

Efficient Large-Scale Graph Processing on Single Computer

Eiko Yoneki eiko.yoneki@cl.cam.ac.uk http://www.cl.cam.ac.uk/~ey204

Systems Research Group University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

- Popular solution for massive data processing
 → scale and build distribution, combine theoretically unlimited number of machines in single distributed storage
- Scale-up: add resources to single node (many cores) in system (e.g. HPC)
- Scale-out: add more nodes to system (e.g. Amazon EC2)

Maximising Parallelism: Data Parallel

 Distributed computing infrastructure with partitioned data (e.g. Word count with MapReduce)

Emerging Massive-Scale Graph Data

- Massive data forms complex networks: key to solve problems in diverse fields
- Storage is available:1 trillion edges x 16 bytes per edge
 = 16 TB storage

Emerging Massive-Scale Graph Data

Everything will be connected in Future!

Graph Computation Challenges

- 1. Graph algorithms (BFS, Shortest path)
- 2. Query on connectivity (Triangle, pattern)
- 3. Structure (Community, Centrality)
- 4. ML & Optimisation (Regression, SGD)
- Data driven computation: dictated by graph's structure and parallelism based on partitioning is difficult
- Poor locality: graph can represent relationships between irregular entries and access patterns tend to have little locality
- High data access to computation ratio: graph algorithms are often based on exploring graph structure leading to a large access rate to computation ratio

Data-Parallel vs Graph-Parallel

- Graph Parallel (Graph Specific Data Parallel)
 - BSP: Pregel, Giraph, Graphlab
 - Unifying graph- & data-parallel: GraphX/Spark
 - Data-flow programming: NAIAD, DryadLINQ

Bulk Synchronous Parallel Model

- Computation is sequence of iterations
- Each iteration is called a super-step
- Computation at each vertex in parallel

Data-Parallel vs Graph-Parallel

- Graph Parallel (Graph Specific Data Parallel)
 - BSP: Pregel, Giraph, Graphlab
 - Unifying graph- & data-parallel: GraphX/Spark
 - Data-flow programming: NAIAD, DryadLINQ

Are Large Clusters and Many-cores Efficient?

- Brute force approach efficiently works?
 - Increase of number of cores (including use of GPU)
 - Increase of nodes in clusters

Big Iron

Large Cluster

Are Large Clusters and Many-cores Efficient?

- Brute force approach efficiently works?
 - Increase
 - Increase

Do we really need large clusters?

Laptops are sufficient?

Twenty pagerank iterations]	
System	cores	twitter_rv	uk_2007_05
Spark	128	857s	1759s
Giraph	128	596s	1235s
GraphLab	128	249s	833s
GraphX	128	419s	462s
Single thread	1	300s	651s

Fixed-point iteration: All vertices active in each iteration (50% computation, 50% communication)

Label pro	opagation to fix	ed-point (graph co	nnectivity)
System	cores	twitter_rv	uk_2007_05
Spark	128	1784s	8000s-
Giraph	128	200s	8000s+
GraphLab	128	242s	714:
GraphX	128	251s	800:
Single thread	1	153s	4179

Traversal: Search proceeds in a frontier (90% computation, 10% communication)

Do we really need large clusters?

• PTDL (Triangle Listing): More cores/nodes increases overhead

PDTL in Local Multicore: Total Time

PDTL in EC2: Total Time

Bring Massive Data Processing to Single Computers

- Use of powerful HW/SW parallelism
 - SSDs as external memory
 - CPU/GPU integrated heterogeneous many core architecture
- Open up massive graph processing to everyone

Storage Centric View

- Lot of work on computation
- Little attention to storage
 - Store LARGE amount of graph structure data (majority of data is edges)
 - Efficiently move it to computation (algorithm)

Potential solutions:

- Cost effective but efficient storage
 - Move to SSDs (or HD) from RAM
- Reduce latency
 - Runtime prefetching
 - Streaming (edge centric approach)
- Reduce storage requirements
 - Compressed Adjacency Lists

Vertex/Edge Centric Access

- Vertex centric access is random
- Edge centric access is more sequential

PrefEdge and X-Stream

Storage-Centric: 2 different ways to access graph structured data

- Batch processing of large graphs on single machine
- Establish useful limits for single machine processing
- Directly address storage bottlenecks

PrefEdge: Accelerates random access using a novel prefetcher by Cambridge

X-Stream: Sequentially streaming a large set of (potentially unrelated) edges by EPFL

PrefEdge

- Simplest possible abstraction
 - One machine (low cost)
 - Most of graph on SSD (low cost)
 - Synchronous I/O

- Conventional wisdom is that this will never work
 - Graphs have no locality
 - Every traversed edge will miss the main memory cache
 - Single threaded synchronous I/O will kill performance

SSD Prefetcher for Large-Scale Graph Traversal

- Perform asynchronous prefetching: Mitigates I/O latency and maximises throughput → allow graph traversal to keep queue sufficiently deep
- Decouple CPU and I/O-level parallelism (advantage of embedded SSD parallelism): can compete with multi-threaded approach

PrefEdge: Comparison with Multi-threading

- Faster than multi-threaded implementation
- With only 2GB RAM, no multi-threading in graph computation, simple programming, use of embedded parallelism in SSD random access

With Twitter Data (~40M vertices)

Algorithm	Baseline / PrefEdge	PrefEdge / In-memory
WCC	5.67x	2.74x
SSSP	10.10x	4.82x
PR	2.29x	1.11x
SCC	6.63x	2.11x
K-CORES	5.47x	1.42x

Random Access vs Sequential Access

Random access is inefficient for storage

- Disk (500X slower)
- SSD (20X slower)
- RAM (2X slower)

X-Stream: Streaming Partitions

- Sequential access to any medium
- Eliminate random access to edges
- Ensure randomly accessed vertices held in cache
- Stream Partition
 - A subset of the vertices that fits in RAM
 - All edges whose source vertex is in that subset
- Reorganize computation to stream edges

Comparison with Ligra (HPC memory based)

BFS

Pros and Cons

- PrefEdge clearly provides impressive speedup
 - Improving inefficiency of random access by prefetching
 - Limitation
 - Focus on traversal based graph computation
- X-Stream takes advantage of sequential access
 - Single building block of streaming partitions
 - Works well with RAM, SSD, and Magnetic Disk
 - Limitation
 - A large number of potentially unrelated edges

Hybrid Approach

- Allow streaming partitions to sort their associated edges and access them randomly
 - Starting point is X-stream style streaming
 - Low utilisation of edges due to few active vertices triggers index building
 - Switch to PrefEdge style prefetching after index is available
- PrefEdge mitigates limitations of X-Stream
 - Wasted edges due to inactive vertices
 - Particular problem for high diameter graphs

Number of Active Vertices

Algorithm Comparison

 Traversal algorithms: good with RAE (Random Access Edges) while PR (fix-point iteration type of operation) with SAE (Sequential Access Edges) more efficient

Real World Graph

29

Graph Processing and GPU

Challenge	GPU Constraints
Large-scale data	Limited capacity local memoryDMA bottleneck
Irregular programs	• SIMD (<i>Single instruction, multiple data</i>) thread model
Skewed workload	 Thread divergence = serialisation

 These factors mean that the correct platform to use may be both program- and data-dependent.

Heterogeneous Operation

Existing heterogeneous operation over CPU/GPU

Integrated GPU

APU (Accelerated processing unit)

CPU Cores / GPU Cores

Shared RAM

Dynamic Scheduling to CPU/GPU

- Work-list abstraction ensures only active tasks are dispatched to the GPU
- Use graph topology information (e.g. degree) for scheduling

Preliminary Results

- Hybrid vs CPU-only: ~7x faster
- Hybrid vs GPU-only: 1.2 x faster
- Stable across synthetic and real data, with multiple queries running concurrently
- Optimisation to improve memory access
- Auto adjustment of scheduling criteria

Conclusions

- Algorithms, S/W and H/W for mainstream parallel approaches are not effective for more complex structured data from real world
- Data and algorithms dictate complex and irregular graph data processing: Utilise systems' parallelisms and resource coordination - no burden for algorithm implementation itself
- Massive graph processing on single computer
- Exploit different parallelism at different scales
- Current project: General auto-tuning and scheduling optimisation using structural Bayesian Optimisation for computer systems

Conclusions

- Algorithms, S/W and H/W for mainstream parallel approaches are not effective for more complex structured data from real world
- Data and algorithms dictate complex and irregular graph data processing: Utilise systems' parallelisms and resource coordination - no burden for algorithm implementation itself
- Massive graph processing on single computer
- Exploit different parallelism at different scales
- Current project: General auto-tuning and scheduling optimisation using structural Bayesian Optimisation for computer systems
 Thank you!

