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Massive Data: Scale-Up vs Scale-Out

= Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

= Scale-out: add more nodes to system (e.g. Amazon EC2)




Maimising Parallelism: Data Parallel

= Distributed computing infrastructure with partitioned data
(e.g. Word count with MapReduce)
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Emerging Massive-Scale Graph Data

= Massive data forms complex networks: key to solve
problems in diverse fields

= Storage is available:1 trillion edges x 16 bytes per edge
= 16 TB storage
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Everything will be connected in Future!




j Computation Challenges

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, pattern)
3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD) Yy

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

= Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

= High data access to computation ratio: graph algorithms are
often based on exploring graph structure leading to a large
access rate to computation ratio




Data-Parallel vs Graph-Parallel

= Graph Parallel (Graph Specific Data Parallel)
= BSP: Pregel, Giraph, Graphlab
= Unifying graph- & data-parallel: GraphX/Spark
= Data-flow programming: NAIAD, DryadLINQ

Data-Parallel
Table

Graph-Parallel
| Dependency Graph |




“ j Synchronous Parallel Model

= Computation is sequence of iterations
= Each iteration is called a super-step
= Computation at each vertex in parallel
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Data-Parallel vs Graph-Parallel

= Graph Parallel (Graph Specific Data Parallel)
= BSP: Pregel, Giraph, Graphlab
= Unifying graph- & data-parallel: GraphX/Spark
= Data-flow programming: NAIAD, DryadLINQ
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e Large Clusters and Many-cores Efficient?

= Brute force approach efficiently works?
= Increase of number of cores (including use of GPU)
= Increase of nodes in clusters

Big Iron Large Cluster
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v Large Clusters and Many-cores Efficient?

= Brute force approc
= [ncrease
= [ncreass

Avery Ching,

A billion edges isn’t coo’l. Facebook
You know what’s cool? @Strata, 2/13/2014

A TRILLION edges.

Yes, using 3940 machines
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| we really need large clusters?

= |Laptops are sufficient?

Twenty pagerank iterations

System cores twitter_rv uk_2007_05
Spark 128 857s 1759s
Giraph 128 5965 1235s
GraphLab 128 Caags ) 833s
GraphX 128 419s 462s)D
B [Single thread 1 C300sD E 651sD

Label propagation to fixed-point (graph connectivity)

System cores twitter_rv | uk_2007_05
Spark 128 1784s 8000s+
Giraph 128 200s 8000s+
GraphLab 128 242s 714s
GraphX 128 251s 800s
BB [Single thread 1 C153sD C417sD

from Frank McSherry HotOS 2015
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PTDL (Triangle

Do we really need large clusters?
_isting): More cores/nodes increases overhead
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Bring Massive Data Processing to Single Computers

= Use of powerful HW/SW parallelism
= SSDs as external memory
= CPU/GPU integrated heterogeneous many core architecture

= Open up massive graph processing to everyone
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‘Storage Centric View

= Lot of work on computation

= Little attention to storage
= Store LARGE amount of graph structure data (majority of data is edges)
= Efficiently move it to computation (algorithm)

Potential solutions:

= Cost effective but efficient storage
= Move to SSDs (or HD) from RAM

= Reduce latency
= Runtime prefetching
= Streaming (edge centric approach)

= Reduce storage requirements
= Compressed Adjacency Lists
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Vertex/ Edge Centric Access

= Vertex centric access is random
= Edge centric access is more sequential
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PrefEdge and X-Stream

= Storage-Centric: 2 different ways to access graph
structured data

= Batch processing of large graphs on single machine
= Establish useful limits for single machine processing
= Directly address storage bottlenecks

PrefEdge: Accelerates random access using a novel
prefetcher by Cambridge

X-Stream: Sequentially streaming a large set of (potentially
unrelated) edges by EPFL
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s Edae

= Simplest possible abstraction
= One machine (low cost) RAM
= Most of graph on SSD (low cost)
= Synchronous I/O

Program
state

CPU
Work list

+ edge
index

File

system
cache

— | L1

$33/byte
High Bandwidth CUVYI)/Vertices

= Traverse graph (BFS, SSSP)  towtaeney T EHEE

= Conventional wisdom is that this will never work
= Graphs have no locality
= Every traversed edge will miss the main memory cache
= Single threaded synchronous I/O will kill performance

SSD

| Edge data
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I O(|E|)/edges

Low Bandwidth
High Latency
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j Prefetcher for Large-Scale Graph Traversal

= Perform asynchronous prefetching: Mitigates I/O latency and
maximises throughput - allow graph traversal to keep queue
sufficiently deep

= Decouple CPU and I/O-level parallelism (advantage of embedded

SSD parallelism): can compete with multi-threaded approach
S5D

0SS Virtual Memory

fadvise
(non-blocking)

' Prefetch
Thread

read
(blocking)

Graph Algorithm
Computation Thread
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j Comparison with Multi-threading

= Faster than multi-threaded implementation

= With only 2GB RAM, no multi-threading in graph computation,

simple programming, use of embedded parallelism in SSD
random access
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" With Twitter Data (~40M vertices)

Baseline /| Prefedge /
Algorithm PrefEdge | In-memory
WCC 5.67X% 2.74X
SSSP 10.10x 4.82X
PR 2.29X 1.11x
SCC 6.63X 2.11x
K-CORES 5.47x% 1.42X
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"Random Access vs Sequential Access

Random access is inefficient for storage
= Disk (500X slower)
= SSD (20X slower)
= RAM (2X slower)
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= Sequential access to any medium

X-Stream: Streaming Partitions

Eliminate random access to edges

Ensure randomly accessed vertices held in cache

Stream Partition

= A subset of the vertices that fits in RAM

= All edges whose source vertex is in that subset

Reorganize computation to stream edges

Random
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j with Ligra (HPC memory based)

< Ligra <= X-Stream Ligra (setup)
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Pros and Cons

= PrefEdge clearly provides impressive speedup
= Improving inefficiency of random access by prefetching

= Limitation
= Focus on traversal based graph computation

= X-Stream takes advantage of sequential access
= Single building block of streaming partitions
= Works well with RAM, SSD, and Magnetic Disk
= Limitation
= A large number of potentially unrelated edges
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Hybrid Approach

= Allow streaming partitions to sort their associated edges
and access them randomly

= Starting point is X-stream style streaming
= |Low utilisation of edges due to few active vertices triggers index building
= Switch to PrefEdge style prefetching after index is available

= PrefEdge mitigates limitations of X-Stream
= Wasted edges due to inactive vertices
= Particular problem for high diameter graphs
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Number of Active Vertices
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Algorithm Comparison

= Traversal algorithms: good with RAE (Random
Access Edges) while PR (fix-point iteration type
of operation) with SAE (Sequential Access Edges)
more efficient
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Real World Graph
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Graph Processing and GPU

Challenge GPU Constraints

Large-scale data « Limited capacity local memory
« DMA bottleneck

Irregular programs -+ SIMD (Single instruction, multiple
data) thread model

Skewed workload « Thread divergence = serialisation

= These factors mean that the correct platform to use may be both
program- and data-dependent.
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Heterogeneous Operation

= Existing heterogeneous operation over CPU/GPU

Analyse
state

Decide on
platform

Process

Make data
available

 Temporally
partition the
program, e.g. Hong
et al. (2011)
Spatially partition
the data, e.g.
Medusa and Totem
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grated GPU

Host (CPU) Device (GPU)
CPU Cores | GPU Cores

Host RAM Device RAM

' )
APU (Accelerated processing unit)

CPU Cores / GPU Cores

Shared RAM
G J
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Dynamic Scheduling to CPU/GPU

= Work-list abstraction ensures only active tasks are

dispatched to the GPU
= Use graph topology information (e.g. degree) for scheduling

Graph Program (GPU)
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Preliminary Results

= Hybrid vs CPU-only: ~7x faster
= Hybrid vs GPU-only: 1.2 x faster

= Stable across synthetic and real data,
with multiple queries running
concurrently

= Optimisation to improve memory
access
= Auto adjustment of scheduling criteria

Query Execution Time (s)
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Conclusions

(= Algorithms, S/W and H/W for mainstream parallel approaches are\
not effective for more complex structured data from real world

= Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
\_ coordination - no burden for algorithm implementation itself /

= Massive graph processing on single computer
= Exploit different parallelism at different scales

= Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for
computer systems
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Conclusions

not effective for more complex structured data from real world

= Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
\_ coordination - no burden for algorithm implementation itself

(= Algorithms, S/W and H/W for mainstream parallel approaches are\

/

= Massive graph processing on single computer
= Exploit different parallelism at different scales

= Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for

computer systems Thank YOU!




