

Context-aware Real-time Population Estimation for Metropolis

Fengli Xu

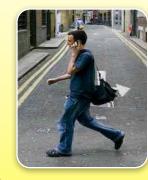
FIB, Tsinghua University

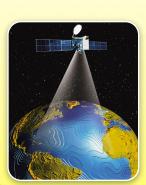
Outline

Significance

The pappulatiziems diseributide inatlies indurity lithes.day.

Problems of population census


- ■Very expensive
- ■High latency


It's not feasible to achieve real-time population distribution through census.

Limitations of previous attempts

Call Detail Records¹

- Low spatial resolution
- High latency(sparse records)

Remote Sensing Images²

- Require multiple datasets
- Can't track day-time variation

Deville, et al. Dynamic population mapping using mobile phone data[J]. PNAS, 2014.
 Stevens F R, et al. Disaggregating census data for population ...[J]. PloS one, 2015.

Limitations of previous attempts

Key points to address these problems

Appropriate datasets

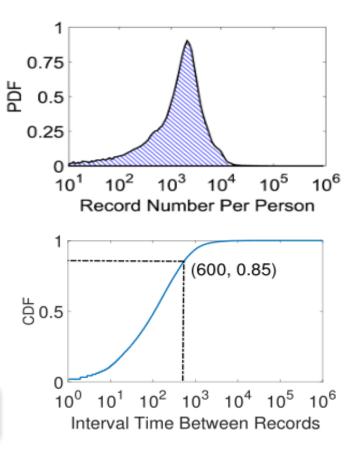
Advanced method

Cellular data access records

Device's ID||Start time||End time||BS ID||Location||Traffic volume

Contains 1.96 billion logs, total size over 300GB We extract the number of access of each base station at granularity of one hour.

Dataset features

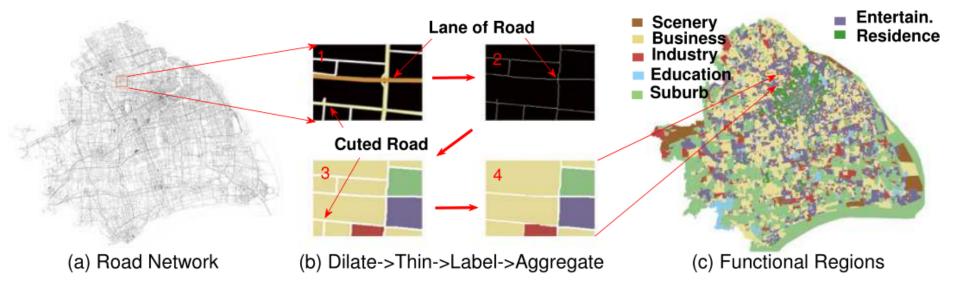

Extensive records

■ Most of users have more than 1,000 records in total.

High Sampling Rate

■ 85% of consecutive records happen in last than 10 Mins.

8.2 hours on average for call records¹


1. Gonzalez M C, et al. Understanding individual human mobility patterns[J]. Nature, 2008.

Visualization

Mobile users' behavior is Can we achieve context rawated to the their of the cities? Different

Context-aware segmentation

Road network forms a natural segmentation of urban environment.¹

1. Yuan J, et al. Discovering regions of different functions ..., SIGKDD, 2012.

Labeling the type of regions

POI — a specific point location of a certain function.

Region\POI	Resid.	Enter.	Busi.	Indus.	Edu.	Scen.	Sub.	
Residence	9.76	0.29	0.46	0.01	2:05	0.02	0.01	
Entertaiment	0.29	0.66	0.8	0.07	0.05	0.04	0	
Business		0.24	0. 3	0.14) 4	0.02	0.1	0
Industry	0.09	0.14	0.40	0.66	0.03	0.02	0.29	
Education	0.14	0.22	0.22	0.08	0.72	0.03	0.17	
Scenery spot	0.13	0.22	0.19	0.03	0.02	0.77	0.11	
Suburb	0.06	0.08	0.17	0.10	0.02	0.02	0.86	

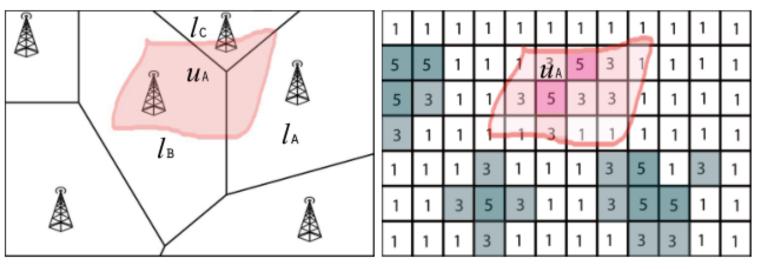
Table 5. The mean value of TF-IDF vectors for every functional type.

1. http://map.baidu.com/

Ground truth

*Worldpop project*¹:

Only provide night-time population.


 \blacksquare Accurate (State of the art).

■ High resolution 100mX100m.

1. http://www.worldpop.org.uk/.

Data fusion

(a) Mapping of mobile users

(b) Mapping of Worldpop

Mapping cellular data and worldpop data into segmented regions based on overlapping area.

Estimation model

Inspiration: superlinear effect has been discovered in many fields in urban area, which is considered to be the result of intensive cooperation.¹

$$\theta_{u} = \alpha(\rho_{u})^{\beta}$$

$$\ln \theta_{u} = \ln \alpha + \beta \ln \rho_{u}$$

$$\int_{\text{Number of Mobile User}}^{10^{5}} \int_{\text{Number of Mobile User}}^{10^{5}} \int_{\text{Number of Mobile User}}^{60} \int_{0}^{60} \int_$$

1. Bettencourt L M A. The origins of scaling in cities[J]. science, 2013.

Estimation model

Context-aware estimation model.

Users' behavior is spatial heterogeneous.

Estimation model

Expand the model into a dynamic one.

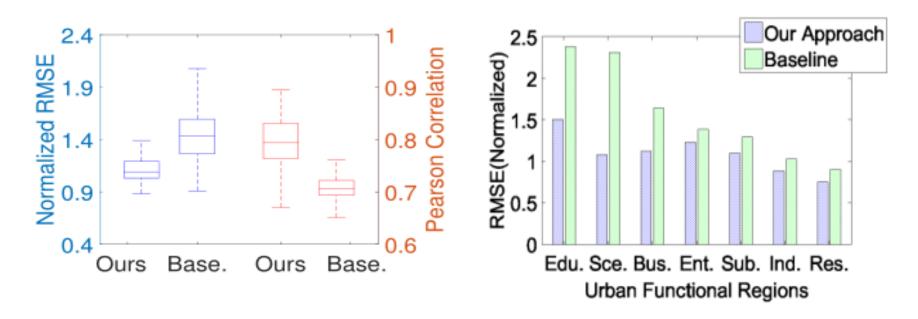
Method

$$R_{t} = \sum_{u} \theta_{u} / \sum_{u} \alpha_{j} (\rho_{u})^{\beta_{j}}$$
$$\alpha_{j}^{t} = R_{t} \times \alpha_{j}$$
$$\hat{\theta}_{u}^{t} = \alpha_{j}^{t} (\rho_{u}^{t})^{\beta_{j}}$$

 α_j^t is scaled to model the temporal inhomogeneity of users' behavior, while β_j is fixed to model spatial characteristics.

Evaluation method

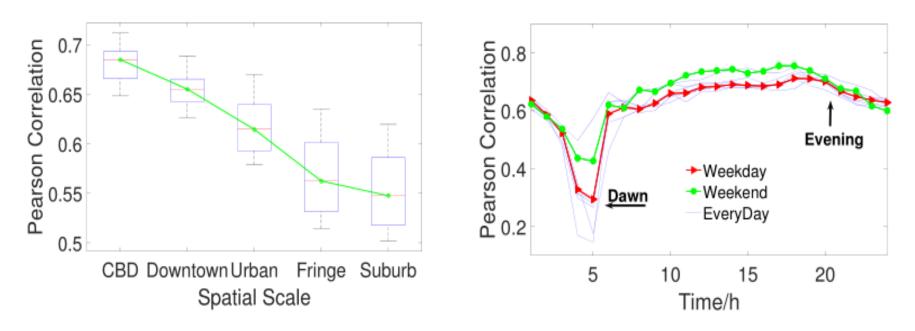
Evaluation datasets


- Worldpop dataset.
- Transportation dataset(10 million taxi trips, 1 month)¹.

Evaluation schemes

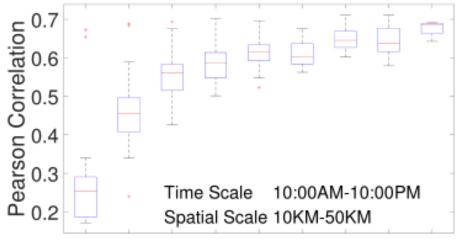
- Validate the night-time estimation with Worldpop data.
- Evaluate the real-time estimation with transportation dataset.

1. http://soda.datashanghai.gov.cn/.


Evaluating night-time estimation

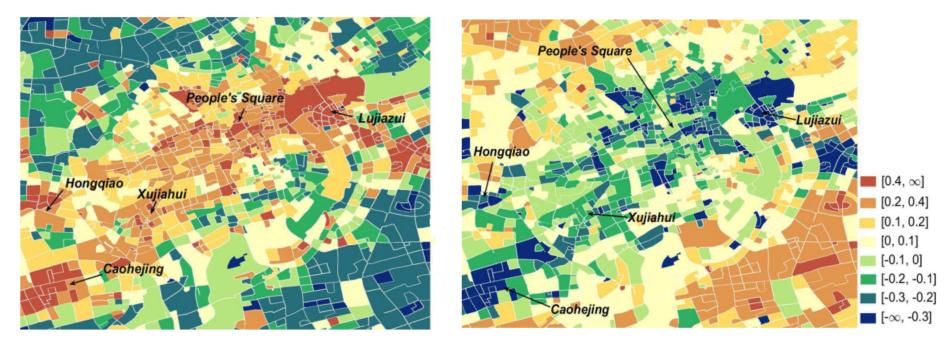
Reduce 22.5% estimation error, enhance 12.5% correlation.
 Performance gain is most significant in education, scenery

and business regions.


Evaluating dynamic estimation

- Estimated population has a high correlation with taxi data in central area of urban.
- The correlation is significantly higher during day-time.

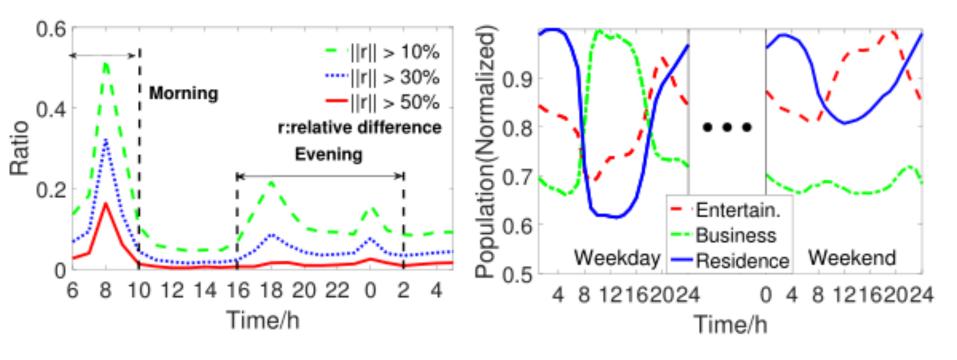
Evaluating dynamic estimation


The dynamic estimation matches well with taxi data.

0.06 0.18 0.29 0.41 0.53 0.65 0.77 0.88 Taxi Density(Normalized)

 The correlation monotonically increases with taxi density.
 Underlying reasons: taxi data can't capture population well when its density is low.

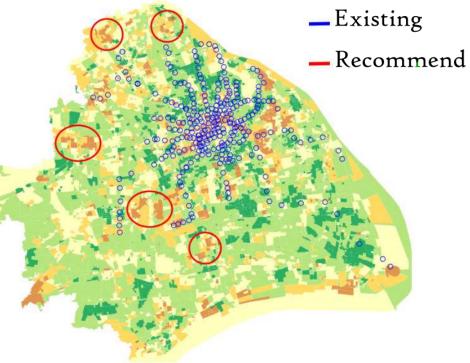
Application Observing urban dynamics


(a) Morning rush of downtown

(b) Evening rush of downtown

Simple visualization can quantify the phenomenon of morning and evening rush.

Application


Observing urban dynamics

Morning rush is more intensive than evening rush.
 Different functional regions have distinct population patterns.

Application Locate new subway station

- Warmer color represents higher variation of population.
- The regions with high population variation and no subway station are recommended identified.

Summary

- Appropriate data: collect 3G/LTE data access records of over 9,600 BSs with 150,000 subscribers for one month
- Advanced method: First estimation model to produce accurate real-time population estimation.
- Applications:
 - Visualizing and quantifying the dynamics of urban population.
 - Recommending locations for new subway stations.

Thanks you!

For Data Sample, Please Contact <u>xfl15@mails.tsinghua.edu.cn</u> <u>liyong07@tsinghua.edu.cn</u> FIB-LAB: <u>http://fi.ee.Tsinghua.edu.cn</u>