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Massive Data: Scale-Up vs Scale-Out

 Popular solution for massive data processing

 scale and build distribution, combine theoretically unlimited 

number of machines in single distributed storage 

 Scale-up: add resources to single node (many cores) in system 
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)
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Maximising Parallelism: Data Parallel 

 Distributed computing infrastructure with partitioned data
(e.g. Word count with MapReduce)
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Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents Airline Graphs

Social media data

Web 1.4B 
pages(6.6B 
links) 
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 Massive data forms complex networks: key to solve 
problems in diverse fields

 Storage is available:1 trillion edges x 16 bytes per edge 
= 16 TB storage
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Everything will be connected in Future!
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IoT
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Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and 
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular 
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are 
often based on exploring graph structure leading to a large 
access rate to computation ratio
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1. Graph algorithms (BFS, Shortest path)

2. Query on connectivity (Triangle, pattern)

3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD)



Data-Parallel vs Graph-Parallel

 Graph Parallel (Graph Specific Data Parallel)
 BSP: Pregel, Giraph, Graphlab
 Unifying graph- & data-parallel: GraphX/Spark
 Data-flow programming: NAIAD, DryadLINQ
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Bulk Synchronous Parallel Model

 Computation is sequence of iterations
 Each iteration is called a super-step
 Computation at each vertex in parallel
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Are Large Clusters and Many-cores Efficient?   

 Brute force approach efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters
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Do we really need large clusters?

 Laptops are sufficient?

from Frank McSherry HotOS 2015 12

Fixed-point iteration: 
All vertices active in 
each iteration
(50% computation, 50% 

communication)

Traversal: Search 
proceeds in a frontier
(90% computation, 10% 

communication)



Do we really need large clusters?

 PTDL (Triangle Listing): More cores/nodes increases overhead

from Frank McSherry HotOS 2015 13



Bring Massive Data Processing to Single Computers

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

HD/SSD 
(External Memory)

 Use of powerful HW/SW parallelism
 SSDs as external memory

 CPU/GPU integrated heterogeneous many core architecture

 Open up massive graph processing to everyone 

Parallelism
Here

CPU
+ multiple GPU 

Clusters
15

Amdahl's 
law
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Storage Centric View

 Lot of work on computation

 Little attention to storage
 Store LARGE amount of graph structure data (majority of data is edges)

 Efficiently move it to computation (algorithm)

Potential solutions:

 Cost effective but efficient storage
 Move to SSDs (or HD) from RAM

 Reduce latency 
 Runtime prefetching

 Streaming (edge centric approach)

 Reduce storage requirements
 Compressed Adjacency Lists
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Vertex/Edge Centric Access
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 Vertex centric access is random 

 Edge centric access is more sequential

Vertices

Edges
Sequential

Random

Vertices

Edges

Sequential

Random



PrefEdge and X-Stream
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 Storage-Centric: 2 different ways to access graph 
structured data

 Batch processing of large graphs on single machine

 Establish useful limits for single machine processing

 Directly address storage bottlenecks

PrefEdge: Accelerates random access using a novel 
prefetcher by Cambridge

X-Stream: Sequentially streaming a large set of (potentially 
unrelated) edges by EPFL



PrefEdge
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 Simplest possible abstraction
 One machine (low cost)

 Most of graph on SSD (low cost)

 Synchronous I/O

 Traverse graph (BFS, SSSP)

 Conventional wisdom is that this will never work
 Graphs have no locality

 Every traversed edge will miss the main memory cache

 Single threaded synchronous I/O will kill performance



SSD Prefetcher for Large-Scale Graph Traversal

 Perform asynchronous prefetching: Mitigates I/O latency and 
maximises throughput  allow graph traversal to keep queue 

sufficiently deep  

 Decouple CPU and I/O-level parallelism (advantage of embedded 
SSD parallelism): can compete with multi-threaded approach 
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PrefEdge: Comparison with Multi-threading

 Faster than multi-threaded implementation
 With only 2GB RAM, no multi-threading in graph computation, 

simple programming, use of embedded parallelism in SSD 
random access
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With Twitter Data (~40M vertices) 
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Random Access vs Sequential Access
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Random access is inefficient for storage

 Disk  (500X slower)

 SSD   (20X slower)

 RAM (2X slower)



X-Stream: Streaming Partitions
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 Sequential access to any medium 
 Eliminate random access to edges 
 Ensure randomly accessed vertices held in cache
 Stream Partition

 A subset of the vertices that fits in RAM
 All edges whose source vertex is in that subset

 Reorganize computation to stream edges

Vertices Edges

Random

Sequential

On-disk 
graphs 



Comparison with Ligra (HPC memory based)
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Pros and Cons
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 PrefEdge clearly provides impressive speedup

 Improving inefficiency of random access by prefetching

 Limitation
 Focus on traversal based graph computation 

 X-Stream takes advantage of sequential access
 Single building block of streaming partitions

 Works well with RAM, SSD, and Magnetic Disk

 Limitation

 A large number of potentially unrelated edges



Hybrid Approach
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 Allow streaming partitions to sort their associated edges 
and access them randomly

 Starting point is X-stream style streaming

 Low utilisation of edges due to few active vertices triggers index building

 Switch to PrefEdge style prefetching after index is available

 PrefEdge mitigates limitations of X-Stream 
 Wasted edges due to inactive vertices

 Particular problem for high diameter graphs



Number of Active Vertices

27



Algorithm Comparison
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 Traversal algorithms: good with RAE (Random 
Access Edges) while PR (fix-point iteration type 
of operation) with SAE (Sequential Access Edges) 
more efficient

RMAT: Scale-Free 

synthetic Graphs

BFS PR



Real World Graph
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Graph Processing and GPU
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Challenge GPU Constraints

Large-scale data • Limited capacity local memory
• DMA bottleneck

Irregular programs • SIMD (Single instruction, multiple 
data) thread model

Skewed workload • Thread divergence = serialisation

 These factors mean that the correct platform to use may be both 
program- and data-dependent.



Heterogeneous Operation

 Existing heterogeneous operation over CPU/GPU
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Integrated GPU
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Dynamic Scheduling to CPU/GPU

 Work-list abstraction ensures only active tasks are 
dispatched to the GPU

 Use graph topology information (e.g. degree) for scheduling
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Preliminary Results

 Hybrid vs CPU-only: ~7x faster
 Hybrid vs GPU-only: 1.2 x faster

 Stable across synthetic and real data,   
with multiple queries running   
concurrently

 Optimisation to improve memory  
access 

 Auto adjustment of scheduling criteria                                              
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Conclusions

 Algorithms, S/W and H/W for mainstream parallel approaches are 
not effective for more complex structured data from real world

 Data and algorithms dictate complex and irregular graph data 
processing: Utilise systems’ parallelisms and resource 
coordination - no burden for algorithm implementation itself

 Massive graph processing on single computer

 Exploit different parallelism at different scales

 Current project: General auto-tuning and scheduling 
optimisation using structural Bayesian Optimisation for 
computer systems

35



Conclusions

 Algorithms, S/W and H/W for mainstream parallel approaches are 
not effective for more complex structured data from real world

 Data and algorithms dictate complex and irregular graph data 
processing: Utilise systems’ parallelisms and resource 
coordination - no burden for algorithm implementation itself

 Massive graph processing on single computer

 Exploit different parallelism at different scales

 Current project: General auto-tuning and scheduling 
optimisation using structural Bayesian Optimisation for 
computer systems

37

Thank you!


