
Efficient Large-Scale Graph Processing
on Single Computer

Eiko Yoneki
eiko.yoneki@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~ey204

Systems Research Group
University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

 Popular solution for massive data processing

 scale and build distribution, combine theoretically unlimited

number of machines in single distributed storage

 Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)

1

Maximising Parallelism: Data Parallel

 Distributed computing infrastructure with partitioned data
(e.g. Word count with MapReduce)

2

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

3

 Massive data forms complex networks: key to solve
problems in diverse fields

 Storage is available:1 trillion edges x 16 bytes per edge
= 16 TB storage

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

4

Everything will be connected in Future!

6

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents

Airline Graphs

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Social media data

Web 1.4B
pages(6.6B
links)

IoT

5

Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are
often based on exploring graph structure leading to a large
access rate to computation ratio

6

1. Graph algorithms (BFS, Shortest path)

2. Query on connectivity (Triangle, pattern)

3. Structure (Community, Centrality)

4. ML & Optimisation (Regression, SGD)

Data-Parallel vs Graph-Parallel

 Graph Parallel (Graph Specific Data Parallel)
 BSP: Pregel, Giraph, Graphlab
 Unifying graph- & data-parallel: GraphX/Spark
 Data-flow programming: NAIAD, DryadLINQ

7

Bulk Synchronous Parallel Model

 Computation is sequence of iterations
 Each iteration is called a super-step
 Computation at each vertex in parallel

8

Data-Parallel vs Graph-Parallel

 Graph Parallel (Graph Specific Data Parallel)
 BSP: Pregel, Giraph, Graphlab
 Unifying graph- & data-parallel: GraphX/Spark
 Data-flow programming: NAIAD, DryadLINQ

9

Are Large Clusters and Many-cores Efficient?

 Brute force approach efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters

10

Are Large Clusters and Many-cores Efficient?

 Brute force approach efficiently works?

 Increase of number of cores (including use of GPU)

 Increase of nodes in clusters

11

Do we really need large clusters?

 Laptops are sufficient?

from Frank McSherry HotOS 2015 12

Fixed-point iteration:
All vertices active in
each iteration
(50% computation, 50%

communication)

Traversal: Search
proceeds in a frontier
(90% computation, 10%

communication)

Do we really need large clusters?

 PTDL (Triangle Listing): More cores/nodes increases overhead

from Frank McSherry HotOS 2015 13

Bring Massive Data Processing to Single Computers

CPU CPU CPU CPU…=

Cluster

Multi-core

Single Computer

HD/SSD
(External Memory)

 Use of powerful HW/SW parallelism
 SSDs as external memory

 CPU/GPU integrated heterogeneous many core architecture

 Open up massive graph processing to everyone

Parallelism
Here

CPU
+ multiple GPU

Clusters
15

Amdahl's
law

14

Storage Centric View

 Lot of work on computation

 Little attention to storage
 Store LARGE amount of graph structure data (majority of data is edges)

 Efficiently move it to computation (algorithm)

Potential solutions:

 Cost effective but efficient storage
 Move to SSDs (or HD) from RAM

 Reduce latency
 Runtime prefetching

 Streaming (edge centric approach)

 Reduce storage requirements
 Compressed Adjacency Lists

15

Vertex/Edge Centric Access

16

 Vertex centric access is random

 Edge centric access is more sequential

Vertices

Edges
Sequential

Random

Vertices

Edges

Sequential

Random

PrefEdge and X-Stream

17

 Storage-Centric: 2 different ways to access graph
structured data

 Batch processing of large graphs on single machine

 Establish useful limits for single machine processing

 Directly address storage bottlenecks

PrefEdge: Accelerates random access using a novel
prefetcher by Cambridge

X-Stream: Sequentially streaming a large set of (potentially
unrelated) edges by EPFL

PrefEdge

18

 Simplest possible abstraction
 One machine (low cost)

 Most of graph on SSD (low cost)

 Synchronous I/O

 Traverse graph (BFS, SSSP)

 Conventional wisdom is that this will never work
 Graphs have no locality

 Every traversed edge will miss the main memory cache

 Single threaded synchronous I/O will kill performance

SSD Prefetcher for Large-Scale Graph Traversal

 Perform asynchronous prefetching: Mitigates I/O latency and
maximises throughput allow graph traversal to keep queue

sufficiently deep

 Decouple CPU and I/O-level parallelism (advantage of embedded
SSD parallelism): can compete with multi-threaded approach

19

PrefEdge: Comparison with Multi-threading

 Faster than multi-threaded implementation
 With only 2GB RAM, no multi-threading in graph computation,

simple programming, use of embedded parallelism in SSD
random access

20

With Twitter Data (~40M vertices)

21

Random Access vs Sequential Access

22

Random access is inefficient for storage

 Disk (500X slower)

 SSD (20X slower)

 RAM (2X slower)

X-Stream: Streaming Partitions

23

 Sequential access to any medium
 Eliminate random access to edges
 Ensure randomly accessed vertices held in cache
 Stream Partition

 A subset of the vertices that fits in RAM
 All edges whose source vertex is in that subset

 Reorganize computation to stream edges

Vertices Edges

Random

Sequential

On-disk
graphs

Comparison with Ligra (HPC memory based)

24

Pros and Cons

25

 PrefEdge clearly provides impressive speedup

 Improving inefficiency of random access by prefetching

 Limitation
 Focus on traversal based graph computation

 X-Stream takes advantage of sequential access
 Single building block of streaming partitions

 Works well with RAM, SSD, and Magnetic Disk

 Limitation

 A large number of potentially unrelated edges

Hybrid Approach

26

 Allow streaming partitions to sort their associated edges
and access them randomly

 Starting point is X-stream style streaming

 Low utilisation of edges due to few active vertices triggers index building

 Switch to PrefEdge style prefetching after index is available

 PrefEdge mitigates limitations of X-Stream
 Wasted edges due to inactive vertices

 Particular problem for high diameter graphs

Number of Active Vertices

27

Algorithm Comparison

28

 Traversal algorithms: good with RAE (Random
Access Edges) while PR (fix-point iteration type
of operation) with SAE (Sequential Access Edges)
more efficient

RMAT: Scale-Free

synthetic Graphs

BFS PR

Real World Graph

29

Graph Processing and GPU

30

Challenge GPU Constraints

Large-scale data • Limited capacity local memory
• DMA bottleneck

Irregular programs • SIMD (Single instruction, multiple
data) thread model

Skewed workload • Thread divergence = serialisation

 These factors mean that the correct platform to use may be both
program- and data-dependent.

Heterogeneous Operation

 Existing heterogeneous operation over CPU/GPU

31

Integrated GPU

32

Dynamic Scheduling to CPU/GPU

 Work-list abstraction ensures only active tasks are
dispatched to the GPU

 Use graph topology information (e.g. degree) for scheduling

33

Preliminary Results

 Hybrid vs CPU-only: ~7x faster
 Hybrid vs GPU-only: 1.2 x faster

 Stable across synthetic and real data,
with multiple queries running
concurrently

 Optimisation to improve memory
access

 Auto adjustment of scheduling criteria

34

Conclusions

 Algorithms, S/W and H/W for mainstream parallel approaches are
not effective for more complex structured data from real world

 Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
coordination - no burden for algorithm implementation itself

 Massive graph processing on single computer

 Exploit different parallelism at different scales

 Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for
computer systems

35

Conclusions

 Algorithms, S/W and H/W for mainstream parallel approaches are
not effective for more complex structured data from real world

 Data and algorithms dictate complex and irregular graph data
processing: Utilise systems’ parallelisms and resource
coordination - no burden for algorithm implementation itself

 Massive graph processing on single computer

 Exploit different parallelism at different scales

 Current project: General auto-tuning and scheduling
optimisation using structural Bayesian Optimisation for
computer systems

37

Thank you!

