecosystem architectures also possess regulative, instructive and infor-
mative roles, similarly to enterprise architectures. The regulative role is empha-
sized especially during ecosystem operation: the ecosystem architecture models
are applied for delivering model-based interoperability in the ecosystem, and for
enabling service ecosystem governance [143]. The instructive role of service eco-
system architectures is emphasized when they are applied for directing engineer-
ing of component and business services. Finally, the informative role of service
ecosystem architectures emerges in different phases involving business decisions
addressing participation in service ecosystems. Service ecosystem architectures
can be analysed for example to identify possible conflicts between policies of a
service ecosystem and an enterprise considering joining it.

Typical conceptual models of enterprise architecture frameworks enable rep-
resentation of entities, behaviour and artefacts in business, application and tech-
nology domains. Since the primary purpose of enterprise architectures is direction
and regulation of design activities in development programs and transformation
projects, enterprise architecture frameworks include concepts associated with en-
terprise strategies such as vision, principle or strategy (see e.g. [26, 57]). Such
strategic concepts are not explicitly part of the current version of SEAF; however,
visions, principles and strategies can be at least partly represented with differ-

190 5 VALIDATION AND EVALUATION

ent kinds of rules and policies associatable to the elements of service ecosystem
architectures.

In enterprise architecture frameworks development programs and projects are
utilized for implementing enterprise transformations. Programs are collections of
transformation projects which fulfill intermediate goals described in the enterprise
architecture. The intermediate goals can be for example capabilities or services
which progress the transformation of the enterprise from its current state towards
the target state. Such management of iterative enterprise progression, and identifi-
cation of means to enable the progression are part of the foundational motivations
for use of enterprise architectures. SEAF does not include concepts for explicitly
addressing or managing such iterative progression of service ecosystems. How-
ever, SEAF provides means for identifying the fundamental capabilities required
from the service ecosystem. Infrastructure services and ecosystem life cycles de-
livering the capabilities could be considered as concepts parallel to transformation
projects and programs, correspondingly.

In summary, enterprise architectures and SEAF share similar objectives and
application scenarios in their respective domains. Where enterprise architectures’
motivation stem from enterprise engineering and transformations, the primary mo-
tivations for SEAF are instrumentation and governance of service ecosystems.
Both enterprise architectures and service ecosystem architectures can be applied
for enabling business decision making in organizations. Enterprise architectures
do not typically address collaboration between autonomous entities, but concen-
trate on operations within a single enterprise; the design of SEAF is founded on
the idea of enabling such collaborations.

5.4.4 European FP7 research

There are several European research initiatives and projects that have objectives
and approaches aligning with this academic dissertation. In the following, a se-
lection of initiatives in the ICT (Information and communication technologies)
research theme of the Seventh Framework Programme (FP7) of European Com-
mission [41] are introduced. The objectives, approach, results and applicability of
the projects are compared with the results of this academic dissertation.

The FP7 ICT programme is divided into eight work programmes on the basis
of strategic interest to European society, with an additional research area targeted
for future and emerging technologies [41]. The work programmes are framed in
the form of research challenges. The work programme which subsumes themes
related to this academic dissertation is titled “ICT Challenge 1: Pervasive and
Trusted Network and Service Infrastructures” within the FP7 ICT research pro-
gramme. The “ICT Challenge 1 work programme is further structured into seven
objectives declaring more specific research areas within the work programme.

5.4 Comparison to related work 191

Objective 1.2 of the “ICT Challenge 1”” work programme is closely related to this
academic dissertation with research conducted in areas such as service-oriented
architectures, service engineering, and service platforms. Objective 1.2 is cur-
rently entitled “Cloud Computing, Internet of Services and Advanced Software
Engineering”! in the 2011-2012 version of the work programme.

INDENICA (Engineering Virtual Domain-Specific Service Platforms) [49] is
a research project conducted under Objective 1.2 of “ICT Challenge 1” work pro-
gramme. The INDENICA aims for creating methods and tools for enabling ef-
ficient design and development of service platforms. Efficiency is provided with
reuse and specialization of engineering artefacts. More specific objectives of the
INDENICA project include simplification of service platform development and
service engineering, enabling support for platform convergence and interoperabil-
ity, and establishing a reusable infrastructure for platform development. These
objectives are addressed with approaches such as product-line engineering, vari-
ability management and self-adaptation techniques. The results of the project
include a design for a virtual, self-adaptive service platform which can be config-
ured using the product-line engineering techniques developed in the project.

The approach developed in this thesis and the contributions of the INDENICA
project supplement each other. The approach developed in this thesis provides
means for designing, analysing and formalizing requirements for service plat-
forms. By design, the service ecosystem architecture models are situated higher
in the abstraction hierarchy when compared to the conceptual framework of IN-
DENICA. The feature-based variability management models of INDENICA could
serve as platform-specific models for service ecosystem architectures. In this set-
ting, the service ecosystem architecture models could be utilized used for eliciting
requirements for INDENICA-based virtualized service platform. The conceptual
model of the INDENICA-project is concentrated on services, their features and
re-usability. The results presented in this thesis include a more abstract and holis-
tic view on service ecosystems and especially, service ecosystem sustainability.

The Cloud4SOA initiative [48] focuses on resolution of semantic interoper-
ability problems in current cloud service ecosystems. In addition, the project seeks
to develop user-centric approaches to applications which are built and deployed in
cloud service ecosystems. The approach taken in the Cloud4SOA project to meet
these objectives is based on integration of service-oriented architectures, cloud
computing, and lightweight semantics. The main deliverable of the project is
the Reference Architecture for Semantically Interoperable Clouds (RASIC) [48].
RASIC comprises three horizontal layers (Service front-end, SOA, and Virtualiza-
tion and Execution layer), and two vertical layers (Semantic layer and Governance
layer) [95]. The service-frontend layer enables users to adapt existing cloud ser-

"http://cordis.europa.eu/fp7/ict/ssai/workprogramme-2011-12-0bj1-2_en.html

192 5 VALIDATION AND EVALUATION

vices and to implement new ones as compositions, or “mash-ups”. The SOA-layer
of RASIC provides service discovery, mashing and recommendation components
that enable design, development and deployment of cloud-based services. The se-
mantic layer enables resolution of semantic interoperability problems and devel-
opment of intelligent service discovery, mashing and recommendation services.
The semantic layer includes a lightweight service and computing resource model,
service and resource annotation components, and a semantic interoperability run-
time engine [95].

The reference architecture developed in the Cloud4SOA project could be uti-
lized as a platform-specific model for service ecosystem architectures. In such a
setting, service ecosystem architecture models are transformed with model trans-
formations to models consumable by the RASIC framework, similarly to the ap-
proach taken in the model-driven methodology described in Section 4.2. A cloud
infrastructure that conforms with the RASIC framework could then be used for
rapid deployment of service ecosystems. The Cloud4SOA project is grounded on
utilization of the cloud infrastructure, while the approach developed in this thesis
is technology agnostic.

The CHOReOS (Large Scale Choreographies for the Future Internet) [47] re-
search project aims at assisting engineering of service choreographies by deliv-
ering appropriate development processes, methods and tools [164]. The project
instruments development of large-scale service choreographies with use of a mid-
dleware platform which enables definition, deployment and enactment of the chore-
ographies [164]. The results of the project will include a middleware platform en-
abling deployment and enactment of large-scale choreographies, an integrated de-
velopment and run-time environment (IDRE), and a dynamic development model
utilizing the middleware and the IDRE [47]. The CHOReOS is applicable in the
instrumentation and operation phases of service ecosystem engineering life cy-
cles. The CHOReOS middleware provide infrastructure services for a CHOReOS-
like service ecosystems. The CHOReOS development tools and methods are uti-
lizable during service ecosystem operation for development of service choreogra-
phies, as well as services required for implementing the choreography functional-
ity.

The CHOReOS project is more technology-oriented than the research con-
ducted in this thesis which focuses on service ecosystem architecture descriptions.
The objectives and approaches, as well as results of these two research activities
are thus quite different. However, the CHOReOS project and the approach devel-
oped in this thesis are complementary. The CHOReoS project provides run-time
and service engineering constructs that could be utilized for implementing service
ecosystem architectures. The approach developed in this thesis could be utilized
for design and delivery of specialized service ecosystems over the CHOReOS

5.4 Comparison to related work 193

middleware and the integrated development and run-time environment.

The SOA4All project aims at enabling operation of large-scale service eco-
systems with a framework and infrastructure for service delivery platforms [51].
The SOA4All approach is founded on application of light-weight semantics in de-
scription of services and their features [81]. Semantic descriptions in SOA4All are
based on Semantic Web-technologies, such as RDF [168] and Web Service Mod-
elling Ontology (WSMO) [128, 178]. In addition to Semantic Web-technologies,
the approach integrates service-oriented architectures, context-aware technologies,
Web principles [50] and Web 2.0 idioms (see e.g. [105]) for delivering a dis-
tributed service bus, a service development environment and a set of infrastructure
services [81]. The SOA4AIll project results are applicable for facilitating service
ecosystem instrumentation and operation phases.

The results of the SOA4All project are complementary to the artefacts pro-
vided in this academic dissertation. While the SOA4All project addresses mainly
the instrumentation and operation phases, the approach developed in this thesis
concentrates especially on the analysis and design phases. However, the model-
driven methodology for service ecosystem engineering could be implemented
over any SOA-based platform, such as the SOA4All service bus. The develop-
ment environment and set of infrastructure services of the SOA4All project could
be included in service ecosystem architectures and their descriptions.

NESSI (Networked European Software & Services Initiative) [107, 92] is a
European Technology Platform dedicated to software and services. As part of its
research activities, the NESSI consortium is developing the NESSI Open Service
Framework (NEXOF), which is described as “a coherent and consistent open ser-
vice framework leveraging research in the area of service-based systems” [108].
The NEXOF research initiative develops a conceptual framework and a reference
architecture (NEXOF-RA) for service-based systems to consolidate and trigger
innovation in service-oriented economies.

While research on the NEXOF, its reference architecture and conceptual model
is still going on, some similarities and differences can be identified with respect to
this academic work. Both the conceptual model of this academic work and the one
in NEXOF-RA facilitate construction of distributed service-based infrastructures.
The NEXOF-RA will include a set of different model parts representing different
viewpoints to service-oriented systems. However, the concepts of the NEXOF-
RA, in the current state of research [108], are quite generic, since the correspond-
ing conceptual model provides a unified terminology that can be used for defining
various kinds of NEXOF-compliant infrastructures. In this academic work the
conceptual model is more specific and is especially targeted for facilitating sus-
tainable service ecosystems. However, service ecosystem architectures designed
with the approach developed in this thesis could be deployable over NEXOF-

194 5 VALIDATION AND EVALUATION

compliant infrastructure. Dually, the NEXOF-RA could be modelled with the
service ecosystem architecture framework. This could be beneficial for establish-
ing interoperability between NEXOF-compliant, but separately developed service
ecosystems.

The objectives, approach, results and applicability of the preceding EU re-
search initiatives are summarized in Table 5.4. The objective of the approach
developed in this thesis is to enable transformation from ad-hoc to sustainable
service ecosystems. This approach in this research is founded on explicit service
ecosystem architectures and their utilization for establishing continued viability
of service ecosystems. Service ecosystem viability is established by delivery of
facilities that support stakeholder concerns in service ecosystem engineering life
cycles. The continuation of viability is then supported by application of the ex-
plicit service ecosystem architecture models during the service ecosystem opera-
tion phase. The results of this research comprise a conceptual model for service
ecosystems, a service ecosystem meta-model, SEAF, and a model-driven method-
ology for service ecosystem engineering. The approach developed in this thesis
covers all phases in the systems engineering life cycles of service ecosystems, that
is, analysis, design, instrumentation and operation.

5.4.5 Other related work

The SeCSE (Service Centric System Engineering) was an Integrated Project [147]
of the 6th Framework Programme that aimed for developing processes, methods
and tools to develop service-oriented systems [32]. As part of its research work,
the SeCSE project provides a conceptual model for service-oriented systems. The
model describes actors, entities and activities relevant to the service domain and
relationships between them [32].

While the conceptual model of the SeCSE project addresses the various steps
(e.g. publication, discovery, composition, and monitoring) of the service-centric
system creation process, the primary purpose of the model is to provide a common
understanding for human readers about the main concepts involved [32]. The
primary purpose of the conceptual model provided by this academic work is to
facilitate the infrastructure services and tools needed for instrumenting service
ecosystems. That is, the conceptual model of this academic work is used for
formally defining all the required elements for instantiating service ecosystems,
while the SeCSE conceptual model is used for describing service-centric system
development scenarios.

This academic work has a strong emphasis on service and service-based sys-
tems modelling, an area of active research which has been addressed both in
academia and industry. The COSMO (COnceptual Service MOdelling) [126]
project develops a framework for service as a common semantic model to en-

195

5.4 Comparison to related work

"SANTANOR oIeasal /] ueadoing paje[al Jo uonezidoeIey) 'S 9[qeL,

Juawdo
-[9AQp 901AIS QImonyseryuy ‘usrs

‘sordrourid pue suo)
-jed JO 19S JUAIAYOD B SE 2INJOATYO

‘(suzopred [oA9] uonvIuoWO[d
-wr) swoipy ‘suroped uSiso ¢sord

"SuI9)$£S009 paseq
-Q0TAIOS JO JUAWYSI[qeIse Sur[qe
-uo suoneordde SuueArep pue

-Op ‘SISATRUR WQISAS009 9JIAIOS | -IB QOURIRIRI ® JO] suoneonroads | -tound pue suroped remmyodyory | Sunearnd 1oy wuojjeld uodo uy | VY-HOXHAN
*(S901A ‘swzopjerd A1oA1[op
-10s juouodwod pue ssoulsnq Jo "QOA\ OTIUBWIOS PUE ()7 | 9OTAISS JOJ QINJONI)SBIJUT PUR JIOM
juowKojdop pue juswdoroaap ‘ugis QoA ‘SOIS0[OUYDd) QIBMEB-IXIUOD | -OWIRIJ B YIIM SWISAS009 9OIAISS
-op) uonerado weSAS00d QOTAIOS FIOMOWEI [[VHFVOS | ‘Q9M oW ‘YOS Jo uoneiSojul | oreos oSrey jo uoneredo Surqeuy | TIVHVOS
"SWISTURYOQUI QOUBRUIOAOL) ‘OTEM
-9[PPIW PAUSLIO-IOTAIS (AN
(seorazes Juouodwos | juowruomauy owmuny juswrdooa "SOOTAIOS SNOQUAT0Id
pue ssoursnqg pue ‘soryderSooroyo | -9 pejeISelu] ‘UOTBUIPIOOD pUE *s100) pue ssaoo1d juowdoressp | -joy jo pesodwoo serydeiSooroyo
901A19s JO juowdo[oadp pue uSis | ‘s[0o0joid UOMOBIOIUI ‘SAOIAISS | UQALP-[OPOIN ‘Juowidorosop Ayder | se swoisAs o[eos oSIe[-enn jo
-op) uonerado we)SAS009 9OTAIOS | JOJ S[opowl pue suonoensqy | -Sooroyd d[qereos 1oy ygomowreljy | juowdoroasp pue uSisop Surqeuq | SOOYOHD
‘suoneordde 0) yoeoidde
‘uonjerado QIS OIIUD-IOS[) ‘SUWIA)SAS00Q QOTATOS
wo)SAS009 QITAIAS ‘uoneIUAWNIS | -WY) spno[) orqeradorojuy Areon ‘somyuewas JYSTomIyST) pue YOS | pnoro juemmd ur swojqoid Ajiqe
-ur pue uSISOp WAISAS009 JOTAIOS | -UBWIOS JOJ OINJONIYOIY 20uoIejoy | ‘Sunndwoo pnopo jo uoneiSeiuy | -redordjur onuewos jo wonnosdy | VOSYANOTD
‘JuowdoroAap wrroy
-je[d 10J QINJONI)SBIJUT 9[qesSNoY
-Sur SULIOJIB[J 9I1AIOS ‘sonbruyoe) uoneydepe | ‘Ayiqeredorojur pue 9oUSTIOAUOD
-100UISUQ 90TAIOS ‘UOTjBIUOWNDS | [emyIlA ‘surojjeld 901AI0S IoJ uor) | -Jjos pue juowoSeuew Ajiqetrea | wopeld 1oy jroddng “uowdoressp
-ul pue uSIsop Wa)sAs099 901A10S | -ejuowodwi pue uSisop Ajiqeres | ‘(41d) Sumeduwiduyg ourg jonpold | wuone[d 901a10s Jo uoneoudiuig | VOINAANI
Lmqednddy S)MSARY yPoroaddy SAANR(qQ | wAuoIdYy

196 5 VALIDATION AND EVALUATION

able use of different service modelling languages within a service ecosystem. The
PIM4SOA (Platform Independent Model for SOA) project [12] provides a model
for defining services in a technology independent manner. On the industrial side,
the UPMS (UML Profile and Metamodel for Services) [14] is an on-going stan-
dardization work by the Object Management Group (OMG) for delivering a for-
mal and unified service definition language. The OASIS Reference Model for
Service-Oriented Architecture [154] defines guidelines for creation of service-
based systems.

These approaches concentrate on providing a unifying meta-model for service
modelling and for validating the consistency and conformance of service models
during design. In comparison, the conceptual model developed in this academic
work is designed for formalizing open service ecosystems. In addition to defining
concepts related to services it also makes explicit the relationships between the
different elements of service ecosystems, and puts emphasis also on the dynamic
nature of service ecosystems. It also makes explicit the relationships between the
ontological, infrastructure, knowledge management and methodological aspects
of service ecosystems.

This dissertation provides a top-level ontology for service ecosystems. From
this perspective, this work is related to so-called semantic web services (SWS)
initiatives. Semantic web services refers to approaches that combine the use of
semantic web technologies and approaches (see e.g. [148]), such as RDF [168] or
OWL [167], and Web Service [169] technologies [99]. Semantic web services are
used for enabling service discovery, composition and other functions needed for
supporting service and service collaboration life cycles in corresponding service-
oriented architectures. The SWS solutions utilize generic ontology description
languages and associated logics for enabling inference over the concepts defined
in domain ontologies. Typically a top-level ontology, for example OWL-S [121]
or WSMO [178], is exploited for describing services and attaching concepts of
domain ontologies to them.

The World Wide Web Consortium (W3C) has defined a standard called Se-
mantic Annotations for WSDL and XML Schema, SAWSDL [79, 171]. The
SAWSDL standard defines how semantic annotation of Web Service Descrip-
tion Language (WSDL) [31] can be accomplished using references to semantic
models such as ontologies. A more comprehensive framework for semantic web
services has been addressed by the Semantically enabled service-oriented archi-
tecture (SESA) [165] initiative. SESA utilizes the Web Service Modelling Ontol-
ogy (WSMO) and the related WSML and WSMX facilities [128, 178] as an un-
derlying technology for creating a middleware platform for semantically enabled
SOAs. The SESA platform provides infrastructure services for service discovery,
integration and mediation, for example [165].

5.4 Comparison to related work 197

Despite the use of service ecosystem-specific top-level ontology, the foun-
dational goal of this academic work is, however, quite different from the SWS
approach. This dissertation provides foundations for defining the life cycles, con-
cepts and infrastructure required for realizing service ecosystems. Within such
ecosystems, semantic web service approaches could be used for implementing the
infrastructure services. Moreover, while semantic web services typically empha-
size operation time life-cycle support, this work equally takes into consideration
the engineering side of service-based systems. Especially, in the context of this
dissertation, concepts are provided with intensions (definitions of their features)
that are utilizable also as design and development models. That is, the ontologi-
cal semantics of concepts and engineering artefacts representing the concepts are
unified in the approach taken in this dissertation.

198 5 VALIDATION AND EVALUATION

Chapter 6

Conclusions and consequences

This thesis proposed service ecosystem engineering as a novel systems engi-
neering discipline for enabling establishment of sustainable service ecosystems.
Moreover, a model-driven approach for service ecosystem engineering was de-
veloped and provided with appropriate tools. The discipline and the approach
provides means for establishing sustainability in envisioned open service ecosys-
tems.

In this chapter conclusions are drawn and the consequences of the research are
discussed. First in Section 6.1 a summary of the results is given. In Section 6.2 the
objectives and evaluation criteria for this work are recalled. An analysis is then
given about how these objectives were met, how mature the provided solution is,
and what the restrictions of the solution are. In Section 6.3 the impacts of this dis-
sertation are discussed in a wider context. Finally, in Section 6.4 further prospects
of this dissertation are discussed with topics ranging from semi-automatic gen-
eration of ecosystem-specific development tools to enabling open innovation in
service ecosystems.

6.1 Summary of results

The motivation for this academic work is to enable a transition from closed, ad
hoc service ecosystems to open, sustainable service ecosystems. Contemporary
service ecosystems, such as based on cloud computing environments [3, 155, 10],
are typically based on pre-negotiated agreements on the business relationships
between partners. For enabling collaboration, the vocabulary, processes, and poli-
cies constraining and directing operations in these service ecosystems are pre-
determined and encoded in technical artefacts and implicit conventions to be fol-
lowed. Correspondingly, the ecosystem capabilities are tightly coupled with tech-
nological infrastructure. Due to the lack of a rigorous service ecosystem engineer-

199

200 6 CONCLUSIONS AND CONSEQUENCES

ing discipline, contemporary service ecosystems are based on architectures which
are a) implicit, and b) concentrate on technological aspects of ecosystems.

For supporting ever growing and progressive service-based business and net-
worked business models, as well as the “services everywhere” visions [42, 43],
a transition from such closed and ad hoc solutions to open and sustainable ser-
vice ecosystem is needed. Openness of a service ecosystem is characterized by
enablement of member autonomy, and support for ecosystem evolution and dy-
namism. Sustainability means quality of a service ecosystem to support continued
viability, where viability depends on the level of business-supporting capabilities
it provides for its members. A viable service ecosystem must provide capabilities
for a) efficient utilization of core competencies, b) opportunistic and flexible busi-
ness networking, ¢) supporting progressive business environments, and d) efficient
business decision-making.

For fulfilling the requirements set by the vision of open service ecosystems
and their sustainability, this thesis presented a model-driven approach for engi-
neering sustainable service ecosystems. From engineering perspective, the solu-
tion presented enables rigorous service ecosystem engineering disciplines. Rig-
orous service ecosystem engineering is enabled by explicit and formal service
ecosystem architecture models. The architecture models enable formalization of
architectural designs and knowledge, their assessment, as well as traceability over
design decisions and their implications.

From business perspective, the solution supports establishment of sustainabil-
ity in service ecosystems. The support is provided by addressing the stakeholder
concerns appropriately in the artefacts developed in this dissertation and service
ecosystem engineering life cycles. This dissertation concentrated especially on
the analysis, design and instrumentation phases of service ecosystem engineer-
ing life cycles. For analysis and design, an architecture framework was defined
and implemented. For service ecosystem instrumentation, methodological sup-
port was provided in form of engineering tools such as model transformations and
an Eclipse [38] plugin for using the transformations in a user-friendly manner.

Finally, support for open service ecosystems was addressed especially in the
formalization of the conceptual model. The design principles of the service eco-
system meta-model were driven by the vision of open service ecosystems. Con-
sequently, the service ecosystem architecture models enable management of en-
gineering and interoperability knowledge in open service ecosystems.

6.2 Analysis of the results

The results of this thesis are analysed below. First, the research objectives are
recalled in Section 6.2.1 and an analysis is made how the objectives have been

6.2 Analysis of the results 201

met. Service ecosystem sustainability depends on how stakeholder concerns are
addressed in service ecosystems. Consequently, Section 6.2.2 analyses how the
stakeholder concerns identified in Chapter 2 are satisfied by the research described
in this thesis. Finally, Section 6.2.3 discusses the demarcation made for the thesis
research.

6.2.1 Meeting the research objectives

Three main objectives were set for this academic dissertation to enable the transi-
tion from ad hoc service ecosystems to sustainable ones. First, a rigorous service
ecosystem engineering discipline is required. Secondly, support for service eco-
system sustainability needs to be addressed in the service ecosystem engineering
life-cycle phases. Thirdly, means for enabling establishment of open service eco-
systems must be delivered. To meet these objectives, this thesis presented model-
driven facilities for design, analysis and instrumentation of service ecosystems.

Rigorous service ecosystem engineering discipline is supported by SEAF which
enables analysis and design of service ecosystem architectures, and the model-
driven methodology for service ecosystem engineering. These contributions are
founded on the conceptual model and the meta-model for service ecosystems.
Support for service ecosystem sustainability is addressed by the artefacts as dis-
cussed in Chapter 5.

Means for enabling establishment of open service ecosystems are provided
by the service ecosystem meta-model. The design principles for service ecosys-
tem meta-model, as discussed in Chapter 3, especially address service ecosystem
evolution and dynamism. Autonomy of service ecosystem participants can not be
addressed in the artefacts developed in this thesis. However, the explicit and for-
mal service ecosystem architecture models, i.e. instantiations of the meta-model,
can be utilized for enabling collaborative governance of open service ecosystems.
Service ecosystem governance comprises collaborative activities between service
ecosystem members for directing, managing and monitoring ecosystem opera-
tion [143]. Such distributed and collaborative governance practices can be only
established, if the responsibilities and behaviour of participants are unambigu-
ously declared; the explicit service ecosystem architecture models serve such
a purpose. Moreover, service ecosystem architecture models enable so-called
model-driven interoperability approaches where unifying, shared models are used
for bridging heterogeneous systems, such as development tools and modelling
languages [35, 25, 34], or organizations and enterprise systems [13, 89].

The main artefacts developed in this thesis are /) a conceptual model for ser-
vice ecosystems, 2) formalization of the conceptual framework as a meta-model,
3) an architecture framework for analysis and design of ecosystem models, and
4) a model-driven methodology for service ecosystem engineering. These arte-

202 6 CONCLUSIONS AND CONSEQUENCES

facts and their completeness, feasibility and applicability for enabling sustainable
service ecosystems are analyzed in the following.

This thesis has presented a sufficiently complete conceptual framework for
service ecosystems. The completeness of the concepts was evaluated through a
case study representing a state-of-the-art (i.e. Pilarcos service ecosystem) service
ecosystem. As presented in Chapter 5, the conceptual framework includes suffi-
cient vocabulary for expressing the characteristics of such diverse service ecosys-
tems.

The feasibility of the conceptual framework was validated constructively by
providing a meta-model, an architecture framework for creating service ecosys-
tem models, and a methodology for service ecosystem engineering. The service
ecosystem meta-model formalizes the conceptual framework and the semantics of
the vocabulary used. The architecture framework includes a set of viewpoints and
associated model-kinds. The required modelling tools were implemented by ex-
tending a standard compliant UML tool (i.e. MagicDraw 17') with UML-profiling
mechanism and tool-specific extensions for enhancing the user experience. The
UML profile is based on the service ecosystem meta-model. The methodology for
service ecosystem engineering is driven by model transformations that refine the
user-provided models to more specific ones, and finally, to technology-specific
service engineering artefacts (e.g. descriptions of domain-specific abstract syn-
taxes).

The applicability of the model-driven approach for service ecosystem en-
gineering was demonstrated in Chapter 5. Model transformations were imple-
mented that produced a selection of engineering artefacts from the service ecosys-
tem models. The produced engineering artefacts represented different concerns
of the service ecosystem stakeholders, especially infrastructure provider and en-
gineering tool provider, identified in Section 2.2.

For addressing challenges laid by the vision of open service ecosystems, the
artefacts developed in this thesis are designed especially to support different kinds
of service ecosystem life cycles, service-oriented software engineering processes,
and management and evolution of the service ecosystem knowledge. Without
these properties of the concepts and the modelling framework, the viability and
applicability of the resulting service ecosystems would be compromised.

The conceptual model and the meta-model for service ecosystem supports
varying kinds of service ecosystem life cycles and life-cycle phases. The life
cycles are defined as partially ordered collections of life-cycle phases. This gives
ecosystem designers freedom to describe the ecosystem life cycles; domain-specific
ecosystem models can constraint this freedom and introduce new kinds of rela-
tionships (e.g. recursive behaviour) using meta-model extensions. The life cy-

"http://magicdraw.com

6.2 Analysis of the results 203

cle phases can be classified into three categories (i.e. rigid, static and dynamic)
depending on the level of dynamism supported in the life-cycle phase choreogra-
phies, as described in Chapter 3. In the case study the Pilarcos ecosystem utilizes
both static (population phase) and dynamic (collaboration enactment phase) life-
cycle phases.

Support for service-oriented software engineering processes is addressed in
the service ecosystem meta-model. The meta-model is founded on the core prin-
ciples of model-driven engineering, and especially, on the unification of ontolog-
ical and linguistic modelling practices (see Chapter 3). As such, the meta-model
enables efficient utilization of ecosystem knowledge in model-driven service engi-
neering processes, and provides means for managing the engineering knowledge
in service ecosystems. The feasibility and applicability of the approach is demon-
strated in Chapter 5 by providing model transformations generating service engi-
neering artefacts from ecosystem models.

Evolution of service ecosystem knowledge is necessary for maintaining the
viability of the ecosystem. Support for knowledge evolution is needed to enable
(gradual) service innovation and reactions to emerging business opportunities.
Support for ecosystem knowledge evolution is addressed at the ecosystem meta-
model. The meta-model defines constructs that can be used for defining static
and dynamic knowledge, as well as for meta-model extension and variability. The
mechanisms are implementable using contemporary modelling technology, such
as Eclipse Modelling Framework (EMF) [39] and QVT [114] that were utilized
for implementing the service ecosystem engineering methodology.

Without any means for managing the service ecosystem knowledge, the life
cycles and service engineering processes become hard to manage due to interop-
erability problems. Management of service ecosystem knowledge is addressed
in this thesis by providing a knowledge management meta-model utilizable for
describing service ecosystem-specific knowledge repository infrastructures.

6.2.2 Satisfying the stakeholder concerns

For each identified service ecosystem stakeholder several concerns were recog-
nized in Chapter 2. In the following, we go through these requirements and ana-
lyze how they were met by this work.

From the service consumer perspective, three fundamental concerns were rec-
ognized. The conceptual model for service ecosystems must enable /) business
service identification, location and selection, 2) business service dependability,
and 3) business service monitoring.

For enabling service identification and selection, the conceptual model and the
modelling framework provides means for establishing ecosystem-specific service
categorization, service ontologies and variable features in service offers. Service

204 6 CONCLUSIONS AND CONSEQUENCES

categorization is enabled through use of a two-level ontological modelling ap-
proach, where services conform to service kinds. The extendability of the service
ecosystem meta-model provides means for creating domain-specific relationships
and concepts, and thus ontologies, over the core service concepts. The feature
model presented in this thesis provides means for managing functional and non-
functional features in service ecosystems [141] and facilitates feature-based selec-
tion of services with appropriate knowledge repository implementations. Means
for efficient model-driven production of such knowledge repositories are also pro-
vided as part of this thesis.

Service provider concerns with respect to the conceptual model address espe-
cially support for service delivery and operation in service ecosystems. Two pri-
mary service provider concerns were identified in Chapter 2: /) service bundling,
and 2) service contracting.

The conceptual model and the modelling framework includes the concept of
service offer for providing sufficient expressiveness for service bundling. The
service offer concept enables exploitation of sub-contracting relationships and in-
troduction of value-adding operations by service providers. This facilitates ef-
ficient service delivery by enabling utilization of provider-specific competencies
and business networks (e.g. sub-contracting relationships), autonomy over service
bundling, as well as service provider differentiation.

The concepts of service offers and service contracts utilize commitment oper-
ations to enable expression of complex service contracting relationships between
service providers and consumers. This commitment model that is utilized in these
concepts is based on an ontology of commitments in multi-agent systems [150].
Moreover, the service connections declared in service choreographies can be uti-
lized for service-contracting purposes, especially regarding non-functional fea-
tures of service interactions. Enactment of service contracts is facilitated by the
behavioural descriptions associated with service kinds and service choreographies
identified in the service contracts.

The conceptual model and the modelling framework enables business network
management, including collaborative activities such as business network estab-
lishment, coordination, and monitoring. The concepts of service choreography,
service liaison and service contract provide the primary means for business net-
work establishment. New kinds of business networks can be declared with service
choreographies. Service liaisons are used in business network establishment life
cycles to represent initial, intermediate and finalized contractual (multi-lateral)
agreements between partners. Service contracts represent mutually agreed, bi-
lateral commitments and service agreements between partners. Finalized service
liaisons and service contracts can be utilized for business network coordination
and monitoring service interactions in the operational phase of the business net-

6.2 Analysis of the results 205

work. This is the approach used in the Pilarcos-ecosystem [87], for example.

Service engineers produce technological artefacts (e.g. web services) that are
utilized by service providers to implement their business services. In Chapter 2
three concerns were identified with respect to service engineers: /) identification
of engineering capabilities required for service production, 2) well-advised ser-
vice engineering, and 3) efficient production of component services.

The engineering concepts, such as tool types and methods, included in the
service ecosystem meta-model enable identification of required engineering capa-
bilities. Well-advised service engineering refers to both correspondence of service
engineering with the business models (“well advised motivations”) and pragmat-
ics (“well advised practices”) of the ecosystem. The conceptual model developed
in this thesis provides means for such well-advised service engineering.

First of all, the conceptual model provides a holistic framework which uni-
fies business level service choreographies with elements contributing to service
engineering, such as different kinds of service and interaction features. In service
ecosystems the service choreographies are based on the business networks and
business models relevant in the corresponding service ecosystem. The service en-
gineers can utilize the published service choreography descriptions for developing
services that correspond closely to the needs of the underlying business mod-
els. Service development based on published service choreography descriptions
provides well advised motivations for service engineering in different domains.
Moreover, utilization of domain-specific service description languages decreases
the semantic gap between service engineering and business engineering domains.

Secondly, the conceptual model provide means for extracting, making explicit
and sharing best practices in service ecosystems. Especially service kinds can be
considered as representations of best practice for service development in service
ecosystems. Service kinds can be derived from business models and networks
(represented as service choreographies in the conceptual model) or based on tech-
nological premises. In mature service ecosystems the service kinds and their def-
initions can become valuable, reusable engineering assets for service engineers.
Such decoupling between business engineering and service engineering domains
would increase the sustainability of the service ecosystems. Decoupling the busi-
ness and service engineering artefacts enables loosely coupled, iterative develop-
ment of business models and enabling services while still preserving well advised
service engineering.

For facilitating efficient service production in service ecosystems, this thesis
provides means for creating coherent families of domain-specific (i.e. ecosystem-
specific) modelling languages. The uniformity of the resulting language family
is guaranteed by model transformations for creating ecosystem-specific knowl-
edge management infrastructure. The model transformations provide a set of

206 6 CONCLUSIONS AND CONSEQUENCES

intensional meta-models defining the abstract syntaxes of the DSLs, and more
importantly, a knowledge management model which integrates the individual in-
tensional meta-models to a coherent whole.

These model transformations, and the knowledge management meta-model
providing means for implementing the knowledge management infrastructure,
were described as part of this thesis. The utilization of domain-specific languages
enables efficient, model-driven service engineering practices (e.g. generation of
mock services for faster prototyping, code generation of service stubs and wrap-
pers, model-based testing and deployment of services etc.).

Moreover, service engineers can utilize the service ecosystem knowledge base
(including definitions for service choreographies, service kinds and different fea-
ture definitions) to direct their development efforts. Service choreography def-
initions available in the service ecosystem can be utilized in conjunction with
re-usable model transformations to decrease the service development efforts; this
becomes especially efficient in top-down approaches to service development (see
Section 2.2).

Without appropriate service engineering tools, service production becomes
hindered by technological complexities and longer development times. Complex-
ity of service engineering may dispel potential ecosystem members while longer
development times may result in missed business opportunities. Thus, the avail-
ability and quality of service engineering tools in a service ecosystem has a con-
siderable effect on the sustainability of the ecosystem. Service engineering tool
providers implement design and development tools which enable rapid and ef-
ficient service production methods. Three primary concerns were identified in
Chapter 2 for service engineering tool providers: /) identification of engineering
capabilities required for component service production (shared with service en-
gineers and discussed above); 2) efficient tool production and specialization, and
3) language and tool interoperability.

This thesis provides means for efficient tool production. As demonstrated in
Chapter 5 the ecosystem models can be utilized for generating the abstract syntax
definitions (i.e. meta-models) for a modelling language family. The abstract syn-
tax definitions already provided means for developing service ecosystem-specific
modelling tools manually. For example, the Eclipse Modelling Framework [39]
can be utilized for implementing model editors with graphical or textual concrete
syntaxes for the generated meta-models. During service ecosystem operation, the
architecture models and generated DSL families provide means for tool and lan-
guage integration with model-driven techniques. Especially the technique known
as model weaving can be used for such model integration [73].

Infrastructure providers deliver the infrastructure services required for en-
abling operation of service ecosystems. Delivering infrastructure services could

6.2 Analysis of the results 207

be business on its own, or it might be affordable due to supporting the other as-
pects of infrastructure provider business models (e.g. bootstrapping the use of
business services in the service ecosystem). Three concerns were identified in
Chapter 2 for infrastructure providers: /) identification and design of required in-
frastructure services, 2) efficient production of infrastructure services, and 3) in-
frastructure service interoperability.

Identification and design of required infrastructure services is enabled by SEAF
and utilization of explicit service ecosystem architectures during analysis and de-
sign phases. These artefacts enable analysis and design of service ecosystems,
including their infrastructure services, as well as facilitate communication be-
tween infrastructure providers and other stakeholders. Moreover, formal service
ecosystem architecture models enable architecture analysis techniques.

Efficient production of infrastructure services based on service ecosystem
models was demonstrated in Chapter 5. Software engineering artefacts were
generated for implementing knowledge management infrastructures for differ-
ent service ecosystems. Platform-specific models were automatically generated
(SCA [109] and OSGi [120] models) from the service ecosystem models; these
models enable efficient service production and deployment based on state-of-the-
art SOA practices. Moreover, Java interfaces and Eclipse projects were generated
for each knowledge repository required by a service ecosystem.

Infrastructure services interoperability was also demonstrated in Chapter 5.
The service ecosystem models were used as means for model-driven integration
of infrastructure services: the platform-specific models and other service engi-
neering artefacts (e.g. Java interfaces) generated from ecosystem models reflect
the inter-dependencies between knowledge artefacts and repositories declared in
the knowledge management model.

Ecosystem providers represent entities such as organizations or consortia whose
business models require utilization and instrumentation of a service ecosystem.
Ecosystem providers are likely to also act as providers of (some of the) infras-
tructure services, but this is not necessary: the delivery of infrastructure services
can be out-sourced, if applicable in the business model. Ecosystem providers
are responsible, typically also trusted parties, which maintain the sustainability of
service ecosystems by regulating their behaviour and providing means for other
stakeholders to join and operate in the ecosystems. For ecosystem providers two
main concerns were identified in Chapter 2: 1) identification of required ecosys-
tem capabilities and elements supporting their delivery, 2) formalization of service
ecosystem architecture descriptions, and 3) supporting service ecosystem gover-
nance.

Ecosystem providers initiate establishment of service ecosystems by first defin-
ing their required capabilities and means for delivering those capabilities. For

208 6 CONCLUSIONS AND CONSEQUENCES

this purpose the conceptual model developed in this thesis provides concepts of
service ecosystem capabilities, life cycles and infrastructure services. The con-
ceptual model already provides means for holistic analysis of service ecosystems.
The conceptual model was formalized as a service ecosystem meta-model. More-
over, the conceptual model and SEAF provide means for defining the kinds of
knowledge elements required for supporting the operation of the service ecosys-
tem. The models resulting in the definition and formalization process enacted by
ecosystem providers can then be applied for establishing business analysis and
prototyping by different ecosystem stakeholders, for example.

Supporting sustainability in service ecosystems necessitates a framework for
service ecosystem governance. Service ecosystem governance is here defined
as a collaborative activity taking place between ecosystem members, which ex-
tends service governance (such as described in the Open Group SOA Governance
Framework [117], for example) of the individual members in the ecosystem [143].
Service governance comprises activities and structures for directing, monitoring
and managing the capabilities enacted in a service ecosystem. The conceptual
model and the modelling framework for service ecosystems enables such collab-
orative service ecosystem governance by providing means for defining the eco-
system capabilities and their supporting life cycles and infrastructure services.
The responsibilities of the ecosystem members with respect to service ecosystem
governance activities become unambiguously defined in the ecosystem models.

As demonstrated above, the artefacts developed in this thesis enable facilita-
tion of sustainable service ecosystems. The concerns identified for primary stake-
holders are supported by this work. Most importantly, the requirements stemming
from service ecosystem sustainability and the vision of open service ecosystems
are met in a coherent and unified approach which provides means for rigorous
service ecosystem engineering.

6.2.3 Demarcation of the thesis

The primary motive for this thesis is to develop means for facilitation of sustain-
able service ecosystems. Such means have been provided, and their completeness,
feasibility, applicability and utility have been demonstrated. There are a few de-
marcations that were made during this work that are especially worth mentioning.
The demarcations were made to keep the amount of conceptual and implementa-
tion work in the bounds of an academic thesis.

First of all, integration of domain-specific semantics and rules in the ecosys-
tem models was not addressed. Domain-specific semantics and rules are now
supposed to be implemented in the knowledge management infrastructure of the
service ecosystems. However, integrating semantics and rules in the ecosystem
models would clearly provide stronger and more explicit ecosystem definitions.

6.2 Analysis of the results 209

Moreover, the integrated rules could accelerate development of infrastructure ser-
vices and modelling tools, since the implementation artefacts could be generated
automatically from the formalized rules.

Secondly, the generation of complete domain-specific languages was not ad-
dressed in this thesis. The potential for generation of ecosystem-specific DSL:s
was demonstrated by model transformations generating meta-models correspond-
ing to ecosystem concept intensions; these meta-models correspond to defini-
tions of the abstract syntaxes of domain-specific languages. Generation of com-
plete DSL:s would require generation of technology-specific artefacts, such as
UML profiles, OCL declarations and tool-specific extension elements (e.g. user-
interface elements). In general, generation of domain-specific languages automat-
ically in any domain would be infeasible. However, with more restricted domains
such as service ecosystems and the domain-specific meta-modelling approach uti-
lized in this work, it is likely that DSL generation could be automated quite far.

Thirdly, the model-transformations developed for this thesis exclude several
technology-specific transformations that are valuable for instrumentation product-
ion-grade service ecosystems. Such model transformations were excluded, since
they do not contribute to the evaluation and validation of the research results.
However, for establishing sustainable service ecosystems, such engineering arte-
facts are required. For example, for service consumers and service engineers
model transformations generating technology-specific service descriptions (i.e.
WSDL or WS-BPEL) are valuable for bridging different technological domains.
More over, model transformations consuming and producing SoaML-based [116]
descriptions of the business networks could be provided, since efficient top-down,
model-driven service development tools such as the ModelPro-tool” already ex-
ist for this modelling language. In cloud computing service ecosystems model
transformations for generating and consuming infrastructure service deployment
descriptors, such as based on the Open Cloud Computing Interface (OCCI) In-
frastructure Specification, would become valuable.

Finally, no complete implementations for knowledge repositories were given
by this work. A selection of the knowledge repositories have been previously
implemented in the Pilarcos middleware platform [85, 87]. The technical im-
plementability of knowledge repositories, and assessing their properties does not
provide any further contributions or insight to the evaluation and validation of this
work. Performance evaluation and usability concerns related to the knowledge
repositories are interesting aspects, but are not related to the conceptual model and
the corresponding modelling framework. Moreover, implementation of a com-
plete knowledge management infrastructure requires considerable research and
implementation work which has been addressed in EU projects involving several

*http://portal.modeldriven.org/project/modelpro

210 6 CONCLUSIONS AND CONSEQUENCES

academic and industrial partners, such as the ModelBus [21] project. Instead, the
applicability of the conceptual model and the modelling framework with respect to
implementing the knowledge management framework was demonstrated by pro-
viding model transformations generating corresponding technology-specific mod-
els and other engineering artefacts (e.g. Java interfaces and Eclipse project struc-
tures). The generated products can be utilized for implementing the corresponding
knowledge management infrastructure comprising inter-related repositories.

6.3 Impacts

We can analyze the impacts of this work by considering different actors in ser-
vice ecosystems and what level of support is provided for their activities. First
of all, the solution provided in this dissertation enables efficient development
of domain-specific service ecosystems. The domain-specific meta-modeling lan-
guage behind this framework is used for modeling the service ecosystem. Service
ecosystem modeling can be utilized by different stakeholders during requirements
gathering and design processes in cooperation. After an appropriate service eco-
system model has been designed, the resulting model is utilizable for producing
ecosystem-specific meta-models, corresponding DSLs and knowledge reposito-
ries. Model-driven engineering principles are exploited for efficient generation of
these artefacts.

Secondly, the framework provides means for individual service providers to
join selected service ecosystems in a more flexible manner. The collection of
tools, methods and modeling languages are typically specific for individual ser-
vice providers based on their expertise, experience and practice. When joining
a new service ecosystem, a service provider must possibly adopt new kinds of
methods, tools or languages to provide services in conformance with the ecosys-
tem. Such an intrusive adoption of new practices and expertise makes joining new
service ecosystems an expensive process. However, explicit service ecosystem
models, such as provided by this framework, can provide more efficient means
for such adaptation by conceptual unification: organization-specific languages
(and tools) can be mapped to the ones used by the ecosystem. Such mappings
can be formalized as weaving models [36] and further utilized for efficient imple-
mentation of model integration [74].

Thirdly, the framework presented in this thesis can be exploited by model-
ing and software engineering tool providers. The domain-specific meta-modeling
language for service ecosystems provides means for developing coherent fami-
lies of domain-specific languages, or DSLs. Traditionally DSLs are developed
one language at a time. However, in service ecosystems several languages need
to be used in conjunction to describe the different viewpoints (e.g. legal enti-

6.3 Impacts 211

ties vs. functional entities) in the service ecosystem. In the single-language-at-
a-time model the correspondences between languages and consistency between
viewpoints may become hard to handle due to complex dependencies between
features. In this framework these complexities can be handled more efficiently,
since the correspondences are formalized in the service ecosystem model. The
model can be used for generating the abstract syntaxes of the individual DSLs
in the corresponding language family, and especially, for creating explicit cor-
respondence descriptions between the elements of the DSLs. Correspondences
between individual viewpoint languages can be formalized with use of QVT, for
example [129].

Finally, the framework developed in this thesis enables model-based manage-
ment and governance of open service ecosystems. During operation phase of an
open service ecosystem, the explicit and formal ecosystem architecture model is
utilizable for establishing a shared, unambiguous understanding about the charac-
teristics of the ecosystem. The characteristics include especially the behavioural
and structural properties of the ecosystem, and behaviour and responsibilities ex-
pected from its members. In addition, the shared ecosystem architecture model
enables potential members to assess risks and costs associated with joining the
ecosystem. Such risk and cost assessment can be implemented by analysing the
conformance and compatibility between local enterprise architectures and ser-
vice ecosystem architectures, for example. More over, the ecosystem architecture
models enable model-based interoperability approaches (see e.g. [13, 89]) as well
as collaborative service ecosystem governance practices [143].

This dissertation provides facilities for enhancing interoperability manage-
ment and software engineering support in service ecosystems. For enhancing
interoperability management in service ecosystems, this work formalizes a top-
level ontology for declaring service ecosystem-specific features. Such interop-
erability knowledge is utilized in service ecosystem life cycles for guaranteeing
interoperable operation of service-based collaborations. Interoperability knowl-
edge includes information about features and their mutual dependencies, and their
applicability with respect to different models of collaboration, for example.

From the software engineering support perspective this work provides a com-
prehensive definition of the entities and features identifiable in service ecosys-
tems. Thus, a unifying framework for defining vocabularies enabling engineering
knowledge exchange about service artefacts is provided. Knowledge repositories
based on a unified ecosystem model and maintaining corresponding feature infor-
mation can then be utilized by developers for sharing information and enabling
global software engineering practices. Especially, formalization of service eco-
system concepts as models and meta-models makes it possible for enabling devel-
opment tool interoperability by integration of software engineering processes and

212 6 CONCLUSIONS AND CONSEQUENCES

domain-specific languages through the ecosystem models and knowledge reposi-
tories.

Successful engagement in the envisioned open service ecosystems necessi-
tate investments in terms of knowledge, expertise and practices from enterprises.
First of all, enterprises must possess explicit knowledge about their own business
and organization to enable appropriate exposure of their capabilities in service
ecosystems. Analysis methods for assessing the compatibility between enter-
prise architectures and service ecosystem architectures should be developed to
enable efficient business decision making. Secondly, expertise on model-driven
engineering [144] is needed for utilizing service ecosystem architecture models
fully in enterprises. For example, model-driven configuration of service-oriented
architecture infrastructure and deployment of services [4] based on service eco-
system architecture models would enable efficient delivery of business services.
Such configurable, model-driven SOAs would be especially valuable in scenarios
where an organization operates in several service ecosystems simultaneously. Fi-
nally, enterprise governance (see e.g. [64]) practices should be extended to cater
for business models based on operation in one or more service ecosystems. More-
over, service ecosystem governance [143] is a whole new field of collaborative
governance, which should be aligned with enterprise governance to enable ef-
ficient service-based business. More research on service ecosystem governance
must be conducted before it can be aligned with other enterprise governance prac-
tices.

The preceding investments are aligned with current trends in systems engi-
neering, enterprise governance and service-oriented computing. In systems en-
gineering explicit architecture models and model-driven engineering [144] are
increasingly utilized for handling the complexity and enhancing respective en-
gineering processes. Enterprise governance has been addressed for several years
both in the academia [64] and industry, such as in form of SOA governance stan-
dardization [159]. Service-oriented computing [122, 151] is recognized as the
paradigm for design and implementation of modern loosely-coupled distributed
systems. Especially in enterprise computing environments service-oriented com-
puting is realized with enterprise service buses [145].

6.4 Further prospects

This work contributes to the domain-specific language engineering research by
providing an approach for developing families of inter-related, coherent DSLs. A
domain ontology model declared for a service ecosystem can be considered as a
specification of a family of domain-specific languages. For each concept intension
a domain-specific language should be provided. Some parts of such DSLs could

6.4 Further prospects 213

be even generated automatically: a concept including behavioural features could
be provided with a UML profile extending activity diagrams, for example.

Moreover, the ontological relationships between concepts, such as the on-
tological instantiation relationships or part-whole relationships, declare confor-
mance and consistency dependencies between corresponding DSLs. Finally, the
notion of knowledge repository is actually designed in such a way that differ-
ent representations of the same knowledge item can be accepted to the same
repository, if the repository maintains a knowledge item container associated with
the corresponding representation format. From these premises we envision that
our solution can be utilized for enabling DSL and modelling tool interoperability
within service ecosystems.

This work provides means for creation of service engineering platforms, which
facilitate agile service engineering and co-creation in service ecosystems. A frame-
work for establishing domain-specific, technology independent service declara-
tion languages for designing services, service composites and service bundles has
been provided. The conceptual framework and the corresponding service eco-
system meta-model will be extended with constructs addressing agility of service
engineering and co-creation. In this context, agility is addressed especially by
reusable service engineering assets (e.g. models for service channel declarations,
service composite / bundle definitions, integration patterns, engineering method
fragments, and technology-specific adapters), and model-driven engineering prin-
ciples (e.g. model transformations and code generation / interpretation). Co-
creation of services is enabled by platform services that facilitate engineering tool
and knowledge integration; for this purpose, knowledge repositories maintaining
reusable service engineering assets are required in the service ecosystem. Effi-
cient implementability of such knowledge repositories has been demonstrated as
part of this thesis.

For enabling and managing open innovation [29] in future service ecosystems,
the corresponding methodologies and business models need to be grounded inher-
ently on the properties of the surrounding service ecosystem. From the method-
ological perspective, service providers need to be provided with facilities that en-
able them to collect feedback information and knowledge about user reactions and
needs with respect to new services. Such mechanisms need to be grounded on a
solid basis and they need to be ubiquitous in the sense that their existence and use
does not hinder the actual functionality of the system, or do not propose too strict
limitations on the usability and applicability of services.

From the business perspective, a solid foundation needs to be established for
enabling the utilization of service usage information in such a way that satisfies
all the participants within a service mashup business-wise. That is, a the future
service ecosystem needs to be equipped with an intrinsic business model that pro-

214 6 CONCLUSIONS AND CONSEQUENCES

vides added value when compared to the current situation, and enables claiming
the profits within the corresponding value chain involving basic service providers,
mashup providers and service end-users.

The future perspective of open service markets where mashup services (busi-
ness mashup services) are created rapidly from basic service components requires
mechanisms for managing the plethora of available services and service kinds. In
this scenario, new services are rapidly developed by users and user communities
via agile mashup technologies and methods. The basic services provided by ser-
vice providers are extended and exploited by users that tailor those services to suit
new kinds of usage scenarios possibly not even identified by the original provider.
In such a dynamic and agile service ecosystem, the user wants to know which
kind of services are available for the task she wants to execute. On the other hand,
service providers want knowledge about current and forthcoming usage scenarios
and needs for managing and directing their service evolution, development pro-
cesses. Service and mashup providers also seek continuously for innovative uses
of their services to further aid their future service development processes.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

ALDAZABAL, A., BAILY, T., NANCLARES, F., SADOVYKH, A., HEIN,
C., AND RITTER, T. Automated Model Driven Development Processes. In
Proceedings of the ECMDA workshop on Model Driven Tool and Process
Integration (2008).

ALMEIDA, J., DUKMAN, R., VAN SINDEREN, M., AND PIRES, L. On
the Notion of Abstract Platform in MDA Development. In Enterprise Dis-
tributed Object Computing Conference, 2004. EDOC 2004. Proceedings.
Eighth IEEE International (2004), IEEE, pages 253-263.

ARMBRUST, M., Fox, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R.,
KONWINSKI, A., LEE, G., PATTERSON, D., RABKIN, A., STOICA, I.,
AND ZAHARIA, M. A View of Cloud Computing. Commun. ACM 53
(April 2010), pages 50-58.

ARNOLD, W., EiLaM, T., KALANTAR, M., KONSTANTINOU, A. V.,
AND TOTOK, A. A. Pattern Based SOA Deployment. In Service-Oriented
Computing — ICSOC 2007 (2007), vol. 4749 of Lecture Notes in Computer
Science, Springer, pages 1-12.

ASSMANN, U., ZSCHALER, S., AND WAGNER, G. Ontologies, Meta-
models, and the Model-Driven Paradigm. In Ontologies for Software Engi-
neering and Software Technology, C. Calero, F. Ruiz, and M. Piattini, Eds.
Springer Berlin / Heidelberg, 2006, pages 249-273.

ASUNCION, C., AND VAN SINDEREN, M. Pragmatic Interoperability: A
Systematic Review of Published Definitions. In Enterprise Architecture,
Integration and Interoperability, P. Bernus, G. Doumeingts, and M. Fox,
Eds., vol. 326 of IFIP Advances in Information and Communication Tech-
nology. Springer Boston, 2010, pages 164-175.

ATKINSON, C., AND KUHNE, T. The Essence of Multilevel Metamodel-
ing. In UML 2001 - The Unified Modeling Language. Modeling Languages,

215

216

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Concepts, and Tools, M. Gogolla and C. Kobryn, Eds., vol. 2185 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2001, pages 19—
33.

ATKINSON, C., AND KUHNE, T. Model-Driven Development: A Meta-
modeling Foundation. /IEEE Softw. 20, 5 (2003), pages 36—41.

BAIDA, Z. S. Software-aided Service Bundling: Intelligent Methods &
Tools for Graphical Service Modeling. PhD thesis, Vrije Universiteit, 2006.
SIKS Dissertation Series No. 2006-06.

BANERIJEE, P., FRIEDRICH, R., BASH, C., GOLDSACK, P., HUBERMAN,
B., MANLEY, J., PATEL, C., RANGANATHAN, P., AND VEITCH, A. Ev-
erything as a Service: Powering the New Information Economy. Computer
44,3 (march 2011), pages 36—43.

BARBERO, M., JOUAULT, F., GRAY, J., AND BEZIVIN, J. A Practical
Approach to Model Extension. In ECMDA-FA 2007 (2007), vol. 4530 of
Lecture Notes in Computer Science, Springer-Verlag, pages 32-42.

BENGUARIA, G., LARRUCEA, X., ELVESAETER, B., NEPLE, T.,
BEARDSMORE, A., AND FRIESS, M. A Platform Independent Model for
Service Oriented Architectures. In Enterprise Interoperability: New Chal-
lenges and Approaches (Apr. 2007), G. Doumeingts, J. Miiller, G. Morel,
and B. Vallespir, Eds., Springer, pages 23-32.

BERRE, A., ELVESATER, B., FIGAY, N., GUGLIELMINA, C., JOHNSEN,
S., KARLSEN, D., KNOTHE, T., AND LIPPE, S. The ATHENA Interoper-
ability Framework. Enterprise Interoperability 11 (2007), pages 569-580.

BERRE, A. J. UPMS - UML Profile and Metamodel for Services - an
Emerging Standard. In EDOC ’08: Proceedings of the 2008 12th Interna-
tional IEEE Enterprise Distributed Object Computing Conference (Wash-
ington, DC, USA, 2008), IEEE Computer Society.

BEUCHE, D., PAPAJEWSKI, H., AND SCHRODER-PREIKSCHAT, W. Vari-

ability Management with Feature Models. Science of Computer Program-
ming 53, 3 (2004), pages 333-352.

BEZIVIN, J., JOUAULT, F., ROSENTHAL, P., AND VALDURIEZ, P. Mod-
eling in the Large and Modeling in the Small. In Model Driven Archi-
tecture (2005), vol. 3599 of Lecture Notes in Computer Science, Springer,
pages 33-46.

References 217

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BEZIVIN, J., JOUAULT, F., AND TOUZET, D. Principles, Standards and
Tools for Model Engineering. In ICECCS ’05: Proceedings of the 10th
IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS’05) (Washington, DC, USA, 2005), IEEE Computer Soci-
ety, pages 28-29.

BEZIVIN, J., JOUAULT, F., AND VALDURIEZ, P. On the Need for Meg-
amodels. In OOPSLA workshop on Best Practices for Model-Driven Soft-
ware Development (2004).

BEZIVIN, J., SOLEY, R. M., AND VALLECILLO, A. Editorial to the
Proceedings of the First International Workshop on Model-Driven Inter-

operability. In Proceedings of the First International Workshop on Model-
Driven Interoperability (MDI’10) (New York, NY, USA, 2010), ACM.

BLANC, X., GERVAIS, M.-P., AND SRIPLAKICH, P. Model Bus: To-
wards the Interoperability of Modelling Tools. In Model Driven Archi-
tecture (2005), vol. 3599 of Lecture Notes in Computer Science, Springer,
pages 17-32.

BLANC, X., GERVAIS, M.-P., AND SRIPLAKICH, P. Modeling Services
and Web Services: Application of ModelBus. In International Conference
on Software Engineering Research and Practice (SERP’05) (2005).

BOSCH, J., AND BOSCH-SUUTSEMA, P. From Integration to Composition:
On the Impact of Software Product Lines, Global Development and Eco-
systems. J. Syst. Softw. 83, 1 (2010), pages 67-76.

BRoGI, A., CANAL, C., AND PIMENTEL, E. Behavioural Types and
Component Adaptation. In [0th International Conference on Algebraic
Methodology and Software Technology (AMAST 2004) (2004), vol. 3116
of Lecture Notes in Computer Science, Springer-Verlag, pages 42-56.

BRUNELIERE, H., ALLILAIRE, F., BEZIVIN, J., AND JOUAULT, F.
Global Model Management in Eclipse GMT/AM3. In Eclipse Technology
eXchange workshop (eTX) at the ECOOP 2006 Conference (2006).

BRUNELIERE, H., CABOT, J., CLASEN, C., JOUAULT, F., AND BEZIVIN,
J. Towards Model Driven Tool Interoperability: Bridging Eclipse and Mi-
crosoft Modeling Tools. Modelling Foundations and Applications (2010),
pages 32-47.

BuckL, S., MATTHES, F., ROTH, S., SCHULZ, C., AND SCHWEDA,
C. M. A Conceptual Framework for Enterprise Architecture Design. In

218

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

REFERENCES

Trends in Enterprise Architecture Research, E. Proper, M. M. Lankhorst,
M. Schonherr, J. Barjis, S. Overbeek, W. Aalst, J. Mylopoulos, N. M.
Sadeh, M. J. Shaw, and C. Szyperski, Eds., vol. 70 of Lecture Notes in Busi-
ness Information Processing. Springer Berlin Heidelberg, 2010, pages 44—
56.

CAMARINHA-MATOS, L. M., AND AFSARMANESH, H. Collaborative
Networks: Value Creation in Knowledge Society. In PROLAMAT 2006,
Knowledge Enterprise: Intelligent Strategies in Product Design, Manufac-
turing, and Management (2006), vol. 207, pages 26—40.

CAMARINHA-MATOS, L. M., AND AFSARMANESH, H. A Framework for

Virtual Organization Creation in a Breeding Environment. Annual Reviews
in Control 31, 1 (2007), pages 119 — 135.

CHESBROUGH, H. Open Innovation: The New Imperative for Creating
and Profiting from Technology. Harvard Business School Press, 2003.

CHESBROUGH, H. Open Services Innovation: Rethinking Your Business
to Grow and Compete in a New Era. Jossey-Bass, 2011.

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEER-
AWARANA, S. Web Services Description Language (WSDL) 1.1, 1.1 ed.
W3C, Mar. 2001.

CoLoMBO, M., D1 NiTTO, E., DI PENTA, M., DISTANTE, D., AND
ZUCCALA, M. Speaking a Common Language: A Conceptual Model for
Describing Service-oriented Systems. In ICSOC 2005 (2005), vol. 3826 of
Lecture Notes in Computer Science, Springer, pages 48—60.

CZARNECKI, K., ANTKIEWICZ, M., KiM, C. H. P., LAU, S., AND PIET-
ROSZEK, K. Model-driven Software Product Lines. In Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (New York, NY, USA, 2005), OOP-
SLA 05, ACM, pages 126-127.

DEL FABRO, M., BEZIVIN, J., AND VALDURIEZ, P. Model-Driven Tool
Interoperability: An Application in Bug Tracking. On the Move to Mean-
ingful Internet Systems 2006: CooplS, DOA, GADA, and ODBASE (2006),
pages 863—881.

DEMIREZEN, Z., SUN, Y., GRAY, J., AND JOUAULT, F. Enabling Tool
Reuse and Interoperability Through Model-driven Engineering. Journal
of Computational Methods in Science and Engineering 10, Supplement 2
(2010), pages 187-202.

References 219

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

DIDONET DEL FABRO, M., AND JOUAULT, F. Model Transformation
and Weaving in the AMMA Platform. In Workshop on Generative and
Transformational Techniques in Software Engineering (GTTSE) (2005),
pages 71-77.

DIKAIAKOS, M., KATSAROS, D., MEHRA, P., PALLIS, G., AND
VAKALI, A. Cloud Computing: Distributed Internet Computing for IT
and Scientific Research. Internet Computing, IEEE 13, 5 (sept.-oct. 2009),
pages 10-13.

Eclipse - An Open Development Platform. http://www.eclipse.
org/, 2008.

Eclipse Modeling Framework website. http://www.eclipse.org/
modeling/emf/, 2008.

ELVESAETER, B., TAGLINO, F., GROSSO, E., BENGURIA, G., AND
CAPELLINI, A. Towards Enterprise Interoperability Service Utilities. In
Enterprise Distributed Object Computing Conference Workshops, 2008
12th (sept. 2008), pages 224 —229.

European Commission — CORDIS - Seventh Framework
Programme (FP7) — Information and Communication Technol-
ogies. http://cordis.europa.eu/fp7/ict/programme/

home _en.html, June 2012.

European Commission : CORDIS : FP7 : ICT : Service & Software
Architectures and Infrastructures (SSAI) : Home. http://cordis.
europa.eu/fp7/ict/ssai/home_en.html, June 2012.

Internet of Things Europe. http://www.internet-of-things.
eu/, June 2012.

FAVRE, J. Towards a Basic Theory to Model Model Driven Engineer-

ing. In 3rd Workshop in Software Model Engineering in conjunction with
UML2004, WiSME (2004).

FAVRE, J.-M. Foundations of Model (Driven) (Reverse) Engineering :
Models - Episode I: Stories of The Fidus Papyrus and of The Solarus. In
Language Engineering for Model-Driven Software Development (2004).

FISCHER, G., AND OSTWALD, J. Knowledge Management: Problems,
Promises, Realities, and Challenges. IEEE Intelligent Systems 16, 1 (2001),
pages 60-72.

220

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

REFERENCES

CHOREOS - Large Scale Choreographies for the Future Internet — Re-
search Project Website. http://www.choreos.eu/, June 2012.

The Cloud4SOA Research Project web site. http://www.
cloud4soa.eu/, June 2012.

The INDENICA Research Project web site. http://www.indenica.
eu/, June 2012.

SOA4AIl — Web Principles web page. http://www.socadall.eu/
webprinciples.html, June 2012.

SOA4All web page. http://www.soad4all.eu/home.html, June
2012.

European Commission: FP7 ICT Work Programme 2011-2012. Software
& Service Architectures and Infrastructure — Towards the Internet of Ser-
vices. http://cordis.europa.eu/fp7/ict/ssai/home_en.
html, Apr. 2012.

FRANKEL, D. S. Model Driven Architecture: Applying MDA to Enterprise
Computing. OMG Press, 2003.

GASEvVIC, D., KAVIANI, N., AND HATALA, M. On Metamodeling
in Megamodels. In Model Driven Engineering Languages and Sys-
tems (2007), vol. 4735 of Lecture Notes in Computer Science, Springer,
pages 91-105.

GAY, S., AND HOLE, M. Types and Subtypes for Client-Server Interac-
tions. Lecture Notes in Computer Science 1576 (1999), pages 74-90.

GoTH, G. Ciritics Say Web Services Need a REST. [EEE Distributed
Systems Online 5, 12 (2004), 1.

GREEFHORST, D., PROPER, E., GREEFHORST, D., AND PROPER, E. In-
troduction. In Architecture Principles, vol. 4 of The Enterprise Engineering
Series. Springer Berlin Heidelberg, 2011, pages 1-6.

GREEFHORST, D., PROPER, E., GREEFHORST, D., AND PROPER, E. The
Role of Enterprise Architecture. In Architecture Principles, vol. 4 of The
Enterprise Engineering Series. Springer Berlin Heidelberg, 2011, pages 7—
29.

References 221

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

GU1ZzZARDI, G. On Ontology, ontologies, Conceptualizations, Model-
ing Languages, and (Meta)Models. In Databases and Information Sys-
tems 1V - Selected Papers from the Seventh International Baltic Conference
DB&IS’2006 (2007), vol. 155 of Frontiers in Artificial Intelligence and
Applications, 10S Press, pages 18-39.

HEIN, C., RITTER, T., AND WAGNER, M. Model-Driven Tool Integration
with ModelBus. In Workshop Future Trends of Model-Driven Development
(2009).

HERBSLEB, J. D. Global Software Engineering: The Future of Socio-
technical Coordination. In FOSE ’07: 2007 Future of Software Engineer-
ing (Washington, DC, USA, 2007), IEEE Computer Society, pages 188—
198.

HEVNER, A., MARCH, S., PARK, J., AND RAM, S. Design Science in
Information Systems Research. Mis Quarterly 28, 1 (2004), pages 75-105.

HonNDA, K., VASCONCELOS, V. T., AND KUBO, M. Language Primitives
and Type Discipline for Structured Communication-based Programming.
In Proceedings of the 7th European Symposium on Programming (1998),
Springer-Verlag, pages 122-138.

HOOGERVORST, J. A. P. Enterprise Governance and Enterprise Engi-
neering (The Enterprise Engineering Series), 1 ed. Springer, Feb. 2009.

HOOGERVORST, J. A. P. Introduction Enterprise Governance and Enter-
prise Engineering. In Enterprise Governance and Enterprise Engineer-
ing, The Enterprise Engineering Series. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, ch. 1, pages 3-24.

ISO/TEC ITCI1. Information Technology — Open Distributed Processing —
Reference Model — Enterprise Language, 2002.

ISO/TEC JTC1/SC7. ISO/IEC 10746-2: Information Technology — Open
Distributed Processing — Reference model: Foundations, Sept. 1996.

ISO/TEC JTC1/SC7. ISO/IEC 10746-3: Information Technology — Open
Distributed Processing — Reference model: Architecture, Sept. 1996.

ISO/TEC JTC1/SC7. ISO/IEC 10746-1: Information Technology — Open
Distributed Processing — Reference model: Overview, Dec. 1998.

ISO/IEC JTC1/SC7. ISO/IEC 10746-4: Information technology — Open
Distributed Processing — Reference model: Architectural Semantics, Dec.
1998.

222

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

REFERENCES

ISO/TEC JTC1/SC7. ISO/IEC 19793: Information technology — Open
Distributed Processing —Use of UML for ODP system specifications, Oct.
2009. ITU-T Recommendation X.906 | ISO/IEC 19793. Version 02.01.

ISO/IEC JTC1/SC7/WG42. ISO/IEC FDIS 42010 — Architecture De-
scription, final (v30d) ed., Mar. 2011.

Jossic, A., DEL FABRO, M., LERAT, J.-P., BEZIVIN, J., AND JOUAULT,
F. Model Integration with Model Weaving: a Case Study in System Archi-
tecture. In Systems Engineering and Modeling, 2007. ICSEM ’07. Interna-
tional Conference on (march 2007), pages 79-84.

Jossic, A., DIDONET DEL FABRO, M., LERAT, J., BEZIVIN, J., AND
JOUAULT, F. Model Integration with Model Weaving: a Case Study in

System Architecture. In International Conference on Systems Engineering
and Modeling (ICSEM’07) (Mar. 2007), IEEE, pages 79-84.

JouAULT, F., AND BEZIVIN, J. KM3: A DSL for Metamodel Specifi-
cation. In Formal Methods for Open Object-Based Distributed Systems
(2006), vol. 4037 of Lecture Notes in Computer Science, Springer-Verlag,
pages 171-185.

KARTSEVA, V., GORDIN, J., AND TAN, Y. Inter-Organisational Con-
trols as Value Objects in Network Organisations. In Advanced Information
Systems Engineering (2006), Springer, pages 336—350.

KAZMAN, R., KLEIN, M., AND CLEMENTS, P. ATAM: Method for Ar-
chitecture Evaluation: ATAM - Architecture Trade-off Analysis Method
report. Tech. Rep. CMU/SEI-2000-TR-004, Carnegie Mellon Software En-
gineering Institute, 2002.

KERRIGAN, M., MOCAN, A., SIMPERL, E., AND FENSEL, D. Modeling
Semantic Web Services with the Web Service Modeling Toolkit. J. Netw.
Syst. Manage. 17, 3 (2009), pages 326-342.

KOPECKY, J., VITVAR, T., BOURNEZ, C., AND FARRELL, J. SAWSDL.:

Semantic Annotations for WSDL and XML Schema. Internet Computing,
IEEE 11, 6 (nov.-dec. 2007), pages 60-67.

KOTOK, A., AND WEBBER, D. R. R. ebXML: The New Global Standard
for Doing Business Over the Internet. New Riders, Boston, 2001.

References 223

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

KRUMMENACHER, R., NORTON, B., SIMPERL, E., AND PEDRINACI,
C. SOAA4AIl: Enabling Web-scale Service Economies. In Semantic Com-
puting, 2009. ICSC ’09. IEEE International Conference on (sept. 2009),
pages 535-542.

KUHNE, T. Matters of (Meta-) Modeling. Software and Systems Modeling
(SoSyM) 5, 17 (Dec. 2006), pages 369-385.

KURTEYV, 1., BEZIVIN, J., AND AKSIT, M. Technological Spaces: An
Initial Appraisal. CooplS, DOA’2002 Federated Conferences, Industrial
track (2002).

KUTVONEN, L. Challenges of Collaborative and Interoperable Com-
puting — A Working Version. Research strategy of the CINCO group:
http://cinco.cs.helsinki.fi, Jan.2007.

KUTVONEN, L., METSO, J., AND RUOHOMAA, S. From Trading to
eCommunity Management: Responding to Social and Contractual Chal-
lenges. Information Systems Frontiers (ISF) - Special Issue on Enter-
prise Services Computing: Evolution and Challenges 9, 2-3 (July 2007),
pages 181-194.

KUTVONEN, L., RUOKOLAINEN, T., AND METSO, J. Interoperability
Middleware for Federated Business Services in web-Pilarcos. International
Journal of Enterprise Information Systems, Special issue on Interoperabil-
ity of Enterprise Systems and Applications 3, 1 (Jan. 2007), pages 1-21.

KUTVONEN, L., RUOKOLAINEN, T., RUOHOMAA, S., AND METSO,
J. Service-oriented Middleware for Managing Inter-enterprise Collabora-
tions. In Global Implications of Modern Enterprise Information Systems:
Technologies and Applications (Dec. 2008), Advances in Enterprise Infor-
mation Systems (AEIS), IGI Global, pages 209-241.

LANKHORST, M., AND LANKHORST, M. Introduction to Enterprise Ar-
chitecture. In Enterprise Architecture at Work, The Enterprise Engineer-
ing Series. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, ch. 1,
pages 1-11.

LEMRABET, Y., BIGAND, M., CLIN, D., BENKELTOUM, N., AND
BOUREY, J.-P. Model Driven Interoperability in Practice: Preliminary Ev-
idences and Issues from an Industrial Project. In Proceedings of the First
International Workshop on Model-Driven Interoperability (New York, NY,
USA, 2010), MDI 10, ACM, pages 3-9.

224

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

REFERENCES

LININGTON, P. F., MILOSEVIC, Z., TANAKA, A., AND VALLECILLO,
A. Building Enterprise Systems with ODP - An Introduction to Open Dis-
tributed Processing. Innovation in Software Engineering and Software De-
velopment. Chapman & Hall/CRC Press, Sept. 2011. ISBN: 978-1-4398-
6625-2.

Liskov, B. H., AND WING, J. M. A Behavioral Notion of Subtyping.
ACM Trans. Program. Lang. Syst. 16, 6 (1994), pages 1811-1841.

LizcANO, D., JIMENEZ, M., SORIANO, J., CANTERA, J. M., REYES,
M., HIERRO, J. J., GARUIJO, F., AND TSOUROULAS, N. Leveraging the
Upcoming Internet of Services through an Open User-Service Front-End
Framework. In ServiceWave '08: Proceedings of the 1st European Con-
ference on Towards a Service-Based Internet (Berlin, Heidelberg, 2008),
Springer-Verlag, pages 147-158.

Lomuscio, A. R., WOOLDRIDGE, M., AND JENNINGS, N. R. A Clas-

sification Scheme for Negotiation in Electronic Commerce. Lecture Notes
in Computer Science 1991 (Jan. 2001).

LOPEZ-SANZ, M., ACUNA, C., CUESTA, C., AND MARCOS, E. Defin-
ing Service-Oriented Software Architecture Models for a MDA-based De-
velopment Process at the PIM level. In Software Architecture, 2008.
WICSA 2008. Seventh Working IEEE/IFIP Conference on (18-21 2008),
pages 309-312.

LoOUTAS, N., PERISTERAS, V., BOURAS, T., KAMATERI, E., ZEGINIS,
D., AND TARABANIS, K. Towards a Reference Architecture for Seman-
tically Interoperable Clouds. In Cloud Computing Technology and Sci-
ence (CloudCom), 2010 IEEE Second International Conference on (2010),
pages 143 —150.

LUDWIG, H., KELLER, A., DAN, A., KING, R., AND FRANCK, R. A Ser-
vice Level Agreement Language for Dynamic Electronic Services. Elec-
tronic Commerce Research 3, 1-2 (2003), pages 43-59.

MARGARIA, T., AND STEFFEN, B. Service Engineering: Linking Busi-
ness and IT. Computer 39, 10 (2006), pages 45-55.

MARKS, E. A. Service-oriented architecture governance for the services
driven enterprise. John Wiley & Sons, Inc., 2008.

MARTIN, D., AND DOMINGUE, J. Semantic Web Services, part 1. Intel-
ligent Systems, IEEE 22, 5 (sept.-oct. 2007), pages 12—17.

References 225

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]

[109]

[110]

[111]

[112]

[113]

MCCARTHY, D., AND DAYAL, U. The Architecture of an Active Database
Management System. SIGMOD Rec. 18,2 (June 1989), pages 215-224.

MEIJiA, R., LOPEZ, A., AND MOLINA, A. Experiences in Developing

Collaborative Engineering Environments: An Action Research Approach.
Comput. Ind. 58, 4 (2007), pages 329-346.

MILOSEVIC, Z., JOSANG, A., DIMITRAKOS, T., AND PATTON, M. A.
Discretionary Enforcement of Electronic Contracts. In EDOC ’02: Pro-
ceedings of the Sixth International Enterprise Distributed Object Comput-
ing Conference (EDOC’02) (Washington, DC, USA, 2002), IEEE Com-
puter Society, pages 39-50.

MIRBEL, I., AND RALYTE, J. Situational Method Engineering: Com-

bining Assembly-based and Roadmap-driven Approaches. Requirements
Engineering 11, 1 (2006), pages 58-78.

MODELIing Solution for Soft WARE Systems (MODELWARE). http:
//www.modelware—1ist.org, 2006. IST Project 511731 (completed).

MURUGESAN, S. Understanding Web 2.0. IT Professional 9, 4 (july-aug.
2007), pages 34 —41.

NAICS. North American Industry Classification System (NAICS). http:
//www.naics.com.

The NESSI website. http://www.nessi—-europe.com, Nov. 2009.

NESSI CONSORTIUM. NEXOF Reference Architecture Model V2.0, Mar.
2009.

OASIS. Service Component Architecture (SCA), Nov. 2011. http://
WWW.oasis—opencsa.org/sca.

OBJECT MANAGEMENT GROUP. UML 2.0 OCL Specification, 2.0 ed.,
Oct. 2003. OMG Final Adopted Specification — ptc/03-10-14.

OBJECT MANAGEMENT GROUP. Unified Modeling Language: Super-
structure, 2 ed., Aug. 2005.

OBJECT MANAGEMENT GROUP. Meta Object Facility (MOF) Core Spec-
ification, 2.0 ed., Jan. 2006. OMG Available Specification — formal/06-01-
01.

OBJECT MANAGEMENT GROUP. Unified Modeling Language: Infrastruc-
ture, 2 ed., Mar. 2006.

226

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

REFERENCES

OBJECT MANAGEMENT GROUP. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, 2.0 ed., July 2007. Final
Adopted Specification — ptc/07-07-07.

OBJECT MANAGEMENT GROUP. MOF Model to Text Transformation
Language, 1.0 ed., Jan. 2008. OMG Available Specification.

OBJECT MANAGEMENT GROUP. Service oriented architecture Model-
ing Language (SoaML), Dec. 2009. http://www.omg.org/spec/
SoaML/.

THE OPEN GROUP. SOA Governance Framework — Draft Technical Stan-
dard, 20009.

THE OPEN GROUP. The Open Group Architecture Framework, Oct. 2011.

THE OPEN GROUP. ArchiMate 2.0 Specification, Jan. 2021. Technical
Standard.

OSGI ALLIANCE. OSGi Alliance Specifications, Nov. 2011. http://
www.0sgil.org/Specifications/HomePage.

OWL-S COALITION. OWL-S 1.1 Release, Nov. 2004.

PArPAZOGLOU, M. P., AND GEORGAKOPOULOS, D. Service-oriented
Computing. Commun. ACM 46, 10 (2003), pages 24-28.

PArAzOGLOU, M. P., AND HEUVEL, W.-J. Service Oriented Architec-

tures: Approaches, Technologies and Research Issues. The VLDB Journal
16, 3 (2007), pages 389—415.

PAPAZOGLOU, M. P., AND VAN DEN HEUVEL, W.-J. Business Process
Development Life Cycle Methodology. Commun. ACM 50, 10 (2007),
pages 79-85.

PARREIRAS, F. S., STAAB, S., AND WINTER, A. On Marrying Ontolog-
ical and Metamodeling Technical Spaces. In ESEC-FSE '07: Proceedings
of the the 6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of software
engineering (New York, NY, USA, 2007), ACM, pages 439-448.

QUARTEL, D. A., STEEN, M. W., POKRAEYV, S., AND SINDEREN, M. J.
COSMO: A Conceptual Framework for Service Modelling and Refine-
ment. Information Systems Frontiers 9, 2-3 (2007), pages 225-244.

References 227

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

RALYTE, J., DENECKERE, R., AND ROLLAND, C. Towards a Generic
Model for Situational Method Engineering. In Proceedings of the 15th
international conference on Advanced information systems engineering,
J. Eder and M. Missikoff, Eds., vol. 2681 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2003, pages 95-110.

RoMAN, D., KELLER, U., LAUSEN, H., DE BRUIIN, J., LARA, R,
STOLLBERG, M., POLLERES, A., FEIER, C., BUSSLER, C., AND
FENSEL, D. Web Service Modeling Ontology. Appl. Ontol. 1, 1 (2005),
pages 77-106.

ROMERO, J. R., JAEN, J. 1., AND VALLECILLO, A. Realizing Correspon-
dences in Multi-Viewpoint Specifications. In IEEE International Enter-
prise Distributed Object Computing Conference (2009), IEEE, pages 163—
172.

ROSETTANET CONSORTIUM. Rosettanet Implementation Framework:
Core Specification v02.00.00, 2004. http://www.rosettanet.org/.

RUOHOMAA, S., AND KUTVONEN, L. Trust Management Survey. In Pro-
ceedings of the iTrust 3rd International Conference on Trust Management,
23-26, May, 2005, Rocquencourt, France (May 2005), Springer-Verlag,
LNCS 3477/2005, pages 77-92.

RuUuoHOMAA, S., AND KUTVONEN, L. Trust and Distrust in Adaptive
Inter-enterprise Collaboration Management. Journal of Theoretical and

Applied Electronic Commerce Research, Special Issue on Trust and Trust
Management 5, 2 (Aug. 2010), pages 118-136.

RUOHOMAA, S., KAUR, P., AND KUTVONEN, L. From Subjective Rep-
utation to Verifiable Experiences - Augmenting Peer-control Mechanisms
for Open Service Ecosystems. In Trust Management VI (2012), Springer,
pages 142—157.

RUOKOLAINEN, T. Type-based Validation and Management of Business
Service Interoperability. In IBM Ph.D. Symposium at ICSOC 2007 (Vienna,
Austria, Sept. 2007), pages 13—18.

RUOKOLAINEN, T. Modelling Framework for Interoperability Manage-
ment in Collaborative Computing Environments. Tech. Rep. C-2009-9,
Department of Computer Science, University of Helsinki, June 2009. Li-
centiate’s thesis.

228

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

REFERENCES

RUOKOLAINEN, T. A Model-Driven Approach to Service Ecosys-
tem Engineering (web page). http://www.cs.helsinki.fi/u/
thruokol/see/, Feb. 2013. Web page providing the complete ser-
vice ecosystem meta-model representations, tool implementations and case
studies for model-driven service ecosystem engineering.

RUOKOLAINEN, T., AND KUTVONEN, L. Addressing Autonomy and
Interoperability in Breeding Environments. In Network-Centric Col-
laboration and Supporting Frameworks (Helsinki, Finland, Sept. 2006),
L. Camarinha-Matos, H. Afsarmanesh, and M. Ollus, Eds., vol. 224 of IFIP
International Federation for Information Processing, Springer, pages 481—
488.

RUOKOLAINEN, T., AND KUTVONEN, L. Interoperability in Service-
Based Communities. In Business Process Management Workshops: BPM
2005 International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS
(2006), C. Bussler and A. Haller, Eds., vol. 3812 of Lecture Notes in Com-
puter Science, Springer-Verlag, pages 317-328.

RUOKOLAINEN, T., AND KUTVONEN, L. Service Typing in Collaborative
Systems. In Enterprise Interoperability: New Challenges and Approaches
(Apr. 2007), G. Doumeingts, J. Miiller, G. Morel, and B. Vallespir, Eds.,
Springer, pages 343-354.

RUOKOLAINEN, T., AND KUTVONEN, L. Managing Interoperability
Knowledge in Open Service Ecosystems. In Enterprise Distributed Object
Computing Conference Workshops (2009), V. Tosic, Ed., pages 203-211.

RUOKOLAINEN, T., AND KUTVONEN, L. Framework for Managing Fea-
tures of Open Service Ecosystems. In Handbook of Research on Non-

Functional Properties for Service-Oriented Systems: Future Directions,
S. Reiff-Marganiec and M. Tilly, Eds. IGI Global, Dec. 2011.

RUOKOLAINEN, T., NAUDET, Y., AND LATOUR, T. An Ontology of In-
teroperability in Inter-enterprise Communities. In Enterprise Interoperabil-
ity Il — New Challenges and Approaches (Funchal, Portugal, Mar. 2007),
Springer, pages 159-170.

RUOKOLAINEN, T., RUOHOMAA, S., AND KUTVONEN, L. Solving Ser-
vice Ecosystem Governance. In Proceedings of the 15th IEEE Interna-
tional EDOC Conference Workshops (Aug. 2011), IEEE Computer Society,
pages 18-25.

References 229

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

ScHMIDT, D. C. Model-Driven Engineering. Computer 39, 2 (Feb. 2006),
pages 25-31.

SCHMIDT, M.-T., HUTCHISON, B., LAMBROS, P., AND PHIPPEN, R.

The Enterprise Service Bus: Making Service-oriented Architecture Real.
IBM Syst. J. 44, 4 (2005), pages 781-797.

SCHROTH, C., AND JANNER, T. Web 2.0 and SOA: Converging Concepts
Enabling the Internet of Services. IT Pro (May 2007), pages 36—41.

The SeCSE website. http://www.secse-project.eu/, Nov.
2009.

SHADBOLT, N., HALL, W., AND BERNERS-LEE, T. The Semantic Web
Revisited. Intelligent Systems, IEEE 21, 3 (jan.-feb. 2006), pages 96—101.

SHEN, Y., MIETTINEN, M., MOEN, P., AND KUTVONEN, L. Privacy
Preservation Approach in Service Ecosystems. In Proceedings of the 15th
IEEE International EDOC Conference Workshops (Helsinki, Finland, Aug.
2011), IEEE Computer Society, pages 283-292.

SINGH, M. P. An Ontology for Commitments in Multiagent Systems. Ar-
tificial Intelligence and Law 7, 1 (1999), pages 97-113.

SINGH, M. P., AND HUHNS, M. N. Service-Oriented Computing: Seman-
tic, Processes, Agents. John Wiley & Sons, Ltd., West Sussex, England,
2005.

SKENE, J., LAMANNA, D. D., AND EMMERICH, W. Precise Service
Level Agreements. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering (Washington, DC, USA, 2004), IEEE
Computer Society, pages 179-188.

SKENE, J., SKENE, A., CRAMPTON, J., AND EMMERICH, W. The Mon-
itorability of Service-level Agreements for Application-service Provision.
In WOSP °07: Proceedings of the 6th international workshop on Software
and performance (New York, NY, USA, 2007), ACM Press, pages 3—14.

OASIS Reference Model for Service Oriented Architecture 1.0. www.
oasis-open.org/committees/soa-rm/, Oct. 2006.

SRINIVASAN, S., AND GETOV, V. Navigating the Cloud Computing Land-

scape: Technologies, Services, and Adopters. Computer 44, 3 (march
2011), pages 22-23.

230

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

REFERENCES

STOJANOVIC, Z., AND DAHANAYAKE, A., Eds. Service-Oriented Soft-

ware System Engineering: Challenges and Practices. Idea Group Publish-
ing, 2005.

TAGG, R. Workflow in Different Styles of Virtual Enterprise. In ITVE "01:
Proceedings of the workshop on Information technology for virtual enter-
prises (Washington, DC, USA, 2001), IEEE Computer Society, pages 21—
28.

THIRIOUX, X., COMBEMALE, B., CREGUT, X., AND GAROCHE, P.-L.
A Framework to Formalize the MDE Foundations. In Workshop on Towers
of Models co-located with TOOLS Europe (June 2007), R. F. Paige and
J. Bézivin, Eds., pages 14-30.

SOA Governance — The Open Group. http://www.opengroup.
org/projects/soa-governance, June 2012.

TsAIL, W.-T., WEI, X., ADN JEN-YAO CHUNG, R. P., HUANG, Q., AND
CHEN, Y. Service-oriented System Engineering (SOSE) and its Applica-
tions to Embedded System Development. Service Oriented Computing and
Applications 1, 1 (Apr. 2007), pages 3—17.

U.S DEPARTMENT OF DEFENCE. The DoDAF Architecture Framework
Version 2.02, 2.02 ed., Aug. 2010.

VALLECILLO, A., VASCONCELOS, V. T., AND RAVARA, A. Typing the
Behavior of Objects and Components using Session Types. Electronic
Notes in Theoretical Computer Science 68, 3 (2003).

VAN GLABBEEK, R., AND GOLTZ, U. Refinement of Actions and Equiva-
lence Notions for Concurrent Systems. Acta Inf. 37, 4-5 (2000), pages 229—
327.

VINCENT, H., ISSARNY, V., GEORGANTAS, N., FRANCESQUINI, E.,
GOLDMAN, A., AND KON, F. CHOReOS: Scaling Choreographies for the
Internet of the Future. In Middleware ’10 Posters and Demos Track (New
York, NY, USA, 2010), Middleware Posters *10, ACM, pages 8:1-8:3.

VITVAR, T., ZAREMBA, M., AND MORAN, M. SESA: Emerging Tech-

nology for Service-centric Environments. Software, IEEE 24, 6 (nov.-dec.
2007), pages 56 —67.

VOORSLUYS, W., BROBERG, J., AND BUYYA, R. Introduction to Cloud
Computing. In Cloud Computing: Principles and Paradigms, R. Buyya,
J. Broberg, and A. Goscinski, Eds. John Wiley & Sons, 2011.

References 231

[167]

[168]
[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

W3C. OWL Web Ontology Language Guide, Feb. 2004. W3C Recommen-
dation 10 February 2004.

W3C. RDF Primer, Feb. 2004. W3C Recommendation 10 February 2004.

W3C. Web Services Architecture, Feb. 2004. W3C Working Group Note
11.

W3C. XML Schema Documentation; Part 1:Structures, Part 2: Datatypes,
2nd ed., Oct. 2004. W3C Recommendation, http://www.w3.0rg/
XML/ Schema.

W3C. Semantic Annotations for WSDL and XML Schema, 28 august
2007 ed., Aug. 2007. W3C Recommendation, http://www.w3.0rg/
TR/sawsdl.

W3C WORKING GROUPS. Extensible Markup Language (XML). W3C,
2005. http://www.w3.org/XML/, valid 27th January 2013.

World Wide Web. http://en.wikipedia.org/wiki/World_
Wide_Web, valid 27th January 2013.

WINSKEL, G., AND NIELSEN, M. Models for Concurrency. In Semantic
Modelling, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds., vol. 4
of Handbook of Logic in Computer Science. Clarendon Press, 1995.

WoLAK, R., KALAFATIS, S., AND HARRIS, P. An Investigation into
Four Characteristics of Services. Journal of Empirical Generalisations in
Marketing Science 3 (1998), pages 22—41.

WONG, J., AND HONG, J. What Do We "Mashup" When We Make
Mashups? In WEUSE '08: Proceedings of the 4th international workshop
on End-user software engineering (New York, NY, USA, 2008), ACM,
pages 35-39.

WORLD HEALTH ORGANIZATION. What is "active ageing"? http:

//www.who.int/ageing/active_ageing/en/index.html,
valid 27th January 2013.

Web Service Modeling Ontology homepage. http://www.wsmod.
org/, June 2010.

Yu, X., ZHANG, Y., ZHANG, T., WANG, L., Hu, J., ZHAO, J., AND L1,
X. A Model-driven Development Framework for Enterprise Web Services.
Information Systems Frontiers 9, 4 (2007), pages 391-409.

232 REFERENCES

[180] ZDUN, U., HENTRICH, C., AND DUSTDAR, S. Modeling Process-driven

and Service-oriented Architectures using Patterns and Pattern Primitives.
ACM Trans. Web 1,3 (2007), 14.

TIETOJENKASITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE

PL 68 (Gustaf Hillstromin katu 2 b) P.O. Box 68 (Gustaf Hillstromin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, FINLAND
JULKAISUSARIJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 University of Helsinki, FIN-
LAND.

A-2007-1 P. Sarolahti: TCP Performance in Heterogeneous Wireless Networks. 171 pp. (Ph.D. Thesis)

A-2007-2 M. Raento: Exploring privacy for ubiquitous computing: Tools, methods and experiments. 61+150 pp.
(Ph.D. Thesis)

A-2007-3 L. Aunimo: Methods for Answer Extraction in Textual Question Answering. 127+18 pp. (Ph.D.
Thesis)

A-2007-4 T. Roos: Statistical and Information-Theoretic Methods for Data Analysis. 82+75 pp. (Ph.D.
Thesis)

A-2007-5 S.Leggio: A Decentralized Session Management Framework for Heterogeneous Ad-Hoc and Fixed
Networks. 230 pp. (Ph.D. Thesis)

A-2007-6 O. Riva: Middleware for Mobile Sensing Applications in Urban Environments. 195 pp. (Ph.D.
Thesis)

A-2007-7 K. Palin: Computational Methods for Locating and Analyzing Conserved Gene Regulatory DNA
Elements. 130 pp. (Ph.D. Thesis)

A-2008-1 1. Autio: Modeling Efficient Classification as a Process of Confidence Assessment and Delegation.
212 pp. (Ph.D. Thesis)

A-2008-2 J. Kangasharju: XML Messaging for Mobile Devices. 244255 pp. (Ph.D. Thesis).

A-2008-3 N. Haiminen: Mining Sequential Data — in Search of Segmental Structures. 60+78 pp. (Ph.D.
Thesis)

A-2008-4 J. Korhonen: IP Mobility in Wireless Operator Networks. 186 pp. (Ph.D. Thesis)

A-2008-5 J.T. Lindgren: Learning nonlinear visual processing from natural images. 100+64 pp. (Ph.D.
Thesis)

A-2009-1 K. Hitonen: Data mining for telecommunications network log analysis. 153 pp. (Ph.D. Thesis)
A-2009-2 T. Silander: The Most Probable Bayesian Network and Beyond. 50+59 pp. (Ph.D. Thesis)
A-2009-3 K. Laasonen: Mining Cell Transition Data. 148 pp. (Ph.D. Thesis)

A-2009-4 P. Miettinen: Matrix Decomposition Methods for Data Mining: Computational Complexity and
Algorithms. 164+6 pp. (Ph.D. Thesis)

A-2009-5 J. Suomela: Optimisation Problems in Wireless Sensor Networks: Local Algorithms and Local
Graphs. 106+96 pp. (Ph.D. Thesis)

A-2009-6 U. Koster: A Probabilistic Approach to the Primary Visual Cortex. 168 pp. (Ph.D. Thesis)
A-2009-7 P. Nurmi: Identifying Meaningful Places. 83 pp. (Ph.D. Thesis)
A-2009-8 J. Makkonen: Semantic Classes in Topic Detection and Tracking. 155 pp. (Ph.D. Thesis)

A-2009-9 P. Rastas: Computational Techniques for Haplotype Inference and for Local Alignment Signifi-
cance. 64450 pp. (Ph.D. Thesis)

A-2009-10 T. Mononen: Computing the Stochastic Complexity of Simple Probabilistic Graphical Models.
60+46 pp. (Ph.D. Thesis)

A-2009-11 P. Kontkanen: Computationally Effcient Methods for MDL-Optimal Density Estimation and Data

A-2010-1

A-2010-2

A-2010-3

A-2010-4

A-2010-5
A-2010-6
A-2011-1

A-2011-2
A-2011-3

A-2011-4

A-2012-1

A-2012-2

A-2012-3

A-2012-4

A-2012-5

A-2012-6
A-2012-7

A-2012-8
A-2012-9
A-2013-1

A-2013-2

Clustering. 75+64 pp. (Ph.D. Thesis)

M. Lukk: Construction of a global map of human gene expression - the process, tools and analysis.
120 pp. (Ph.D. Thesis)

W. Hiamiéldinen: Efficient search for statistically significant dependency rules in binary data. 163 pp.
(Ph.D. Thesis)

J. Kollin: Computational Methods for Detecting Large-Scale Chromosome Rearrangements in SNP
Data. 197 pp. (Ph.D. Thesis)

E. Pitkiinen: Computational Methods for Reconstruction and Analysis of Genome-Scale Metabolic
Networks. 115+88 pp. (Ph.D. Thesis)

A. Lukyanenko: Multi-User Resource-Sharing Problem for the Internet. 168 pp. (Ph.D. Thesis)
L. Daniel: Cross-layer Assisted TCP Algorithms for Vertical Handoff. 84+72 pp. (Ph.D. Thesis)

A. Tripathi: Data Fusion and Matching by Maximizing Statistical Dependencies. 89+109 pp.
(Ph.D. Thesis)

E. Junttila: Patterns in Permuted Binary Matrices. 155 pp. (Ph.D. Thesis)

P. Hintsanen: Simulation and Graph Mining Tools for Improving Gene Mapping Efficiency. 136 pp.
(Ph.D. Thesis)

M. Ikonen: Lean Thinking in Software Development: Impacts of Kanban on Projects. 104490 pp.
(Ph.D. Thesis)

P. Parviainen: Algorithms for Exact Structure Discovery in Bayesian Networks. 132 pp. (Ph.D.
Thesis)

J. Wessman: Mixture Model Clustering in the Analysis of Complex Diseases. 119 pp. (Ph.D.
Thesis)

P. Poyhonen: Access Selection Methods in Cooperative Multi-operator Environments to Improve
End-user and Operator Satisfaction. 211 pp. (Ph.D. Thesis)

S. Ruohomaa: The Effect of Reputation on Trust Decisions in Inter-enterprise Collaborations.
214+44 pp. (Ph.D. Thesis)

J. Sirén: Compressed Full-Text Indexes for Highly Repetitive Collections. 97+63 pp. (Ph.D. The-
sis)

F. Zhou: Methods for Network Abstraction. 48+71 pp. (Ph.D. Thesis)

N. Viliméki: Applications of Compressed Data Structures on Sequences and Structured Data.
73+94 pp. (Ph.D. Thesis)

S. Varjonen: Secure Connectivity With Persistent Identities. 139 pp. (Ph.D. Thesis)
M. Heinonen: Computational Methods for Small Molecules. 110+68 pp. (Ph.D. Thesis)

M. Timonen: Term Weighting in Short Documents for Document Categorization, Keyword Extrac-
tion and Query Expansion. 53+62 pp. (PhD thesis)

H. Wettig, Hannes: Probabilistic, Information-Theoretic Models for Etymological Alignment.
130+62 pp. (PhD thesis)

