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Overview

§ Message-oriented communication over TCP is common
§ e.g., HTTP, memcached, CDNs

§ Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

§ Improve socket API?
§ Limited Improvements

§ User-space TCP/IP stack?
§ Maintaining and updating today’s 

complex TCP is hard
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Background

§ Message-oriented communication over TCP (e.g., HTTP, memcached)
§ Many concurrent connections
§ Small messages
§ High packet rates
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Message Latency Problem

§ Many requests are processed in 
each epoll_wait() cycle
§ New requests are queued in the kernel
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while (1) {
n = epoll_wait(fds);
for (i = 0; i < n; i++) {
read(fds[i], buf)
http_ok(buf);
write(fds[i], buf);

}
}
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§ Processing cost of TCP/IP protocol is not high

§ TCP/IP takes 1.48 us, out of 3.75 us server processing

§ ½ RTT reported by the client app is 9.75 us
§ The rest of 6 us come from minimum hard/soft indirection
§ netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?
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§ Processing cost of TCP/IP protocol is not high

§ TCP/IP takes 1.48 us, out of 3.75 us server processing

§ ½ RTT reported by the client app is 9.75 us
§ The rest of 6 us come from minimum hard/soft indirection (5.77 us)
§ netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?
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Takeaway

§ Conventional system introduces end-to-end latency of 10’s to 100’s of us
§ Results of processing delays

§ Socket API comes at a significant cost
§ read()/write()/epoll_wait() processing delay

§ Packet I/O is expensive

§ TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but 
need to improve API and packet I/O
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StackMap Approach

§ Dedicating a NIC to an 
application
§ Common for today’s 

high-performance systems
§ Similar to OS-bypass 

TCP/IPs
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StackMap Approach

§ Dedicating a NIC to an 
application
§ Common for today’s 

high-performance systems
§ Similar to OS-bypass 

TCP/IPs

§ TCP/IP stack in the kernel
§ State-of-the-art features
§ Active updates and maintenance
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StackMap Architecture
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1. Socket API for control path
§ socket(), bind(), listen()

2. Netmap API for data path 
(extended)

§ Syscall and packet I/O 
batching, zero copy, run-to-
completion

3. Persistent, fixed-size 
sk_buffs

§ Efficiently call into kernel TCP/IP

4. Static packet buffers and 
DMA mapping



StackMap Data Path API
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§ TX
§ Put data and fd in each slot
§ Advance the head pointer
§ Syscall to start network stack 

processing and transmission headtail

data, fd



StackMap Data Path API
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§ TX
§ Put data and fd in each slot
§ Advance the head pointer
§ Syscall to start network stack 

processing and transmission

§ RX
§ Kernel puts fd on each 

buffer
§ App can traverse a ring 

by descriptors
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§ Implementation
§ Linux 4.2 with 228 LoC changes
§ netmap with 56 LoC changes
§ A new kernel module with 2269 LoC

Experimental Results

§ Setup
§ Two machines with Xeon E5-2680 v2 (2.8 

-3.6 Ghz) Intel 82599 10 GbE NIC
§ Server: Linux  or StackMap
§ Client: Linux with WRK http benchmark 

tool or memaslap memcached benchmark 
tool
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Basic Performance

§ Simple HTTP server
§ Serving 1KB messages (single core)
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Memcached Performance

§ Serving 1KB messages
§ single core
§ Seastar is a fast user-space 

TCP/IP on on top of DPDK*

§ Serving 64B messages
§ 1-8 CPU cores
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*http://www.seastar-project.org/



Discussion

§ What makes StackMap fast?
§ Techniques used by OS-bypass TCP/IPs
§ Run-to-completion, static packet buffers, zero copy, syscall and I/O batching 

and new API

§ Limitations and Future Work
§ Safely sharing packet buffers
§ If kernel-owned buffers are modified by a misbehaving app, TCP might fall into 

inconsistent state
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Conclusion

§ Message-oriented communication over TCP

§ Kernel TCP/IP is fast
§ But socket API and packet I/O are slow

§ We can bring the most of techniques used by kernel-bypass stacks into the OS stack

§ Latency reduction by 4-80% (average) or 2-70% (99th%tile)

§ Throughput improvement by 4-391%
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