DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS C
REPORT C-2004-61

A Survey of Application Level

Intrusion Detection

Lea Viljanen

UNIVERSITY OF HELSINKI
FINLAND

A Survey of Application Level Intrusion Detection
Lea Viljanen

Department of Computer Science

P.O. Box 26, FIN-00014 University of Helsinki, Finland
?

Technical report, Series of Publications C, Report C-2004-61
Helsinki, December 2004, 32 pages

Abstract

Abstract

This survey presents research for intrusion detection at the application level. The current
approaches to intrusion detection are discussed and the aspects of collection, analysis and
reaction models are introduced. The need for intrusion detection at application level is dis-
cussed. The majority of the survey introduces, categorizes and explains the past and present
research efforts on the application level.

This survey is part of Trust Based on Evidence (TuBE) project.

Computing Reviews (1998) Categories and Subject Descriptors:

K.6.5 [Management of Computing and Information Systems]: Security and Protection - Unautho-
rized access

A.1 Introductory and Survey

D.2.0 [Software Engineering]: General - Protection mechanisms

General Terms:
Security, Design, Algorithms

Additional Key Words and Phrases:
Intrusion detection

Contents

1 Introduction 1
1.1 IDS Data Collection Model 1

1.2 IDS Data Analysis Model 2

1.3 IDS Reaction Model 3

2 Problems in the Current Systems 5
3 Data Collection Methods for Application IDS 7
3.1 Hostbased monitoring 7
3.1.1 Process auditing mechanisms 7

3.1.2 Kernel mechanisms oL o 8

3.1.3 Library and system call interposition 9

3.2 Network based monitoring 9

3.3 Direct monitoring e e 9

3.4 Monitoring the execution environment 10
34.1 OS-level environments Lo 10

3.4.2 Dynamic execution environments 11

3.4.3 Component level wrappers oo 12

4 Data Analysis Approaches to Application IDS 13
4.1 Misusedetectiono e e 13
4.2 Anomaly detection in execution monitoring 14
4.2.1 Sequence similarity techniques 16

4.2.2 Call policy techniques o 18

4.2.3 State automata techniques 18

424 Machinelearning 20

425 Dataminingo e e 21

4.2.6 Statistical profiling L 21

4.3 Anomaly detection in input semantics oL 22
4.4 Specification based AppIDS 22
4.4.1 Policy based systems L oo 22

4472 Staticanalysis 24

5 Application IDS Reaction models 26
6 Conclusion 27

iii

Chapter 1

Introduction

Organizations today rely increasingly on the Internet and the partnering and data exchange op-
portunities the network connectivity brings. However, the current Internet and networking envi-
ronment is full of threats, both external and internal. Physical security around the organization
premises are not enough since network based automated attacks and network-borne viruses have
caused organizations and their published applications to be potential attack targets every minute
of every day. Restricting the network access to a set of partner organizations limits the exposure,
but does not remove the general threat, since a simple misjudgement from the partner organization
personnel may cause a security incident that has ramifications for all the connected partners as
well.

Additionally, applications are nowadays so complex that practically every piece of software
has some amount of faults, or bugs. Some of the bugs are security related, i.e. their existence
creates a security vulnerability that can be exploited to create a real security problem or incident.

When these two facts are combined, it can be concluded that we need tools and mechanisms to
detect the actions of potentially malicious people and automated applications. These actions may
try to exploit known and unknown software faults or system features to gain access or priviledges
against the published or implicit system security policy.

An intrusion detection system (IDS) tries to detect when such attempt is made. It usually
consists of a data collection agent that collects information about the system being observed. The
collection agents are sometimes also called sensors. This collected data is then either stored or
processed directly by the detector proper. The detector analyzes the data and presents conclusions
to the responsible person in some usable format. In some cases the detector can also initiate
countermeasures for the detected intrusion.

Intrusion detection systems can be classified in many ways into several categories depending
on their characteristics. One way of doing this division is according to the data collection method
and the data analysis mechanism. Furthermore, we can add a new category to the classification,
namely the reaction mechanism. After the introduction and problem descriptions, this survey
follows this three category classification.

1.1 1IDS Data Collection Model

The following aspects can be identified in the data collection models of various intrusion detection
systems:

e Where do the agents or sensors reside? Classically they have been either host based agents
or network based agents, HIDS and NIDS respectively.

e Is the collecting centralized or distributed, i.e. is the data collected from a single point, such
as centralized syslog or in various places, such as different network segments.

e [s the monitoring direct or indirect? This means whether the IDS can directly observe the
target, including its internal state, or is it a separate component relying on target external
interfaces for information.

Network based IDS (NIDS) is a listening device in the network, where it typically captures
all network traffic and tries to detect protocol packets with malicious contents. It has a set of
usually lexical rules detailing the definitions of malicious traffic. Examples of malicious traffic
are possibly port scanning, too large ICMP packets (i.e ping-of-death) and known web server CGI
exploits. Network based IDS also has directives what to do when such activity is detected.

Host based IDS (HIDS) works within a computer server and tries to detect misuse or anomalies
that occur in the server but are not necessarily network based, usually by examining various log
files and system level audit trails. Examples of such problems are brute-force password guessing,
changing key system configuration files and accessing protected files.

The collecting can be done centralized or distributed. Centralized collection reads the infor-
mation from a single point, such as central log file or from main network switch or the internet
firewall. However, this approach has both scaling and coverage problems, therefore most current
systems preferably deploy distributed collection, i.e. there is an agent in nearly every host and
network segment.

The monitoring can be done indirectly or directly. Indirect monitoring is defined as “The obser-
vation of the monitored component through a separate mechanism or tool” while direct monitoring
can access the component and its internal state directly [ZamO1]. Examples of indirect monitoring
are application log file reading, while direct monitoring is performed within an application.

These issues in the context of application level intrusion detection are discussed in Chapter 3.

1.2 IDS Data Analysis Model

Whether one deploys a HIDS or NIDS system, centralized or distributed collection, an analysis
system is required to provide a sensible summary on the observed activities. One feature of the
analysis model is the location of the analysis, whether the analysis is done in many places simul-
taneously) or centralized.

But the most differentiating feature of this is the analysis philosophy; misuse detection, anomaly
detection or specification based analysis. This has been one of the basic factors according to which
IDSes have been usually classified and by which we also classify application level efforts in Chap-
ter 4.

Misuse detection relies on patterns (usually called signatures) of known attacks and effective
handling of large amounts of network traffic or log files from which to detect these patterns. While
the signatures are attack or attack-class specific, and thus their applicability to unforeseen situa-
tions is limited, some new attack types can be detected if they fall in the similar class than some
previous attacks and the signature has been written generically enough.

Anomaly detection tries to differentiate between anomalous and normal behaviour of the sys-
tem and alert on all unexpected behaviour since it may be an attack. The problem of this method
lies on the question how to effectively define system normal behaviour, how to compare the cur-
rent situation to this normalized ideal and how to minimize the false positive rate (i.e. normal
behaviour flagged as intrusions) while keeping the false negative rate (i.e. missed intrusions) close
to zero. On the positive side, this method is not tied to any specific attack or attack type and can

potentially alert to new and previously unseen attacks. This technique is especially valuable in
new situations where attacks and attack types are not known.

Specification based analysis approaches the problem by more or less formally by defining the
correct behaviour of the program [KRL97] or network protocol [SGFT02] and reacting to any
deviations. The key problem in this approach is the initial generation of such a formal model,
which needs to be done for each security critical system.

Each of these philosophies have different techniques suited to the task such as statistical analy-
sis, syntactical pattern matching or expert systems. For example, the classic IDES system [Den87]
uses rule based pattern matching in analyzing the audit logs. The basic detection principles have
been very well classified by Axelsson in his survey of intrusion detection systems [Axe00].

1.3 IDS Reaction Model

One newer aspect in the IDS classification is the IDS reaction model, i.e. what the system does
when it finds out a potential problem. The reaction model can be immediate or delayed. Depending
on the organization and its capabilities sometimes it is quite enough to know a penetration has
occurred some time in the past, while in some cases it is quite imperative to be able to instantly do
something to the suspicious activity.

Traditionally IDS components have been interested in just generating and sending alarms im-
mediately so that people can deal with the intrusion. This is a sensible approach in situations
where people are available 24x7x365. But in some organizations it can take hours or even days
for a system administrator to be able to react to the alarm. Therefore, some organizations would
actually be better off with a delayed reaction IDS.

The delayed reaction has given rise to various expert systems that analyse massive amounts of
network traffic and system logs with for example data-mining [L.S98] or expert system techniques
[LSCI97]. These enables them to create better overviews and search for larger patterns in the
attacks. This can be done for example during the night and when people show up to work in
the morning, they are given a report on the night’s activities. Various types of delayed analysis
systems have also been utilized in commercial products.

Another aspect is the mechanism of the reaction, active vs. passive. Passive reactions, such as
alarms, do not affect the observed system in any way. Active reactions, such as closing the attack-
ing network connection, actively protect the system, thus gaining the name Intrusion Protection
Systems or Intrusion Prevention Systems (IPS).

The different variants are illustrated in a simple matrix form in Figure 1.1. The lower left
hand quadrant, i.e. active but delayed measures, is currently somewhat open. In this quadrant
would fit measures that for example adjust suspect peer authorization, reputation or trust values
after a security incident has occurred. These measures could also be taken as part of the immediate
reaction, but the type of these measures is such that their effect is visible usually after the incident
has occurred.

The surveyed application IDS systems with some reactive component are discussed in Chapter

Reaction type

Reaction timé Active Passive
_ IPS Current
Immediate mgmt consoles
Log analysis
Pelayed " systems

Figure 1.1: The IDS reaction matrix

Chapter 2

Problems in the Current Systems

Consider a scenario where a local workstation user is sending all outgoing e-mail to a company
main mail server, which then resends these e-mails to the real destination. This is a common setup
in organizations where the outgoing connections of a simple workstation are restricted.

What happens if the workstation is infected with a virus, worm or trojan that is either prop-
agating by sending out a mass mailing of itself or sending out some other undesired content (i.e
spam) to all addressess in the addressbook. These e-mail borne viruses have been very common in
recent years and the trojan horse programs installed by the viruses have been used to send spam.

Note that the infection can occur even if an antivirus program is deployed at the workstation.
The time between the detection of a new virus and the saturation point of a network enabled virus
is diminishing so fast that the antivirus companies have a hard time developing and especially
globally distributing the recognition signatures and countermeasures in time. The same is true for
network IDS systems that use pattern matching so that the signature patterns need to be distributed.

So, we have an infected machine on the network that starts spewing out massive amounts of
e-mail (either with viral or spam payload). This is not detected by the NIDS, since sending e-mail
is by its rules quite acceptable, nor is it detected by the HIDS at the mail server, since it also
considers receiving e-mail from a trusted host in the network quite normal. So the mail server
happily accepts and starts redistributing the harmful content around the world.

Another scenario could be an extranet server that is offering some application via a defined
Web Services interface. It probably has some form of access control and authorization to deter-
mine which systems are allowed to connect and what various contacting clients can do. But what
happens if the client system is penetrated by a malicious hacker? The client penetration may not
be at all visible to the extranet server, since the authentication and the authorization information
is usually stored at the server and possibly even unencrypted on the system disk. Thus the at-
tacker can send syntactically correct but semantically malicious information to the extranet server
undetected by access control and authorization mechanisms, NIDS or HIDS.

Some additional detection approaches are required if we aim to limit the damage of these type
of situations to the minimum. Especially some level of application awareness is required of the
intrusion detection systems.

Application level intrusion detection (AppIDS) detects intrusions by collecting information
about the monitored application system, analyzing this information by evaluating relations, and
taking some action if a relation result is judged to be anomalous [Sie99].

The difference between an application IDS and a host based IDS is the fact that AppIDS is
application specific; it examines one application or application class only. HIDS usually detects
problems within one host system, especially on operating system level but it can include applica-
tion specific components as well. Similarly, the difference between AppIDS and NIDS is the fact

that NIDS uses only network based collection methods. While a NIDS can also include application
specific rules, it is concentrating on the network traffic in general, not one specific application.
Defined like this, application IDS is not a new idea. Research on various forms of application
execution monitoring has been done in the 1990’s, for example in [FHSL96]. The name applica-
tion intrusion detection was coined later by Sielken in [Sie99] and its benefits were enumerated
more closely by Diego Zamboni [Zam01]. The application level intrusion detection has several
good characteristics over NIDS and HIDS that make it a desirable enhancement to the IDS palette:

e Depth of defence. This is a basic tenet in the security field, if one system (such as a firewall)
develops a problem, we must have other mechanisms in place to detect and protect against
intrusions.

o The application awareness in NIDS and HIDS can be restricted. This means that the network
and host based systems do not necessarily need to be enhanced to recognize application level
problems, this can be delegated to an application level system.

e [t can technically monitor applications directly, i.e. there can be sensors observing the ap-
plication internal state directly. However, all AppIDS methods do not utilize this possibility.

e The application can see data which a network or even host IDS sensor can not. The key
example is traffic that is encrypted at the application level (examples are SSH, SSL). This
NIDS blindness to encrypted traffic is a concern in some organizations. Terminating the
encrypted connection in the perimeter may not be an option for all environments.

e The IDS reaction can be more fine-tuned according to the service capabilities. Depending
on the intrusion type we might not want to break the connection altogether, but for example
restrict the connection or data rate (i.e. tarpitting). Other application type countermeasures
can be changing the source authorization parameters (i.e what actions are permitted and
what data is available).

There are also problems at the semantic level. Most intrusions today exploit known application
vulnerabilities, which are in many cases weaknesses in mechanical input handling. Unchecked
buffer bounds, misplaced nulls and format string problems etc are syntactical in their nature, i.e.
the received value differs from the expected value in length, type or allowed characters. But
current systems are not interested in the actual semantic sensibility of the received input, i.e. if
the client suddendly places an order for 10 000 000 flight tickets. While inputing this should
not cause immediate access to the operating system level (unless there is a buffer overflow and
attached exploit code) or denial of service attack, it may still be a cause of concern because of
fraud possibilities. Application level mechanisms can potentially analyze this type of problems.

Chapter 3

Data Collection Methods for
Application IDS

Before we can actually analyze whether an intrusion has actually happened in an application, we
must have access to the application behaviour at a suitable level. This chapter discusses various
options for monitoring the application and collecting the application behaviour data for analysis.

However, not all reviewed work in the application IDS research domain were explicit in their
data collection methods (for example [JLO1]) and some were just developing new analysis methods
to old collection mechanisms (for example [WDO01, GIM02, WFP99]). The works detailing new
analysis methods are discussed later in Chapter 4.

The reviewed research papers were generally not discussing the distributed vs. centralized
aspect of their collection method. However, since application level data collection can add in-
formation to the overall intrusion detection system, these methods can be seen as extra sensors
providing depth of defence in a larger integrated intrusion detection system.

3.1 Host based monitoring

There are several mechanisms within a host, typically at the operating system level, that can be
used to monitor an application. Some of these could be seen as host-based intrusion detection data
collection but since they have insight to the application behaviour, we have included them in this
survey.

3.1.1 Process auditing mechanisms

The process auditing subsystem of the operating system is of use to application level intrusion
detection especially when it comes to extracting system call or other process behaviour data for
execution monitoring analysis. Process auditing subsystems do not have insight into the appli-
cation internal behaviour, but are able to monitor how the application acts towards the operating
system.

Early work used auditing subsystems to extract security events from the operating system logs.
For example VAX/VMS has a very advanced auditing facility that has been used for user activity
tracing in an intrusion detection setting [TCL90]. In this particular case the audit events analyzed
were user commands, so this is not really in the application intrusion detection domain.

A more widely used system is Solaris SunSHIELD Basic Security Module (BSM), which is a
part of the Sun Microsystems’ Solaris operating system. It provides the security features defined

as C2 in the Trusted Computer System Evaluation Criteria (TCSEC). The features provided by
the BSM are the security auditing subsystem and a device allocation mechanism that provides the
required object reuse characteristics for removable or assignable devices [Sun94]. BSM has been
used in several AppIDS systems to be the source of system call information [KFL94, KRL97,
End98, GSS99, GMS00, MGO02].

Wespi et al also used an unnamed audit subsystem to collect audit events [WDDO0O]. The
received audit records were not system calls, but on a more abstract level where the basic operation
information was available (such as “file open”), but not the particular parameters.

Other operating system tools have also been used. Some Unix systems contain the user-level
program strace, which will run a program given as an argument and list all the system calls
it makes. Other such Unix programs also exist, such as truss. The strace program has
been used to gather information in several application IDS systems [FHSL96, KH97, Mar(00].
Additionally, the data analyzed by Lee et al ([LS98],[LSC97]) had been obtained with st race.

Since these user level programs exist, the Unix kernel offers primitives for system call trace
data collection. Some research also used these underlying operating system constructs directly
from user level for better performance [SBDBO01], [FKFGO03].

3.1.2 Kernel mechanisms

The process auditing mechanisms above used operating system services for reporting system call
or audit data but worked at operating system user space. However, this reporting function can also
reside at kernel level. For example, Sekar et al used a kernel level module to intercept system calls
to support policy enforcement. Also the analysis mechanism resided in the kernel space [SBS99].

A kernel-level approach has also been used in behaviour data collection from software execu-
tion environments. In the work by Ko et al, the execution environment i.e. a software wrapper,
functions in kernel space [KFBKO00].

One application level mechanism utilizing kernel level possibilities is the waypoint technique.
Waypoints are kernel-supported trustworthy control flow checkpoints in the code. Waypoints can
actively report program control flow information in real time. Also security attributes can be
attached to each waypoint or to a sequence of waypoints. Waypoints are set at each application
function entrance and exit, also middle waypoints that reside in the function can be created. The
waypoints are generated via static analysis [XDC04].

From the data collection point of view, waypoints have one key benefit over plain system call
collection. Waypoints can give the intrusion detection system a better granularity than traditional
system call based solution by the ability to create more waypoints than system calls [XDC04].

The key problem with this type of approach is the extensive kernel support required. The way-
point structures and policy enforcement systems must be located in the kernel to be secure from
manipulation. While they are more secure from the system users, it is also riskier to augment stock
kernels with extra modules. From the kernel point of view, any security or performance problem
in the added IDS functionality may be reflected to the whole system. This analysis applies to
monolithic kernel structure, exhibited in systems like Linux. The situation is different in micro-
kernel systems, such as Windows NT and derivatives, where only minimal message passing and
scheduling systems are present in the kernel proper. Other functionality is running in user space
or between the outer user ring and inner kernel ring. The effects of embedding IDS functionality
into a microkernel depend on the positioning of the intrusion detection modules in the microkernel
protection system. This has not been a very well researched area.

Kernel-level approaches have also other problems. First of all, they are kernel specific and thus
not portable. Secondly, the kernel systems can also cause performance interference, i.e. generic

overhead to operations that are not in need of an IDS mechanism. The system management is a
problem as well, since reconfiguring a kernel-space system may require a system reboot. Also the
kernel services have a very low level of abstraction, which causes the analysis phase having also
low level of abstraction and deduction.

3.1.3 Library and system call interposition

One possibility of collecting information about application calls is library or system call interpo-
sition, which is the process of inserting a modified call between the application and the real target
of the call.

The interposition can be done at library level, for example in Linux and Solaris environments
the LD_PRELOAD environment variable is able to insert libraries that are searched before original
libraries. This technique can be used to track the library calls an application makes.

The system built by Kuperman and Spafford used this library interposition to detect unsafe
Unix programming practices, such as overruns of static buffers in sprint £ calls. The penalty
of interposition was about 3% for non-interposed calls and about 57% for interposed and logged
system calls. Most of that overhead was due to the logging mechanism [KS99].

Call interposition can also be used at kernel-level. Bowen et al used a loadable Linux kernel
module to insert an interposition layer into the kernel and rewrote the kernel system call table to
execute first an interceptor and then the call. If any function besides interception is required, it can
be specified in a module compiled from a behavioral monitoring specification language (BMSL)
description [BCS™00].

The kernel-level method described above is able to track the application behaviour towards
the kernel only, whereas library interposition is able to collect data on the library call level. Static
analysis can achieve similar goals to library interposition, but it can not give us information on
what happens in an application at run-time.

3.2 Network based monitoring

Some application IDS systems do use network based data collection, since they use the data avail-
able from the network for intrusion analysis. This assumes that the application is distributed in a
way that network data is meaningful for analysis. This approach is not discussed in detail, since
this is more in the domain of network based IDS.

Some interesting research exists, though. For example Raz et al captured data in a dynamic
data feed for semantic anomaly analysis [RKS02]. Also CORBA remote calls have been inter-
cepted so that the remote call execution patterns could be analyzed similarly to system call pat-
terns [SMS99]. These approaches show that network traffic interception can be utilized in the
application layer as well.

3.3 Direct monitoring

The most straightforward way of collecting data for misuse or anomaly analysis in an application
is to write detection and collection hooks into the application code itself. This is direct monitoring,
i.e. the method can access the component and its internal state directly.

Diego Zamboni did code internal misuse detection in his research by modifying existing soft-
ware to detect well known attacks against it. The solution described added a series of detection

code agents to the sendmail application code against attacks collected from Common Vul-
nerabilities and Exposures (CVE) database [ZamO1]. He also added some generic agents, for
example against port scanning. Different techniques, such as character matching heuristics or
stateful/stateless detection, were used in the agent implementation.

Similar approach was also used by Sielken, who first did a risk analysis of potential application
fraud points and then wrote additional code to detect anomalies in client behaviour [Sie99].

Elbaum and Munson instrumented an application, a Linux kernel in their case, with code hooks
that provide information on how the application modules call each other [EM99]. This module
profile information was then used for anomaly detection.

The hard part of the code-internal method in general is the extensive programming and pro-
gramming related activities it requires. While the actual number of code lines generated is not
significant, modifying an existing system means in practice that a significant effort is spent in
understanding the code before being able to make meaningful modifications [ZamO1].

The actual agent or sensor can also be in a separate module, which has been linked into an
application via a suitable interface [ALO1]. This method enhances the flexibility of the agent
implementation and diminishes the time needed to understand the code base. However, the used
interface limits the agent’s view of the application and also places restrictions on how the agent can
affect the application. Therefore, the degree of directness in the agent model is also diminished
depeding on the interface characteristics.

3.4 Monitoring the execution environment

A very distinctive class of IDS data collection methods includes systems where the application
execution happens in whole or in part in a pre-configured container or other safe execution en-
vironment. The executed application is monitored by this container and the container is able to
collect behaviour data and potentially also analyze unexpected behaviour. There are several vari-
ants of this basic idea.

3.4.1 OS-level environments

There are various methods of restricting the application visible environment for security reasons.
One of the most successfull is Unix kernel chroot system call and the associated control pro-
gram, where a subdirectory of the file system hierarchy is created to resemble the full Unix file
system, and the application execution is restricted to this subdirectory and the services and com-
ponents visible from there. However, chroot can not be considered a real application IDS, since
it just prevents applications accessing the real OS file system and it has not been designed to alert
on any undesired activity. There are other such execution restriction systems as well, such as the
BSD jail but since they are somewhat off-focus we do not explore them in more detail.

Since no widely used operating system offers a ready made system focused on application level
intrusion detection, there are ways to augment the systems with monitored execution environments
or application security wrappers. One such effort is the Generic Software Wrapper system, which
is a loadable Unix kernel level module (LKM) that associates wrapper instances with application
processes [FBF99]. Generic software wrappers have also been used by Ko et al in their work
[KFBKOO].

Wrappers are defined in the Wrapper Definition Language (WDL) that masks the operating
system details from the wrappers and also defines the functionality the wrappers have. One key
point of this system is the fact that the WDL characterization of the low level kernel API contains
some semantic information on the system calls, for example a tag labeling a call parameter or

10

return value as a file descriptor. This enables both some level of OS independence and also simple
semantic reasoning in the wrapper action rules.

Wrappers intercept some or all system calls the applications make and take action based on
the WDL definition. The wrapper can either deny the system call or augment or transform the call.
Augmenting means adding functionality to the call, such as encrypting or performing intrusion
detection analysis on the call data. Transforming, on the other hand, is replacing the call with one
or more other system calls or other events [FBF99].

Another example of this kind is Systrace, an environment which supports fine grained process
confinement, intrusion detection, auditing and privilege elevation [Pro03]. There the system calls
are recorded by a kernel-level mechanism and the system call is checked against the recorded
normal policy in a user space policy daemon. The approach takes also the system call arguments
into account. Systrace is currently available for Linux, Mac OS X, NetBSD, and OpenBSD.

One positive point of this OS level approach is the fact that it works is practically application
independent. It is also easy to deploy even for older or third-party applications. However, since it
is an OS level tool, it does not necessarily have any deep insight into the actual workings of the
application. Therefore, these systems are doing indirect monitoring. A suitable system may not
be available to the preferred operating system either.

3.4.2 Dynamic execution environments

Dynamic execution environments (DEE) are systems where compilation, profiling and optimiza-
tion are dynamic, such as Sun Java and Microsoft .NET Common Language Infrastructure [IF02].
Dynamic execution environments are a subgroup of virtual execution environments (VEE), more
often called virtual machines.

As an example of a dynamic execution environment, programs written in the Java program-
ming language are run in Java Virtual Machine (Java VM, JVM). Rather than running directly on
the native operating system, the program is interpreted by the JVM and the resulting bytecode is
run within the JVM on top of the native operating system. The JVM restricts the application by
creating a sandbox, where a security policy dictates what the application is allowed to do.

One IDS technique utilizing the Java virtual machine is dynamic sandboxing. It consists of
two activities: sandbox generation and sandbox execution. In the first, a dynamic sandbox profile
is constructed by running the program with an instrumented JVM and all observed method calls
are written to the profile. Later, in the execution phase proper, observed method calls are compared
to this profile and anomalies cause an error [IF0O2].

The difference between JVM’s own sandboxing and this dynamic sandboxing is similar to
the difference between Unix chroot jail and a real IDS. Both the Java sandbox and the Unix
chroot are able to just deny the activity outside their limits, but dynamic sandboxing can be
classified as a real intrusion detection system, since it is able to detect malicious activity.

There are also systems where only the intrusion detection data collection agent is built into
a JVM [SKVO03]. To monitor any suspicious activity performed by applications running in the
JVM (JikesRVM in this case) the virtual machine was extended with an event logging system.
The auditing facility consists of an event driver, an event queue, and an event logger. The event
driver adds thread-level execution events to the event queue. The logger processes events that are
contained in the queue and writes them to an external log . This external log can then be processed
by a suitable intrusion data analysis system (STAT in this case). In the analysis model this system
is more related to host based intrusion detection systems than other application level systems.

11

3.4.3 Component level wrappers

Component based application development has rapidly become popular in recent years. There are
sound reasons for it, especially regarding cutting development costs with code reuse and isolating
faults with modularization.

Application wrapping for intrusion detection can also be done on the application component
level instead of the level of application as a whole. Herrmann and Krumm created an architecture
where an adapter is generated for each Java Bean and the bean is wrapped by the adapter. An
adapter generator introspects the bean for its interface actions and creates the related adapter based
on this examination. This approach means that each component is protected by the adapter and all
component interaction via the component interface goes through the adapter so that the interaction
can be observed [HKO1]. This is direct monitoring in the sense that the application interaction
between the beans can be observed, but on the other hand this method does not have visibility in
the inner behaviour of the beans.

12

Chapter 4

Data Analysis Approaches to
Application IDS

Since application level IDS is a relatively new concept and there are several data collection meth-
ods, there are several algorithms and methods for analyzing the collected data. Generally analysis
approaches are divided as follows:

1. Misuse detection
2. Anomaly detection
3. Specification based intrusion detection

In this document, survey of the anomaly detection techniques has been divided into two sub-
chapters: anomaly detection in execution monitoring and anomaly detection in input semantics.
This division is purely a device for managing the readability and structure of this document, con-
ceptually these two are in the same anomaly detection domain.

4.1 Misuse detection

Misuse detection has not been a very widely researched topic in the application IDS arena. The
methodology map is shown in Figure 4.1.

A trivial approach to misuse detection is to make modifications in the code to detect known
vulnerabilities [ZamO1]. More refined method is to use known attacks to train a neural network,
a multi-level perceptron (MLP), to recognize them and also similar attacks from a stream of audit
events [End98]. A software wrapper technique can also be used for misuse detection if the attack
signatures are encoded into the wrapper data structures [KFBKOO].

Kuperman and Spafford used library interposition to detect unsafe Unix programming prac-
tices, such as unbounded data insertion into static buffers, race conditions and unsafe system calls
(such as system () and execvp ()) [KS99]. Since this technique searches for vulnerabilities
facilitated by the used platform and tools instead of the application characteristics, it is application
independent.

This lack of research in the misuse domain is not very surprising, since misuse detection uses
known vulnerabilities either for searching or training. This means each new discovered vulnera-
bility must be encoded in the application intrusion system. If the detection method is source code
based, as in the trivial case, this would mean recompiling and reinstalling the application every

13

Misuse
detection

Code Library Neural Generic
hooks | | hooks network wrapper

[Zamboni] [Kuperman] [Ko]

MLP
22.12.2004 [Endlerl

Figure 4.1: The misuse analysis methodology map

time a new type of vulnerability is found. Also wrapper based techniques suffer from this up-
date problem, although to a lesser extent, since the update must be done on the wrapper side, the
application can remain as it is.

Machine learning could make life with new vulnerabilities much easier, if we could be sure that
a new attack would be covered by the learning generated by the old training data. At minimum, an
IDS system employing machine learning would need to be tested every time a new vulnerability
is observed, and if the old training does not cover the new problem, retraining must be done.

4.2 Anomaly detection in execution monitoring

One key form of application execution monitoring is application call analysis. By the word call
we mean both system calls and application internal procedure or method calls. Also “calls” to
software modules are considered. While the techniques of extracting information for different call
types are different (see Chapter 3), algorithms for analysing this type of information are similar.
Thus we do not separate these types here but discuss them jointly. The analysis method map for
anomaly detection is shown in Figure 4.2. The picture also includes research done in the area of
anomaly detection in input semantics, which is discussed in more detail in Chapter 4.3.

System calls seem to be at a suitable granularity level for detecting malicious behaviour in
applications. This suitability is based on the assumption that the exploit must interact with the
operating system to create a real intrusion. While this is true in the case of buffer overflows and
shell code exploits, it leaves problems caused by the application data semantics unexplored.

The seminal paper describing this idea came from Forrest et al in 1996 [FHSL96],[FHS97],
and it has generated a multitude of different techniques and variants for either obtaining or ana-
lyzing the system call information.

Their basic idea is to parallel computer defense with human immunology. This analogy needs
the definition of system “self”, which by their original idea is obtained from the program system
call profile. This idea of self can be used for anomaly detection by collecting traces of system
calls from programs in a secure training phase and creating a normal profile of how the process
runs. This normal database is then used to monitor the running processes and flag anomalies when
system calls occur in abnormal positions.

14

Anomaly detection

Execution
monitoring

Input semantics

Macl?ine In code Call traces
learning -
[Sielken]
.lnferr.ing Sequence Call State Data Machine Statistical
invariants similarity policy automata mining learning profile
[Raz] [Lee] [Elbaum]

[Endler]

Variable } [JVM][Unix] FSA] Hidden [Neural] String Decision
length networks || transducer | | based trees
¢ [Inoue] [Provos] [Sekar] Markov -
[Marceau] Models {;I}o;h]l] [Gunetti]
e ichael
[Michael] [Warrender]

Mismatch || Locality
percentage | | frame

Anomaly| | Hamming| | peiresias || MCA—P
count distance

a - Backprop. || Elman RIPPER || TIM
[Cabrera] [Jones] [Kosoresow] [Feng] networks networks [Lee] [Teng]

[Forrest] mismatch verage | [Hofmeyr] [Wespi] [Lane]

[Ghosh] count

[Stillerman] [Kosoresow] [Ghosh] [Ghosh]
[Jones] [Jones]

[Ko]

. ; i 23.12.2004
D Research in AppIDS domain |:| Research in other IDS domain

Figure 4.2: The anomaly analysis methodology map

This overall method is called stide, sequence time-delay embedding, and it contains four parts:
selecting the feature set (system calls in this case), collecting normal data, extracting features from
the data and detecting anomalies by comparing the features of current situation to the normal data.

There are two general problems in the system-call based anomaly detection; mimicry attacks
and impossible paths [WDO1].

Mimicry attack is a form of attack where the exploit is coded in a way that it resembles the
normal run of application as much as possible, for example using only normally occurring system
calls. However, not all attacks can be coded this way. This attack method would require extensive
knowledge on what is normal for this application and also what kind of application model or
detection threshold target is using [KH97], [WDO1]. There are also two types of mimicry attacks:
local and global. A global mimicry attack combines the legal system calls of multiple functions,
while a local mimicry attack uses the legal system calls of only the running function [XDCO04].

The impossible path problem manifests in techniques where the model includes all possible
control paths, i.e. it has also those that no valid run-time behaviour uses. An example of this type is
the return-into-others impossible path, where a function is called from location A, but the control
is returned to point B [XDC04]. The main concern with impossible paths is that the model can
classify such an occurring impossible path as normal and thus miss an attack. Not all system call
methods exhibit this problem, typical examples of this problem are in the state transition research
[WDO1],[SBDBO1].

15

4.2.1 Sequence similarity techniques

The original research by Forrest et al used simple sequence enumeration in data collection and fea-
ture extraction from the system calls. The system call sequences were of fixed size, N-grams, and
they used a technique called look-ahead pairs for determining mismatches. The actual measure of
anomaly in the original research was a mismatch count as a percentage of total number of possible
mismatches in the look-ahead sequence. When tested with real exploits against sendmai 1 appli-
cation, the mismatch counts were between 0.3-5.3%. The described algorithm can be implemented
in O(N) time, where N is the system call sequence length [FHSL96].

The key finding was that this was a good method of differentiating between processes and for
detecting problems where an unusual system call sequence in an attack is used. However, this can
not be used to detect all exploits, for example race conditions or resource stealing.

An observation made by Kosoresow et al around the same time was that all the anomalies
observed exhibited behaviour where the system call mismatches between normal and intrusion
traces are executed in bursts, i.e. they were temporally close. This allows for an anomaly detection
technique where just the number of mismatched system calls within a certain system call sequence
length is used as a detection rule [KH97].

This type of a simple numeric measure for an anomaly gives rise to a new form of a mimicry
attack. In this evasion method the idea would be not to clump the exploit system calls together,
but to pad the exploit code with normal sequences of system calls, thus fooling the detection
threshold. As with basic mimicry attacks, this would require knowing specific details of the IDS
analysis method, in this case the detection threshold.

Forrest, Hofmeyr et al refined their work later. The key modification was in the definition of an
anomaly, i.e. sequence similarity. They noted that since anomalies occur temporally together, they
can used the idea of Hamming distance for defining how much a sequence differs from the normal
sequence. This method is more complex to computer, however. To detect an intrusion, at least
one of the sequences generated by the intrusion must be classified as anomalous. They measure
the strength of the anomaly by computing minimal Hamming distance and it was assumed that
the higher the minimal Hamming distance, the more likely it is that the sequence was actually
generated by an intrusion. Therefore the signal of the anomaly is the maximum value of the
minimal Hamming distances in all the sequences. To make this measure applicable to variable
length sequences, this signal value was used normalized over the sequence length value. This
normalized value was used as the preferred measure of anomaly [HFS98]. So, if the normalized
anomaly signal value is 0.5, it means that at some point half of the trace has been different from
the original.

In the more detailed tests, it was found that after a certain length (6), the length of the se-
quences had very little effect in detection as measured by the normalized signal of the anomaly,
so they used a fixed length of 10. In real exploit tests, the normalized signal of an anomaly was
between 0.2-0.7 and mismatch percentages 1-38%. In summary, they were able to detect all the
tested abnormal behaviors, including successful intrusions, failed intrusion attempts, and unusual
error conditions [HFS98]. This of course depended on the correct alert threshold for the signal of
the anomaly.

The original N-gram method of Forrest et al has been implemented as a special seq-id wrapper
in the software wrapper IDS of Ko et al [KFBKO0O]. The wrapper system works in kernel space and
is able to intercept and analyze system call sequences. The seq-id wrapper causes 5-7% penalty
to the execution performance. It can also be used together with a misuse detection or specification
based wrapper, but then the wrapper penalties get added.

This method has also been implemented when analysing anomalies in a distributed application

16

utilizing CORBA [SMS99]. There the observed sequences were not system calls, but CORBA
remote method invocation sequences.

Wespi et al have augmented and modified this technique. First of all, they analyzed audit
events, not system calls. Secondly, their feature extraction has been done using variable-length
sequences and the Teiresias algorithm, which was initially developed for discovering rigid patterns
in unaligned biological sequences. The more abstract audit events could be used instead of system
calls, since the system call arguments, which were not available in the audit trail, were not used for
analysis. This variable-length method has improved the false positive rate [WDDO0O]. Variable-
length sequences were also used by Marceau, but she constructed a finite state automaton from
them and the method is thus discussed later [Mar00].

Cabrera et al turned the feature extraction process of this method upside down by using a string
matching classifier to extract data to separate anomaly dictionaries, i.e. system call sequences that
are not in the normal dataset [CLMO1]. These anomaly dictionaries correspond to the idea of self
for the anomalies instead of self of the monitored system. The incoming system call sequence was
considered normal if the anomaly count in the sequence was zero against all anomaly dictionaries.
The anomaly count was defined as the average of the relative anomaly counts in the set. The
relative anomaly count is the number of anomalous sequences found in the trace, divided by the
total number of sequences in the trace. The key problem of this approach is that all new anomalies
are classified as one of the old or as normal. This can be solved by a hybrid approach where the
anomaly count is first checked against a threshold value. If the anomaly count value was above
threshold, the sequence was probably an attack even if it would not be in the anomaly dictionary.
It was observed that the String Matching Classifier performs better for longer sequences, while
the anomaly count detector performs better for shorter sequences. It was also shown that a hybrid
detector, combining both schemes at their best choice of sequence lengths leads to substantial
improvement of detection accuracy.

Jones et al also used sequence enumeration techniques, but the sequences were of calls to C-
language libraries instead of system calls [JLO1]. They utilized three different analysis methods:
the original mismatch percentage from Forrest et al, the normalized anomaly signal from Hofmeyr
et al and locality frames from Kosoresow et al. In two real tests against Apache web server,
the mismatch percentages were 1.5 and 3.9 and the corresponding anomaly signal strengths 0.7
and 0.8. They also observed that the intrusion detection result is stable if the sequence length is
>6. Their tests were done using a sequence length of 10. They also made successfull tests with
two buffer overflows, one trojan program and one memory depletion denial of service exploit.
Additionally, they created a a trojan code attack against mSQL and were able to detect that better
with library calls than system calls (signal strengths 0.8 vs 0.7, max. locality frame count 20 vs
7). They presume it is because system calls have too little variety in mSQL, it is doing basically
I/O functions.

Ghosh et al compared in two papers five different algorithms for analysing the system call
traces. In their analysis they compared the simple N-gram similarity measure technique from
Forrest et al [FHSL96] with neural network methods (a backpropagation network and an Elman
network) [GSS99]. Later they compared two other machine learning methods, string transducers
and a state tester, to the Elman network [GMSO00]. The results show that though the similarity
matching approach worked fairly well, the performance can be significantly improved (particularly
in reducing the false positive rate) by using neural networks [GSS99].

The sequence enumeration and similarity techniques have also been used for analyzing anoma-
lies in user command line behaviour [LB97]. Here the simple equality matching of system calls
does not work very well, since the user can produce slightly different versions of the same basic
commands. Therefore similarity matching techniques were used to score sequences of commands

17

for closeness. The closeness measure was MCA-P, match count with adjacency and polynomial
bound. While user input has quite different characteristics from system calls, similarity matching
techniques may be an option for systems which take into account not only the system call, but also
the parameters of the call. This is not quite in the domain of application intrusion detection, but is
included here to illustrate other methods used to solve a similar task.

4.2.2 Call policy techniques

One potential approach to execution monitoring is to observe not the call sequences, but to create
a list of calls the application makes when run normally, and then in subsequent runs limit the
allowed calls to this known good set (i.e. profile).

Call policies have been explored in an operating system setting by Niels Provos in his Systrace
system. There the system calls an application makes are recorded during a training time thus
creating a security policy of the allowed system calls [Pro03]. This procedure is not altogether
automated: if the application uses for example random filenames, the policy must be edited to
allow that particular form of non-determinism.

The system call arguments are also considered here. Before making a policy decision, the
system call and its arguments are translated into a system independent human-readable format.
The policy language operates on that translation and does not need to be aware of system call
specific semantics [Pro03].

This has been done also in dynamic Java sandboxing which for a given program consists of
two activities: sandbox generation and sandbox execution. In the first, a sandbox profile is con-
structed by running the program with an instrumented JVM. During this training session, profiling
information is recorded to the sandbox profile. The sandbox is initially empty and grows during
the training run by accumulating records for each unique behavior, i.e. method calls. Because
nothing is added that is not observed, each sandbox is customized to a given program and context
in which it is executed. During sandbox execution, behavior (i.e. a method call) that is not in the
profile is considered anomalous [IF02].

The JVM prototype looks only method invocations and their signatures, although the authors
note that also memory behaviour, method arguments, patterns of methods, whole program paths
or even other building blocks than methods could be used for anomaly detection [IF02].

This call policy approach assumes that the application run from which the profile was created
did not include any attacks or exploits. Additionally, it assumes that any deviations from the profile
are potential attacks. To lower the count of false positives, this requires that all variations of the
valid application run-time behaviour must be present in the profile. Call policies are a sensible
approach in a method or procedure call setting, where the potential number of calls is much greater
than the number of system calls and thus the sequence enumeration technique detailed before may
not be viable.

This method is somewhat similar to the policy-specification based techniques discussed later in
Chapter 4.4, but with the difference that the list of allowed calls is not specified by an administrator
but extracted from a known good application run.

4.2.3 State automata techniques

In the normal system call anomaly detection, the near real time speed of the detection is an issue.
Therefore the system call traces need to be reduced for quicker processing. For that Kosoresow et
al noted that the applications were deterministic in the sense that long sequences of system calls
were repeated. This is also intuitive; if the application forks when it gets a connection, this forking

18

sequence is always repeated. Therefore deterministic finite automaton (DFA) with macros can be
used to build patterns of the various system call sequences.

However, creating the exact DFA of a process will be a problem. First, because every possible
ordering of system calls would have to be made, the DFA would be very large. This is simply
because the system call order can depend on the input data. And second, if the trace length is a
function of data the application is processing, every variation in the data length should be included.
If this is not done correctly this could lead to false positive alarms. Creating the macros for the
DFA is also time consuming and potentially NP-hard [KH97]. For all these reasons deploying this
approach to real systems would be difficult.

The simplest work construcing a state automaton was done by Marceau. There variable length
N-grams of the system call sequences were used to create a suffix tree and an algorithm for creating
a finite state automaton (FSA) from it was presented. The resulting “self database” was smaller
than the sequence database and thus the detector can be more effective at run-time. The algorithm
was adjusted so that it does not create false positives. However, the resulting system was less
sensitive to anomalies than the original N-gram work [Mar0O]. The reason for this may be that
the automaton was intentionally weakened by similarity compression so that a specific value for
N would not be needed, but a general upper limit would suffice.

Various other state automata systems have also been researched. Michael and Ghosh used the
N-grams from Forrest et al, to create a simple finite state machine. They compared the original
work with the state machine and another technique, a string transducer. The results showed that
the original N-gram work performed best if the detection rate was compared with the false positive
rate. However, it had much longer training period than the new methods, i.e. with a limited set
of training data the new methods had much better false positive rates. However, none of the
techniques was able to detect more than 94% of the intrusions. This was due to limitations in the
input data [MGO02].

Sekar et al have also explored the use of finite-state machines to aid in the system call sequence
analysis [SBDBO1]. In their system they augmented the system call information with the program
counter (PC), i.e. sequence-giving information, which allowed them to form the state machine
automatically.

The actual analysis goes so that if an anomaly in the FSA occurs, it is not immediately flagged
as an intrusion, but an anomaly counter is increased. If sufficient number of anomalies are ob-
served during a time frame, an intrusion alert is generated. The anomaly count is decreased as
time passes so isolated anomalies do not generate alerts. The system generated less false positives
than the N-gram method used by Forrest et al. What is also interesting to note that the space and
runtime overhead of the algorithm itself is low. However, the overhead for user-level system call
interception used here was considerable, 100-250%.

Feng et al enhanced the FSA model by creating the VtPath model, in which the use of program
counter is augmented and also call stack information is utilized for anomaly detection [FKFGO03].
In addition to the system call information and the program counter, the return address is obtained
from the call stack into a virtual call stack list, which acts as a history of unreturned function calls.
Virtual path between two system calls is the ordered list of non-common return addresses in the
call stacks of the two system calls. It is an abstraction of the execution between two system calls.

All found virtual paths and call return addresses are stored during the training phase. In the
detection phase each system call causes the virtual call stack being stored. Depending on the
contents of the stack, return address and the virtual path between the current call and the previous
call, the system can find out various anomalies, such as buffer overflows. The key benefit of
the the VtPath technique is that it does not suffer from the impossible path problem. In other
comparison, the false positive rate is similar to the FSA method, when they corrected some FSA

19

implementation mistakes Sekar et al made. And since the system call interception was similar to
the FSA research, the runtime overhead was still considerable.

Warrender et al compared various techniques in analyzing system call traces, one of the meth-
ods was a probablistic automaton called Hidden Markov Model (HMM) [WFP99]. HMM states
are unobservable conditions in the system. The model attaches a probability to each state transi-
tion and to each type of output in the states. By this probabilistic modeling they can adjust their
model over time and also easily represent branches in the system logic. However, the number of
states and their probability must be given when the HMM is created, and therefore the training
process of a HMM is very long, in the order of hours or days. On the positive side the detection
accuracy was very high and the false positive rate was very low.

Also Wagner et Dean and Giffin et al have used state machines in modeling the application for
intrusion detection [WDO1], [GIMO02]. However, their works form a state machine from a program
specification, the source or binary code, so we discuss their work with other specification based
intrusion detection in Chapter 4.4.

4.2.4 Machine learning

Several machine learning algorithms have been applied to application level intrusion detection as
well.

As discussed previously, Ghosh et al compared three different algorithms for detecting the
anomalies in the system call sequences: N-gram equality matching, backpropagation network and
Elman recurrent network. The two latter systems are neural networks [GSS99]. Later, Elman
networks were compared to string transducers and state testers [GMS00].

The results show that though the equality matching approach worked fairly well, the perfor-
mance can be significantly improved (particularly in reducing the false positive rate) by using
Elman networks. Elman networks were able to detect 77.3% of all intrusions with no false posi-
tives. Further, the Elman nets were able to detect 100.0% of all intrusions with significantly fewer
false positives than either of the other two systems [GSS99]. Later, in user-to-root exploit tests,
Elman networks achieved 100% detection of attacks very quickly at a false alarm rate of close to 3
per day. With remote-to-local attacks the results were not so good, 30% attacks detected at a rate
of approximately 10 false alarms per day [GMSO00].

The problem with Elman networks is the training time, it is in the order of thousands of min-
utes. The detection performance of string transducers were comparable to Elman networks, but
the training phase is orders of magnitude smaller, in the range of tens of minutes [GMSO00].

Comparing string trancducers and state testers to Forrest et al’s N-gram matching resulted in
N-grams achieving slightly better performance. However, the N-gram method was much slower
to learn, which is to say that it required a great deal more training data to achieve false positive
rates comparable to string transducers and state testers [MGO2].

Various rule-based systems have also been used. The earliest work used a time-based inductive
engine (TIM) to infer rules from VAX/VMS user audit records [TCL90]. This was more of a
successfull feasibility study than an actual method performance evaluation. Later Lee, Stolfo
and Chan used rule-based machine learning to determine anomalies from the system call traces
[LSC97]. Their method was to apply RIPPER rule generation system to the traces to generate
rules.

The rules generated from RIPPER can classify whether the trace is “normal” or “abnormal”
compared to the rules. But it does not as such tell whether the trace indicates an intrusion or not.
Therefore some post-processing was done to determine whether the abnormal traces really were
intrusions. These post-processing heuristics try to weed out occasional prediction errors, which

20

differ from intrusions by the length of the anomaly.

The key finding was that the rules for normal behaviour generated by RIPPER rule generator
were well suited to anomaly detection. Additionally the best method for anomaly detection is to
classify normal behaviour in RIPPER rules, classification of abnormal behaviour works best for
misuse detection [LSC97].

Compared to the work in Forrest et al [FHSL96], this method is both faster and the rules have
lower storage requirements. Because there were only 200-280 rules generated by RIPPER and
only 100-140 rules on the average had to be checked for classification, authors state that this is
potentially doable in a real-time environment. No practical tests have been performed, however.

As an example of applying machine learning to other IDS data, Gunetti and Russo used induc-
tive learning in the form of relational decision trees to classify users into different categories based
on their Unix command-line command usage patterns [GR99]. They used a tool called ReliC and
achieved about 90% user recognition rate, which is comparable to other similar research.

4.2.5 Data mining

Lee and Stolfo, who previously investigated using machine learning for anomaly detection in
system call traces, also extended their work to use data mining techniques [LS98]. The data
mining approach relates to the construction of the base classifiers and how to identify meaningful
features from the raw data stream. Data mining techniques, such as association rules and frequent
episodes algorithms can be used to help in this feature extraction. An association rule algorithm
can help find rules within one audit stream, while frequent episodes reasoning can help discover
inter-audit patterns, i.e. patterns between audit data streams. And the latter is especially useful
when looking at sequence information, such as system call traces.

Their aim was to make a multi-level model, where a set of base classifiers, such as the system
call trace learner, would feed a meta learning task. The meta classifier would take input from all
types of base classifiers (including network based mechanisms) and a learning algorithm would
be applied for the overall anomaly analysis. This would be able to utilize information from many
sources, not just application or network. However, in their work they have only very preliminary
results from a tcpdump network packet trace but nothing from a system call trace.

4.2.6 Statistical profiling

Anomaly detection in execution monitoring can also be made by creating a statistical profile of
the execution, for example a call histogram, and comparing the executing program to the known
good profile.

The histogram method has been used by Endler [End98]. All system calls in a call sequence
vector were inserted to a large vector so that the occurrence of a call number 25 in the sequence
increments the value in the 25th position of the larger vector. The larger vector represents how
many times each event of all possible events has occurred in the sequence vector. A histogram
classifier was used to divide the sequences to normal and abnormal. However, the histogram
system size grows exponentially with the larger vector size so different techniques were used to
selecting the most meaningful events. Hand-picking based on experience with buffer overflow
attacks proved to be the most successfull. To detect anomalous patterns from the histogram, a
value was visually selected from histogram graphs for the anomaly threshold. This could be done,
since this work was not real-time detection but work done on audit logs.

Additionally, module interaction can be used for execution monitoring. Elman and Munson
have described a technique where any application written in C can be instrumented with a CLIC

21

toolkit to insert hooks into the application source code modules [EM99]. A kernel-level tool is
then able to follow the module interaction and compare the interaction profile statistically to a
normal profile obtained beforehand.

4.3 Anomaly detection in input semantics

There have been very few attempts to do semantic intrusion detection of any kind. Here the
emphasis would be in analysing the user supplied data contents and its meaning in relation to
the application and attempted action. In this sense this method falls under the class of anomaly
detection.

Semantic analysis can be done in several levels. The most trivial one is writing these semantic
checks into the code. This is of course dependent on the correct identification of potential hazard
spots and illegal values. Therefore substantial technical risk analysis, such as demonstrated by
Sielken [Sie99] must be done when developing the software. This risk analysis must then be
translated to actual agents to detect impossible conditions that could signal an attack.

Although Sielken suggested building the application IDS system so that it contains both ap-
plication specific and application independent parts, the criticism expressed in Chapter 4.1 with
regard to misuse detection in application code is still valid: much design and analysis and some
coding is necessary to make this a reality.

Raz et al have investigated semantic anomaly detection in general data feeds, i.e. on input
level, such as stock quote streams [RKS02]. They define an anomaly as an observed behavior
of a data feed that is different from our expectation. This expectation describes normal behavior
of the data feed. Since there was no real semantic data specification for their stock quote feed
available, their method was to use two unsupervised machine learning tools, Daikon and Mean to
infer invariants from the data feed. After the invariant learning, the feed data was compared against
the invariants and an anomaly alert was generated if the invariant did not hold for the received feed
data. Their method was able to successfully detect most of the data anomalies in the test scenario,
the false positive rate being 0.3. It was usually reduced to under 0.02 (max 0.15) when adding
voting heuristics, i.e. cross-checking with another data feed, but it did not help to reduce false
negatives.

4.4 Specification based AppIDS

There are also efforts to specifying the application behaviour more or less formally and alerting
on any activity outside the specification. Two main styles have been identified; one specifies
separately the policy that the application must follow, the other creates a model of the application
based on the source or binary code and then observes whether there are any run-time deviations
from that model. The found research and their relationships are shown in Figure 4.4.

Classic works in the specification based detection are modeling the network protocol(s) the
application uses. This is more in the domain of network based intrusion detection (NIDS), for
example [SGF102] and they are not discussed in more detail here.

4.4.1 Policy based systems

There is an approach where a specification of the priviledged program execution is created and
then their execution is monitored via Sun BSM [KFL94]. A policy specification language was
also created for this task. The policy lists each system call the application is allowed to make,

22

Specification

based
Policy based [Static analysis
Generic E- EFSA [TLA j [Waypointsj NDPDA
Wrapper grammars NDFA
[KO] [KO] [Sekar] [Herrmann] [XU]
[Bowen] [Wagner]
[Giffin]
20.12.2004

Figure 4.3: The specification based methodology map

including key parameters. The policy language has some semantic information on the application
and the kernel API, so it is able to process concepts like users, files and ports. An example policy
for sendmail is below:

#define mailboxdir ‘‘/usr/spool/mail’’
#define mailboxdir ‘Y/usr/spool/mgueue’’
#define mailport 25
#define root_mail handler ‘‘/home/root/mail_handler’’
PROGRAM sendmail (U)
read (X) :— worldreadable (X);
write(X) :— inside (X, mailboxdir);
write(X) :—- inside (X, mailspooldir);
write(Y‘/etc/sendmail.’ "+’ [\.]*"");

bind(mailport);

exec (Y'/bin/mail’’);

exec (root_mail_handler) :— U.uid = 0;
END

Most of these application policy definitions are site independent, i.e. a policy for sendmail
in one Unix host is very similar to the policy in other Unix hosts, but some variables (such as log
file names) are site dependent and must be tailored to fit each system.

Compared to some other system call AppIDS methods, this system does not specify the order
of the system calls in the policy file. If the exploit uses allowed system calls in untypical order, or
if the policy does not limit the system call parameters enough, or the exploitable problem lies in
an application executed by this application, a penetration may still occur unnoticed, i.e. we get a
false negative result.

23

A refinement of the method above was done a couple of years later [KRL97]. There a formal-
ism for specifying the program specific policy (tfrace policy) was developed. The policy language,
parallel environment grammar, is able to express parallelism and sequencing in the language. As
above, it also has semantic devices to test some input values, such as the directory where the file or
directory is to be created. They mention the system able to detect simultaneous edits of the same
file by two parallel processes in their tests but do not give specifics.

Sekar et al have also modified this method [SBS99, BCST00]. They defined a language, Au-
diting Specification Language (ASL) or Behaviour Monitoring Specification Language (BMSL),
for application behaviour policy specification and integrated this with a compiler to produce an
extended finite state automaton (EFSA) C++ class, from which an application specific system call
detection engine is built. This engine then runs as part of the operating system kernel, intercepts
system calls and uses the automaton to check them against the defined policy. In actual tests
the system call monitoring system (SMS) caused 1.5% overhead. The overhead increases with
the number of system calls in the application: an increase of 2000% in system calls caused the
overhead to rise to 5% [BCS00].

Calvin Ko has continued to work on specification based IDS with his team. Their kernel-
level software wrapper system can be used also for specification based IDS, since the wrappers
are defined in a wrapper definition language (WDL) which can be used to specify the allowed
behaviour of the wrapped application [KFBKO0O0]. Also this wrapper definition can access system
call parameters and is able to impose semantic restrictions. The performance decrease from the
specification based wrapper alone was 5-7% in tests.

All of these systems require some kind of security monitor, analyzer or wrapper to detect the
behaviour out of specification, as does the work of Herrmann and Krumm [HKO1]. They have a
formally defined and simulated security state automata with state dependent security constraints
integrated with the container (i.e. wrapper). The security constraints are expressed with a formal
specification technique cTLA, which extends Temporal Logic of Actions (TLA).

The basic implementation has Java application beans, adapters, observers and a monitor. There
is an adapter wrapped around each bean. The bean interfaces with the environment only through
the adapter. Thus all the bean interactions can be observed and if necessary, the bean can be sealed
if anything attack-like occurs. The observers check that the bean complies with the cTLA process
specification. If the adapter detects an interface event, it forwards it to the observers by calling
the corresponding action methods. If all relevant observers signaled the compliance of the event,
the adapter really transfers the interface event. If, however, one observer refuses its corresponding
action, the adapter seals the bean and reports the violation to the monitor. The monitor interfaces
with the system administrator. The observers also link to the trust manager, which determines
the intensity of security checks by their wrappers depending on the trust values carried by the
scrutinized components [HKO1].

The work also extended the Java security manager, since beans can also access system re-
sources via standard streams, thus bypassing the adapter. However, resource access this way is
controlled by the Java security manager and the manager was modified to report standard stream
accesses.

4.4.2 Static analysis

Static analysis is a form of testing that analyzes the application source code or binary to detect
errors or problems. This technique has also been used for application IDS.

Wagner and Dean used source code to create a model of the system call sequences [WDO1].
The state machine is created from the source code, so this technique assumes the availability of it.

24

On the other hand, Giffin et al, use the system binary to create the state machine [GIMO02]. Both
of these are in essence a form of static analysis. We differentiate this work from the state automata
discussed in 4.2.3, since the state machines here are generated from a specification: the source
code or the application binary.

The work of Wagner and Dean suggests two non-trivial techniques for creating the state ma-
chine; a callgraph method, which creates a non-deterministic finite automaton (NDFA), and an
abstract stack method, which creates a non-deterministic pushdown automaton (NDPDA). In this
system there are no false alarms, since the state machine will accept all dynamically possible ex-
ecution traces. On the other hand, the callgraph system will accept also impossible paths. The
real problem with these methods is that they are non-trivial to implement and can incur a severe
run-time overhead (in the order of minutes) [WDO1]. However, the work on static analysis on
binaries achieved significantly better efficiency (run-time increase of 13%). The reason for this
was identified to differences in operating system library functions (Linux vs. Solaris) [GIMO02].
This implies that static analysis is not as universal in practice as it is in theory.

Similarly, a set of kernel-supported waypoints can be created from the source code by static
analysis. These function entrance and exit waypoints are then used for the application control-flow
monitoring. When the application is run, a push-down automaton of the entrance/exit waypoints
is created. An access monitor uses this push-down automaton information for control flow mon-
itoring and what is more novel, permission monitoring. During the static analysis of waypoint
generation, also the set of system calls (i.e. permissions) for each function is recorded and the
access monitor can ensure system calls invoked in the context of a function appear in its permis-
sion set. From the analysis point of view this system has the good point that it can detect global
mimicry attacks and return-into-others impossible path attacks [XDC04]. While Xu et al classify
their work as anomaly detection, their method of using static analysis for the waypoint generation
is more specification based.

However, local mimicry attacks are not detected by this waypoint method proper, although
the authors have deployed other means (interface randomization) to counter this problem. The
performace tests were also somewhat problematic. When all system calls were monitored, the
execution of an ordinary Unix program increased 3-5 times, most increase was in the time spent in
kernel mode. By monitoring only dangerous system calls, the overhead was reduced by 16-70%.

25

Chapter 5

Application IDS Reaction models

There has been very little research done into the application IDS reaction systems, apart from the
traditional “send an alert” feature. This is surprising since application level detection mechanisms,
which are more or less integrated into the application, could also signal the application to change
behaviour when a problem is observed. Some work exists, though.

One system call level example is in the pH system [SF00, Som02], where the mechanism is
able to delay all subsequent system calls at kernel level by a configurable time factor if a problem
with system call sequences is observed. Additionally, there is a separate congifuration item for
the execve () call delay threshold which configures the suspicion threshold where the execution
of other programs via the monitored program should be blocked. This latter option is very useful
against buffer overflows, which try to execute a shell. Although the performance hit of the pH sys-
tem is several microseconds per system call, the overall performance penalty for real applications
was between 4-10% in tests.

One other example is in the context of an auditing subsystem in the Java virtual machine.
There is a separate response module that can be used to react to detected attacks in a specific
environment. The response module initiates an appropriate response action when an attack or
threat coming from a Java application is detected. The module sends to a dedicated thread in the
JikesRVM a request for a particular response action [SKVO03].

The specification based mechanism by Bowen, Sekar et al [SBS99, BCS T00] has also reactive
capabilities. The policy defined in their language (ASL,BMSL) can include directives to delay
execution, changing the application scheduling priority, changing the application environment,
executing other monitor applications etc. And since the system call interceptor and the policy
interpretation program function at kernel level, they are able to enforce these directives.

26

Chapter 6

Conclusion

While application level intrusion detection systems are a less investigated area than network based
intrusion detection systems, a body of research is clearly identifiable. Some of the reviewed work
can be considered to belong in the domain of network or host based intrusion detection, but the
main body of the reviewed work is clearly focused on the application level.

From the data collection point of view, there are two main categories in the investigated re-
search: one uses some form of an operating system level mechanism to gather application level
data and the other uses some kind of controlled execution environment to do the same. Network
based data collection and direct monitoring efforts are marginal.

From the analysis point of view the body of research has been mainly focused on one area;
detecting anomalies in execution monitoring, which includes monitoring system, library or func-
tion calls or module interaction. Misuse detection and specification based systems have also been
researched, but they are a very clear minority.

But interestingly enough, reasearch is lacking on the semantic front, there are very few efforts
that use any kind of semantic information either in aiding the analysis process or in defining
the normal application behaviour. For example, practically all system call analysis mechanisms
discard the call parameter information. The use of semantic information in the application level
IDS is definitely one area where more research is needed.

27

Bibliography

[ALO1]

[Axe00]

[BCST00]

[CLMOT1]

[Den87]

[EM99]

[End98]

[FBF99]

Almgren, M. and Lindqvist, U., Application-integrated data collection for se-
curity monitoring. Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection RAID 2001, LNCS 2212. Springer-Verlag,
2001, pages 22-36, URL http://springerlink.metapress.com/app/
home/content.asp?wasp=5%n5deynmwglxwvflbd9l&referrer=
contribution&format=2&page=1&pagecount=0.

Axelsson, S., Intrusion-detection systems: A survey and taxonomy. Technical report
no 99-15, Dept. of Computer Engineering, Chalmers University of Technology, Swe-
den, 2000.

Bowen, T., Chee, D., Segal, M., Sekar, R., Shanbhag, T. and Uppuluri, P., Building
survivable systems: An integrated approach based on intrusion detection and dam-
age containment. Proceedings of the DARPA Information Survivability Conference &
Exposition, DISCEX’00, 2000, pages 1084-1099.

Cabrera, J. B. D., Lewis, L., and Mehra, R. K., Detection and classification of intru-
sions and faults using sequences of system calls. SIGMOD Record, 30,4(2001), pages
25-34. URL http://delivery.acm.org/10.1145/610000/604269/
p25-cabrera.pdf%?keyl1=6042696key2=4040363011&coll=
GUIDE&d1=ACM&CFID=33931896&CFTOKEN=21280247.

Denning, D., An intrusion-detection model. IEEE Transactions on Software Engineer-
ing, 13,2(1987), pages 222-232. URL http://www.cs.georgetown.edu/
denning/infosec/ids-model.rtf.

Elbaum, S. and Munson, J. C., Intrusion detection through dynamic software mea-
surement. Proceedings of the Workshop on Intrusion Detection and Network Moni-
toring. USENIX Association, 1999, URL http://www.usenix.org/events/
detection99/full_papers/elbaum/e%$lbaum.pdf.

Endler, D., Intrusion detection — applying machine learning to Solaris audit data.
Proceedings of 14th Annual Computer Security Applications Conference, 1998,
pages 268-279, URL http://ieeexplore.ieee.org/xpl/abs_free.
Jsp?arNumber=738647.

Fraser, T., Badger, L. and Feldman, M., Hardening COTS software with generic soft-

ware wrappers. Proceedings of the 1999 IEEE Symposium on Security and Privacy,
1999, pages 2—-16.

28

[FHS97]

[FHSL96]

[FKFGO03]

[GIMO2]

[GMSO00]

[GR99]

[GSS99]

[HFS98]

[HKO1]

[IFO2]

Forrest, S., Hofmeyr, S. and Somayaji, A., Computer immunology. Communica-
tions of the ACM, 40,10(1997), pages 88-96. URL http://portal.acm.org/
citation.cfm?id=262793.262811.

Forrest, S., Hofmeyr, S. A., Somayaji, A. and Longstaff, T., A sense of self for Unix
processes. Proceedings of the 1996 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 1996, pages 120-128.

Feng, H., Koleshnikov, O., Fogla, P. and Gong, W., Anomaly detection using call stack
information. Proceedings of the 2003 IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2003, pages 62-75.

Giffin, J. T., Jha, S. and Miller, B. P., Detecting manipulated remote call streams.
Proceedings of the 11th USENIX Security Symposium. USENIX Association, 2002,
pages 61-79.

Ghosh, A. K., Michael, C. and Schatz, M., A real-time intrusion detection system
based on learning program behavior. Proceedings of the 3rd International Symposium
on Recent Advances in Intrusion Detection RAID’00. LNCS 1907. Springer-Verlag,
2000, pages 93—109.

Gunetti, D. and Ruffo, G., Intrusion detection through behavioral data.
Proceedings of the Third International Symposium Advances in Intelligent
Data Analysis, LNCS 1642. Springer-Verlag, 1999, pages 383-394, URL
http://www.springerlink.com/app/home/contribution.asp?
wasp=gl%9tay35wlcyyn9cOvtp&referrer=parenté&backto=issue,
32,44; journal,1577,1828;linkin%gpublicationresults, 1:
105633, 1.

Ghosh, A. K., Schwartzbard, A. and Schatz, M., Learning program be-
havior profiles for intrusion detection. Proceedings of the Ist Workshop
on Intrusion Detection. USENIX Association, 1999, pages 51-62, URL
http://www.usenix.org/publications/library/proceedings/
detect%$ion99/full_papers/ghosh/ghosh_html/.

Hofmeyr, S. A., Forrest, S. and Somayaji, A., Intrusion detection using sequences of
system calls. Journal of Computer Security, 6,3(1998), pages 151-180.

Herrmann, P. and Krumm, H., Trust-adapted enforcement of security policies in dis-
tributed component-structured applications. Proceedings of the 6th IEEE Sympo-
sium on Computers and Communications. Hammamet, Tunisia. IEEE Computer Soci-
ety Press, 2001, pages 2-8, URL http://1ls4-www.cs.uni-dortmund.de/
RVS/Pub/TS/ISCCO1.pdf.

Inoue, H. and Forrest, S., Anomaly intrusion detection in dynamic execution
environments. Proceedings of the 2002 Workshop on New Security Paradigms.
ACM Press, 2002, pages 52-60, URL http://portal.acm.org/ft_
gateway.cfm?1d=844112&type=pdf&coll=%portal&dl=ACM&CFID=
19905017&CFTOKEN=31765782.

29

[JLO1]

[KFBKO0]

[KFL94]

[KH97]

[KRL97]

[KS99]

[LB97]

[LS98]

[LSC97]

[Mar00]

[MGO2]

Jones, A. and Lin, Y., Application intrusion detection using language library
calls. Proceedings of the 17th Annual Computer Security Applications Confer-
ence, ACSAC’01. IEEE Computer Society, 2001, pages 442-449, URL http://

ieeexplore.ieee.org/xpl/abs_free. jsp?arNumber=991561.

Ko, C., Fraser, T., Badger, L. and Kilpatrick, D., Detecting and countering system
intrusions using software wrappers. Proceedings of the 9th USENIX Security Sym-
posium, 2000, URL http://ieeexplore.ieee.org/iel5/8932/28288/
01264947 .pdf.

Ko, C., Fink, G. and Levitt, K., Automated detection of vulnerabilities in privileged
programs by execution monitoring. Proceedings of the 10th Annual Computer Se-
curity Application Conference, 1994, pages 134-144, URL http://seclab.cs.
ucdavis.edu/papers/pdfs/ck-gf-k1-94.pdf.

Kosoresow, A. P. and Hofmeyr, S. A., Intrusion detection via system call traces. /[EEE
Software, 14,5(1997), pages 35-42.

Ko, C., Ruschitzka, M. and Levitt, K., Execution monitoring of security-critical
programs in distributed systems: A specification based approach. Proceedings of
the 1997 IEEE Symposium on Security and Privacy, 1997, pages 175-187, URL
http://portal.acm.org/citation.cfm?id=884386.

Kuperman, B. and Spafford, G., Generation of application level audit data via
library interposition. Technical report CERIAS TR 99-11, CERIAS, Purdue
University, 1999. URL https://www.cerias.purdue.edu/tools_and_
resources/bibtex_arch%ive/archive/99-11.pdf.

Lane, T. and Brodley, C. E., Sequence matching and learning in anomaly detection
for computer security. Proceedings of AAAI-97 Workshop on Al Approaches to Fraud
Detection and Risk Management. AAAI Press, 1997, pages 43—49, URL http://
citeseer.ist.psu.edu/lane97sequence.html.

Lee, W. and Stolfo, S., Data mining approaches for intrusion detection. Proceedings
of the 7th USENIX Security Symposium. USENIX Association, 1998, pages 79-94,
URL http://citeseer.ist.psu.edu/article/lee98data.html.

Lee, W., Stolfo, S. J. and Chan, P. K., Learning patterns from Unix process execu-
tion traces for intrusion detection. Proceedings of the AAAI-97 Workshop on Al Ap-
proaches to Fraud Detection and Risk Management. AAAI Press, 1997, URL http:
//wwwl.cs.columbia.edu/ids/publications/wenke—aaai97.ps.

Marceau, C., Characterizing the behavior of a program using multiple-length
N-grams. Proceedings of the 2000 Workshop on New Security Paradigms.
ACM Press, 2000, pages 101-110, URL http://delivery.acm.org/10.
1145/370000/366197/pl0l-marceau.pdsf2key1=366197skey2=
8276292011&col1=GUIDE&d1=ACM&CFID=33734302&CFTOKEN=
20018340%.

Michael, C. C. and Ghosh, A., Simple, state-based approaches to program-based
anomaly detection. ACM Transactions on Information and System Security,
5,3(2002), pages 203-237. URL http://portal.acm.org/ft_gateway.

30

[Pro03]

[RKS02]

[SBDBOI]

[SBS99]

[SFO0]

[SGF102]

[Sie99]

[SKVO03]

[SMS99]

[SomO02]

[Sun%4]

[TCL90]

cfm%3F1d%3D545187%26type$3Dpsdf%s26d1l%$3DGUIDES26d1%3DACMS
26CFID%3D11111111%26CFTOKEN%3D2222222

Provos, N., Improving host security with system call policies. Proceedings of the
12th USENIX Security Symposium. USENIX Association, 2003, pages 257-272, URL
http://niels.xtdnet.nl/papers/systrace.pdf.

Raz, O., Koopman, P. and Shaw, M., Semantic anomaly detection in online
data sources. Proceedings of the 24th International Conference on Soft-
ware Engineering, ICSE’02. Orlando, Florida, May 22-24, 2002, pages
302-312, URL http://pag.csail.mit.edu/daikon/pubs—using/
raz—-icse-2002-abst%ract.html.

Sekar, R., Bendre, M., Dhurjati, D. and Bollineni, P., A fast automaton-based method
for detecting anomalous program behaviors. Proceedings of the 2001 IEEE Sympo-
sium on Security and Privacy, 2001, pages 144-155, URL http://citeseer.
ist.psu.edu/sekar0lfast.html.

Sekar, R., Bowen, T. and Segal, M., On preventing intrusions by process behavior
monitoring. Proceedings of the USENIX Workshop on Intrusion Detection and Net-
work Monitoring. USENIX Association, 1999, pages 29-40.

Somayaji, A. and Forrest, S., Automated response using system-call delays. Proceed-
ings of the the 9th USENIX Security Symposium, 2000, pages 185-197.

Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H. and Zhou, S.,
Specification-based anomaly detection: a new approach for detecting network intru-
sions. Proceedings of the 9th ACM conference on Computer and communications
security, Washington, DC, USA, 2002, pages 265-274, URL http://doi.acm.
org/10.1145/586110.586146.

Sielken, R., Application intrusion detection. Technical report CS-99-17, Department
of Computer Science, University of Virginia, USA, 1999. URL ftp://ftp.cs.
virginia.edu/pub/techreports/CS-99-17.ps.Z.

Soman, S., Krintz, C. and Vigna, G., Detecting malicious Java code using virtual
machine auditing. Proceedings of the 12th USENIX Security Symposium. USENIX
Association, 2003, pages 153-168, URL http://cs.ucsb.edu/~ckrintz/
papers/usenix03.pdf.gz.

Stillerman, M., Marceau, C. and Stillman, M., Intrusion detection for distributed ap-
plications. Communications of the ACM, 42,7(1999), pages 62—69.

Somayaji, A. B., Operating System Stability and Security through Process Homeosta-
sis. Ph.D. thesis, University of New Mexico, 2002.

Sun Microsystems, SunSHIELD Basic Security Module Guide. 1994. URL
http://docs.sun.com/app/docs/doc/801-6636/6110gctod?g=
BSM&a=v%iew.

Teng, H. S., Chen, K. and Lu, S. C., Adaptive real-time anomaly detection using in-
ductively generated sequential patterns. Proceedings of the 1990 IEEE Symposium on

31

[WDO01]

[WDDO00]

[WFP99]

[XDCO04]

[ZamO1]

Security and Privacy, 1990, pages 278-284, URL http://ieeexplore.ieee.
org/xpl/abs_free. jsp?arNumber=63857.

Wagner, D. and Dean, D., Intrusion detection via static analysis. Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE Computer Soci-
ety, 2001, pages 156-168, URL http://ieeexplore.ieee.org/xpl/abs_
free. jsp?arNumber=924296.

Wespi, A., Dacier, M. and Debar, H., Intrusion detection using variable-length
audit trail patterns. Proceedings of the the 3rd International Symposium on
Recent Advances in Intrusion Detection RAID’00. LNCS 1907. Springer-Verlag,
2000, pages 110-129, URL http://www.cs.fit.edu/~pkc/id/related/
wespi-raid00.pdf.

Warrender, C., Forrest, S. and Pearlmutter, B. A., Detecting intrusions using system
calls: Alternative data models. Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society, 1999, pages 133-145, URL http://
citeseer.ist.psu.edu/article/warrender98detecting.html%.

Xu, H., Du, W. and Chapin, S. J., Context sensitive anomaly monitoring of process
control flow to detect mimicry attacks and impossible paths. Proceedings of the 7th
International Symposium on Recent Advances in Intrusion Detection, RAID’04. LNCS
3224. Springer-Verlag, 2004, pages 21-38, URL http://citeseer.ist.psu.
edu/702165.html.

Zamboni, D., Using Internal Sensors for Computer Intrusion Detection. Ph.D. thesis,
Purdue University, 2001. URL http://www.cerias.purdue.edu/homes/
zamboni/pubs/thesis-techreport.pdf.

32

