
Efficient Large-Scale Graph Processing
on Single Computer

Eiko Yoneki
eiko.yoneki@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~ey204

Systems Research Group
University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

 Popular solution for massive data processing

 scale and build distribution, combine theoretically unlimited

number of machines in single distributed storage

 Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)

1

Maximising Parallelism: Data Parallel

 Distributed computing infrastructure with partitioned data
(e.g. Word count with MapReduce)

2

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

3

 Massive data forms complex networks: key to solve
problems in diverse fields

 Storage is available:1 trillion edges x 16 bytes per edge
= 16 TB storage

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

4

Everything will be connected in Future!

6

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents

Airline Graphs

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Social media data

Web 1.4B
pages(6.6B
links)

IoT

5

Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are
often based on exploring graph structure leading to a large
access rate to computation ratio

6

1. Graph algorithms (BFS, Shortest path)

2. Query on connectivity (Triangle, pattern)

3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD)

Data-Parallel vs Graph-Parallel

 Graph Parallel (Graph Specific Data Parallel)
 BSP: Pregel, Giraph, Graphlab
 Unifying graph- & data-parallel: GraphX/Spark
 Data-flow programming: NAIAD, DryadLINQ

7

Bulk Synchronous Parallel Model

 Computation is sequence of iterations
 Each iteration is called a super-step
 Computation at each vertex in parallel

8

Data-Parallel vs Graph-Parallel

 Graph Parallel (Graph Specific Data Parallel)
 BSP: Pregel, Giraph, Graphlab
 Unifying graph- & data-parallel: GraphX/Spark
 Data-flow programming: NAIAD, DryadLINQ

9

Are Large Clusters and Many-cores Efficient?

 Brute force approach efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters

10

Are Large Clusters and Many-cores Efficient?

 Brute force approach efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters

11

Do we really need large clusters?

 Laptops are sufficient?

from Frank McSherry HotOS 2015 12

Fixed-point iteration:
All vertices active in
each iteration
(50% computation, 50%

communication)

Traversal: Search
proceeds in a frontier
(90% computation, 10%

communication)

Do we really need large clusters?

 PTDL (Triangle Listing): More cores/nodes increases overhead

from Frank McSherry HotOS 2015 13

Bring Massive Data Processing to Single Computers

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

HD/SSD
(External Memory)

 Use of powerful HW/SW parallelism
 SSDs as external memory

 CPU/GPU integrated heterogeneous many core architecture

 Open up massive graph processing to everyone

Parallelism
Here

CPU
+ multiple GPU

Clusters
15

Amdahl's
law

14

Storage Centric View

 Lot of work on computation

 Little attention to storage
 Store LARGE amount of graph structure data (majority of data is edges)

 Efficiently move it to computation (algorithm)

Potential solutions:

 Cost effective but efficient storage
 Move to SSDs (or HD) from RAM

 Reduce latency
 Runtime prefetching

 Streaming (edge centric approach)

 Reduce storage requirements
 Compressed Adjacency Lists

15

Vertex/Edge Centric Access

16

 Vertex centric access is random

 Edge centric access is more sequential

Vertices

Edges
Sequential

Random

Vertices

Edges

Sequential

Random

PrefEdge and X-Stream

17

 Storage-Centric: 2 different ways to access graph
structured data

 Batch processing of large graphs on single machine

 Establish useful limits for single machine processing

 Directly address storage bottlenecks

PrefEdge: Accelerates random access using a novel
prefetcher by Cambridge

X-Stream: Sequentially streaming a large set of (potentially
unrelated) edges by EPFL

PrefEdge

18

 Simplest possible abstraction
 One machine (low cost)

 Most of graph on SSD (low cost)

 Synchronous I/O

 Traverse graph (BFS, SSSP)

 Conventional wisdom is that this will never work
 Graphs have no locality

 Every traversed edge will miss the main memory cache

 Single threaded synchronous I/O will kill performance

SSD Prefetcher for Large-Scale Graph Traversal

 Perform asynchronous prefetching: Mitigates I/O latency and
maximises throughput  allow graph traversal to keep queue

sufficiently deep

 Decouple CPU and I/O-level parallelism (advantage of embedded
SSD parallelism): can compete with multi-threaded approach

19

PrefEdge: Comparison with Multi-threading

 Faster than multi-threaded implementation
 With only 2GB RAM, no multi-threading in graph computation,

simple programming, use of embedded parallelism in SSD
random access

20

With Twitter Data (~40M vertices)

21

Random Access vs Sequential Access

22

Random access is inefficient for storage

 Disk (500X slower)

 SSD (20X slower)

 RAM (2X slower)

X-Stream: Streaming Partitions

23

 Sequential access to any medium
 Eliminate random access to edges
 Ensure randomly accessed vertices held in cache
 Stream Partition

 A subset of the vertices that fits in RAM
 All edges whose source vertex is in that subset

 Reorganize computation to stream edges

Vertices Edges

Random

Sequential

On-disk
graphs

Comparison with Ligra (HPC memory based)

24

Pros and Cons

25

 PrefEdge clearly provides impressive speedup

 Improving inefficiency of random access by prefetching

 Limitation
 Focus on traversal based graph computation

 X-Stream takes advantage of sequential access
 Single building block of streaming partitions

 Works well with RAM, SSD, and Magnetic Disk

 Limitation

 A large number of potentially unrelated edges

Hybrid Approach

26

 Allow streaming partitions to sort their associated edges
and access them randomly

 Starting point is X-stream style streaming

 Low utilisation of edges due to few active vertices triggers index building

 Switch to PrefEdge style prefetching after index is available

 PrefEdge mitigates limitations of X-Stream
 Wasted edges due to inactive vertices

 Particular problem for high diameter graphs

Number of Active Vertices

27

Algorithm Comparison

28

 Traversal algorithms: good with RAE (Random
Access Edges) while PR (fix-point iteration type
of operation) with SAE (Sequential Access Edges)
more efficient

RMAT: Scale-Free

synthetic Graphs

BFS PR

Real World Graph

29

Graph Processing and GPU

30

Challenge GPU Constraints

Large-scale data • Limited capacity local memory
• DMA bottleneck

Irregular programs • SIMD (Single instruction, multiple
data) thread model

Skewed workload • Thread divergence = serialisation

 These factors mean that the correct platform to use may be both
program- and data-dependent.

Heterogeneous Operation

 Existing heterogeneous operation over CPU/GPU

31

Integrated GPU

32

Dynamic Scheduling to CPU/GPU

 Work-list abstraction ensures only active tasks are
dispatched to the GPU

 Use graph topology information (e.g. degree) for scheduling

33

Preliminary Results

 Hybrid vs CPU-only: ~7x faster
 Hybrid vs GPU-only: 1.2 x faster

 Stable across synthetic and real data,
with multiple queries running
concurrently

 Optimisation to improve memory
access

 Auto adjustment of scheduling criteria

34

Conclusions

 Algorithms, S/W and H/W for mainstream parallel approaches are
not effective for more complex structured data from real world

 Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
coordination - no burden for algorithm implementation itself

 Massive graph processing on single computer

 Exploit different parallelism at different scales

 Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for
computer systems

35

Conclusions

 Algorithms, S/W and H/W for mainstream parallel approaches are
not effective for more complex structured data from real world

 Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
coordination - no burden for algorithm implementation itself

 Massive graph processing on single computer

 Exploit different parallelism at different scales

 Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for
computer systems

37

Thank you!

