Efficient Large-Scale Graph Processing
on Single Computer

Eiko Yoneki
eiko.yoneki@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~ey204

Systems Research Group
University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

= Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

= Scale-out: add more nodes to system (e.g. Amazon EC2)

Maimising Parallelism: Data Parallel

= Distributed computing infrastructure with partitioned data
(e.g. Word count with MapReduce)

Data-Parallel
Table

- =3

Row

Emerging Massive-Scale Graph Data

= Massive data forms complex networks: key to solve
problems in diverse fields

= Storage is available:1 trillion edges x 16 bytes per edge
= 16 TB storage

‘ “/’7,4;3‘%/. Brain Networks:
e 100B neurons(700T
i links) requires 100s
GB memory

tumor specimens

s T
b - -

Gene expression

Bipartite graph of

phrases in data | RS
documents G 1 Airline Graphs
; Web 1.4B
Protein Interactions Social media data pages(6.6B
[genomebiology.com] links)

<
v o W . %

tumor specimens

Bipartite graph of
phrases in
documents

nnnnnnnn

Protein Interactions éfa%emedia data
[genomebiology.com] \k“ 6 o
o

Brain Networks:
100B neurons(700T

§ links) requires 100s

GB memory

Web 1.4B
pages(6.6B
links)

Airline Graphs

Everything will be connected in Future!

j Computation Challenges

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, pattern)
3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD) Yy

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

= Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

= High data access to computation ratio: graph algorithms are
often based on exploring graph structure leading to a large
access rate to computation ratio

Data-Parallel vs Graph-Parallel

= Graph Parallel (Graph Specific Data Parallel)
= BSP: Pregel, Giraph, Graphlab
= Unifying graph- & data-parallel: GraphX/Spark
= Data-flow programming: NAIAD, DryadLINQ

Data-Parallel
Table

Graph-Parallel
| Dependency Graph |

“ j Synchronous Parallel Model

= Computation is sequence of iterations
= Each iteration is called a super-step
= Computation at each vertex in parallel

uperstep i
(D
.1

\‘

uperstep X7

‘ Component
.1

: Component

o=

Component
3
~—

Data-Parallel vs Graph-Parallel

= Graph Parallel (Graph Specific Data Parallel)
= BSP: Pregel, Giraph, Graphlab
= Unifying graph- & data-parallel: GraphX/Spark
= Data-flow programming: NAIAD, DryadLINQ

Data-Parallel
Table

Graph-Parallel
| Dependency Graph |

e Large Clusters and Many-cores Efficient?

= Brute force approach efficiently works?
= Increase of number of cores (including use of GPU)
= Increase of nodes in clusters

Big Iron Large Cluster

10

v Large Clusters and Many-cores Efficient?

= Brute force approc
= [ncrease
= [ncreass

Avery Ching,

A billion edges isn’t coo’l. Facebook
You know what’s cool? @Strata, 2/13/2014

A TRILLION edges.

Yes, using 3940 machines

11

| we really need large clusters?

= |Laptops are sufficient?

Twenty pagerank iterations

System cores twitter_rv uk_2007_05
Spark 128 857s 1759s
Giraph 128 5965 1235s
GraphLab 128 Caags) 833s
GraphX 128 419s 462s)D
B [Single thread 1 C300sD E 651sD

Label propagation to fixed-point (graph connectivity)

System cores twitter_rv | uk_2007_05
Spark 128 1784s 8000s+
Giraph 128 200s 8000s+
GraphLab 128 242s 714s
GraphX 128 251s 800s
BB [Single thread 1 C153sD C417sD

from Frank McSherry HotOS 2015

-
All vertices active in
each iteration

kcommunication)

ixed-point iteration

(50% computation, 50%

A

J

fTraversaI: Search

communication)

\

proceeds in a frontier
(90% computation, 10%

12

PTDL (Triangle

Do we really need large clusters?
_isting): More cores/nodes increases overhead

4000 ! ! 100000—

H “Twil. er RMATERE
3500""\ B iEhds 280000 \ &8 rraThy
3000 \ RMATZE

_l.-g 250[} é EUDUU BEMATED
< 2000 o
L] L]
2 150 K 40000
100 20000}-g-—
500
U i i i i U H
1 2 q a8 16 24 1 2 4 a8 1le 24
Cores Cores
PDTL in Local Multicore: Total Time
3000 : 5000— :
P Tiitte) PP rMmaT26
2500 q (5 et 4000 \ &8 EMATZZ
1
420001 4 N A s
= S 3000 ¥
S 1500 S e~
& 10001t K 20004 | T—3
1 1
500 1000 i i __—_—"‘1—‘
! ! i I
o 1 2 4 8 16 322MN3NMNA4AN o 1M 2M 3N 4N
Cores / Nodes Modes

PDTL in EC2: Total Time

13

Bring Massive Data Processing to Single Computers

= Use of powerful HW/SW parallelism
= SSDs as external memory
= CPU/GPU integrated heterogeneous many core architecture

= Open up massive graph processing to everyone

CPU|CPU CPU| -

Multi-core

« Amdahl's

S S S S 3 law
° o ° Y o
= =

Cluéter

D/SSE

CPU '
+ multiple Gy (Externa I:glemory)

Clusters 14

‘Storage Centric View

= Lot of work on computation

= Little attention to storage
= Store LARGE amount of graph structure data (majority of data is edges)
= Efficiently move it to computation (algorithm)

Potential solutions:

= Cost effective but efficient storage
= Move to SSDs (or HD) from RAM

= Reduce latency
= Runtime prefetching
= Streaming (edge centric approach)

= Reduce storage requirements
= Compressed Adjacency Lists

15

Vertex/ Edge Centric Access

= Vertex centric access is random
= Edge centric access is more sequential

Vertices

v

—

Random

Sequential

e O
W —
Vertices
&
- /
Random E\dges
Seq
- /

\ 4
hential

16

PrefEdge and X-Stream

= Storage-Centric: 2 different ways to access graph
structured data

= Batch processing of large graphs on single machine
= Establish useful limits for single machine processing
= Directly address storage bottlenecks

PrefEdge: Accelerates random access using a novel
prefetcher by Cambridge

X-Stream: Sequentially streaming a large set of (potentially
unrelated) edges by EPFL

17

s Edae

= Simplest possible abstraction
= One machine (low cost) RAM
= Most of graph on SSD (low cost)
= Synchronous I/O

Program
state

CPU
Work list

+ edge
index

File

system
cache

— | L1

$33/byte
High Bandwidth CUVYI)/Vertices

= Traverse graph (BFS, SSSP) towtaeney T EHEE

= Conventional wisdom is that this will never work
= Graphs have no locality
= Every traversed edge will miss the main memory cache
= Single threaded synchronous I/O will kill performance

SSD

| Edge data

$/byte
I O(|E|)/edges

Low Bandwidth
High Latency

18

j Prefetcher for Large-Scale Graph Traversal

= Perform asynchronous prefetching: Mitigates I/O latency and
maximises throughput - allow graph traversal to keep queue
sufficiently deep

= Decouple CPU and I/O-level parallelism (advantage of embedded

SSD parallelism): can compete with multi-threaded approach
S5D

0SS Virtual Memory

fadvise
(non-blocking)

' Prefetch
Thread

read
(blocking)

Graph Algorithm
Computation Thread

19

j Comparison with Multi-threading

= Faster than multi-threaded implementation

= With only 2GB RAM, no multi-threading in graph computation,

simple programming, use of embedded parallelism in SSD
random access

FrefEdge M
3500 pr—1—— Multi-thread 128 {Hong) ——==a ~
Multi-thread 322 {Hong) EZE=T:
3000 pr—q——— Multi-thrggd 2 (Hong) 1
W \J’.
= 2500 |-
3
%2000 -
1
E
5
4

1500 |-——-

"r|— __‘f -
1000 |- k ' ;‘;'-.3;_:-::i—-
500 F— Tk 1— | —rr
;.-'{-E'J_‘ S I-ji":} . i |7
By B I'.'-ﬁ;""::; i
TW e SF
Graph Type (WCC)

0

20

" With Twitter Data (~40M vertices)

Baseline /| Prefedge /
Algorithm PrefEdge | In-memory
WCC 5.67X% 2.74X
SSSP 10.10x 4.82X
PR 2.29X 1.11x
SCC 6.63X 2.11x
K-CORES 5.47x% 1.42X

21

"Random Access vs Sequential Access

Random access is inefficient for storage
= Disk (500X slower)
= SSD (20X slower)
= RAM (2X slower)

22

= Sequential access to any medium

X-Stream: Streaming Partitions

Eliminate random access to edges

Ensure randomly accessed vertices held in cache

Stream Partition

= A subset of the vertices that fits in RAM

= All edges whose source vertex is in that subset

Reorganize computation to stream edges

Random
Vertices §<
\ <«

— Edges

Sequential

On-disk

graphs

23

j with Ligra (HPC memory based)

< Ligra <= X-Stream Ligra (setup)
1000.0
Al
g 100.0 ST L
§ B S
@ e Ao
E ———— -
[10.0 \\
1.0 —0
01
1 2 4 8 16
CPUs

24

Pros and Cons

= PrefEdge clearly provides impressive speedup
= Improving inefficiency of random access by prefetching

= Limitation
= Focus on traversal based graph computation

= X-Stream takes advantage of sequential access
= Single building block of streaming partitions
= Works well with RAM, SSD, and Magnetic Disk
= Limitation
= A large number of potentially unrelated edges

25

Hybrid Approach

= Allow streaming partitions to sort their associated edges
and access them randomly

= Starting point is X-stream style streaming
= |Low utilisation of edges due to few active vertices triggers index building
= Switch to PrefEdge style prefetching after index is available

= PrefEdge mitigates limitations of X-Stream
= Wasted edges due to inactive vertices
= Particular problem for high diameter graphs

26

Number of Active Vertices

?ﬂ ;;F__ﬂ:____*:___* _.':+='_:___:':+"_:__J.-_.,E
Eﬂ -.ﬁ.'-.. |
50 |

a0 L BFS —+

CC -«

30 j\ PR -
20

10 x\w

: __z

Iteratmﬂ

Active Vertices (million)

27

Algorithm Comparison

= Traversal algorithms: good with RAE (Random
Access Edges) while PR (fix-point iteration type
of operation) with SAE (Sequential Access Edges)
more efficient

4000

3500 | SAE = | | =
[RAE mm 1 5000 | RAE mm
3000 | HAE ez . HAE &=
@ 2500 | | = 4000 |
d B i
2 2000 e 3000 |]
= 1500 | 1 F 2000 :
1000 | 1 000
A1 IR Y
’ ’ I
Y s

J?frf? "5:'% J%Ez’? RMAT: Scale-Free 2

~ ~ A~ , ~
=, ER 2 synthetic Graphs 2 2y 2

BFS PR

28

Real World Graph

3000 == 4000 = 100 SRS
2500 - RAE mm | 3500 - RAE mm 1 | RAE mm
HAE 2000 | HAE B3 = 1 80 I HAE =
20 1 w2500 | 1 = 80
g 1500 ¢ - g 2000 - 2 ol
= 1':":":' B i = 15'3':' B 7 [
1000 -
500 + - co0 | é] 20 | |_E
L
0 0 0
% % % % % % % % % ‘T‘Ta 3
& o b & c @ r:*
Twitter. BES SK-20035. BES Netflix. BES
3000 : 4000 : 100 :
SAE 3 SAE 3 SAE 3
2500 - FAE mm] 3500 - RAE mm 1 go | RAE mm
HAE aoo0 | HAE - I HAE
@ 0007 1 @ 2800} 1 & ol
2] - - 2] - - [1]
2 1500 2 200 gL
~ 1000 F i ~ 1500 . ~ I
1000 -
i 1 20
(ﬁ i il e ot '
0
2 % % % 2 % %, S v, Sy % %
= w o = w o = @ o

Twitter PR

SK-2005 PR

Netflix PR

29

Graph Processing and GPU

Challenge GPU Constraints

Large-scale data « Limited capacity local memory
« DMA bottleneck

Irregular programs -+ SIMD (Single instruction, multiple
data) thread model

Skewed workload « Thread divergence = serialisation

= These factors mean that the correct platform to use may be both
program- and data-dependent.

30

Heterogeneous Operation

= Existing heterogeneous operation over CPU/GPU

Analyse
state

Decide on
platform

Process

Make data
available

 Temporally
partition the
program, e.g. Hong
et al. (2011)
Spatially partition
the data, e.g.
Medusa and Totem

31

grated GPU

Host (CPU) Device (GPU)
CPU Cores | GPU Cores

Host RAM Device RAM

')
APU (Accelerated processing unit)

CPU Cores / GPU Cores

Shared RAM
G J

32

Dynamic Scheduling to CPU/GPU

= Work-list abstraction ensures only active tasks are

dispatched to the GPU
= Use graph topology information (e.g. degree) for scheduling

Graph Program (GPU)

¥ + 1 + +

™

[Shared Work List

Graph Program (CPU)

el
\

N

Graph Layout

TN

Klows uiepy

S

33

Preliminary Results

= Hybrid vs CPU-only: ~7x faster
= Hybrid vs GPU-only: 1.2 x faster

= Stable across synthetic and real data,
with multiple queries running
concurrently

= Optimisation to improve memory
access
= Auto adjustment of scheduling criteria

Query Execution Time (s)

180
160
140

120
100 ¢
80
60 |
40
20 f

CPU-Only O
| GPU-Only ==
Hybrid =

%

I

b

ER27

RM27
Dataset

W

34

Conclusions

(= Algorithms, S/W and H/W for mainstream parallel approaches are\
not effective for more complex structured data from real world

= Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
_ coordination - no burden for algorithm implementation itself /

= Massive graph processing on single computer
= Exploit different parallelism at different scales

= Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for
computer systems

35

Conclusions

not effective for more complex structured data from real world

= Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
_ coordination - no burden for algorithm implementation itself

(= Algorithms, S/W and H/W for mainstream parallel approaches are\

/

= Massive graph processing on single computer
= Exploit different parallelism at different scales

= Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for

computer systems Thank YOU!

