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Overview

= Message-oriented communication over TCP is common
= e.g., HTTP, memcached, CDNs

= Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

= I[mprove socket API?

= Limited Improvements StackMap achieves high performance
= User-space TCP/IP stack? - VX'th the OS TCP/IP
= Maintaining and updating today’s é mm Linux |
complex TCP is hard < 3 mm Seastar :

2 2L StackMa
&
2 1
= 0

1 20 40 60 80 100

Concurrent TCP Connections
2 I NetApp



Background

= Message-oriented communication over TCP (e.g., HTTP, memcached)

T wy

= Many concurrent connections o N
= Small messages J Y
= High packet rates |\ :
/
\

Request (e.g., HTTP GET) ~_1_-
Response (e.g., HTTP OK)
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Message Latency Problem

/while (1) { \

n = epoll_wait(fds);

for (i=0;i<n;i++){
read(fdsJ[i], buf)
http_ok(buf);
write(fds[i], buf);

}

\_ /

= Many requests are processed in
each epoll_wait() cycle

= New requests are queued in the kernel
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Where Could We Improve?

= Processing cost of TCP/IP protocol is not high
= TCP/IP takes 1.48 us, out of 3.75 us server processing

= %2 RTT reported by the client app is 9.75 us
= The rest of 6 us come from minimum hard/soft indirection
= netmap-based ping-pong (network stack bypass) reports 5.77 us

0.60 0.72 0.53
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I HTTP GET (96B) @ | Pkt 10 | TCP/IP |Socket/VFS|App ‘10_48

HTTP OK (127B) 0.43 0.76 0.22 (us)
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Where Could We Improve? epoll_wait() processing delay
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Takeaway

= Conventional system introduces end-to-end latency of 10’s to 100’s of us
= Results of processing delays

= Socket APl comes at a significant cost
= read()/write()/epoll_wait() processing delay

= Packet I/O is expensive

= TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but
need to improve API and packet I/O
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StackMap Approach

= Dedicating a NIC to an
application

= Common for today’s
high-performance systems

= Similar to OS-bypass
TCP/IPs

Regular app

StackMap app

Socket API

TCP/IP/Eth

Linux packet I/O

Device drivers

NIC

NIC
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StackMap Approach

= Dedicating a NIC to an
application

Regular app

StackMap app

= Common for today’s

Socket API

[
high-performance systems &
()
=X

= Similar to OS-bypass
TCP/IPs

TCP/IP/Eth

= TCP/IP stack in the kernel

Linux packet I/O

= State-of-the-art features

Device drivers

= Active updates and maintenance

NIC

NIC
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StackMap Architecture

1. SOCket AP for ContrOI path E Regular app StackMap app
= socket(), bind(), listen() 2 1 {}
2. Netmap API for data path [ ' 2.
(extended) GE, Socket API {}netmap framework
- Syscall and packet I/O < | TcPnpEth (3] Packet buffers
batching, zero copy, run-to-
completion Linux packet I/O {}
4,
3. Persistent, fixed-size Device drivers {}
sk _buffs NIC NIC
= Efficiently call into kernel TCP/IP

4. Static packet buffers and

DMA mapping 1 NetApp



StackMap Data Path API

= TX
= Put data and fd in each slot
= Advance the head pointer

= Syscall to start network stack
processing and transmission
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StackMap Data Path API

= TX
= Put data and fd in each slot data, fd
= Advance the head pointer ‘ ‘ ‘ ‘ ‘ ‘ /I/
= Syscall to start network stack _
processing and transmission tail = head
= RX
= Kernel puts fd on each  FD Array Scratchpad X 28 - 3\a
buffer ol - idX g O 2 3 4 5
. Qp% can traverse aring {1 9\32 ; fd4 [ fd3 | a4 | a4 | a5 | i3 |
escriptors vl ] tail
y P 21145 4: 0 data. fd head mmp ai
[5]] 4
[
[
[
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Experimental Results

* I[mplementation = Setup
= Linux 4.2 with 228 LoC changes = Two machines with Xeon E5-2680 v2 (2.8
m netmap with 56 LoC Changes -3.6 GhZ) Intel 82599 10 GbE NIC
= A new kernel module with 2269 LoC = Server: Linux or StackMap

= Client: Linux with WRK http benchmark
tool or memaslap memcached benchmark
tool
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Basic Performance

14

Simple HTTP server
= Serving 1KB messages (single core)
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Memcached Performance

= Serving 1KB messages
= single core

= Seastar is a fast user-space
TCP/IP on on top of DPDK*

= Serving 64B messages
= 1-8 CPU cores

*http://www.seastar-project.org/
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Discussion

= What makes StackMap fast?

= Techniques used by OS-bypass TCP/IPs

= Run-to-completion, static packet buffers, zero copy, syscall and I/O batching
and new AP

= Limitations and Future Work

= Safely sharing packet buffers

= |f kernel-owned buffers are modified by a misbehaving app, TCP might fall into
iInconsistent state
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Conclusion

Message-oriented communication over TCP

Kernel TCP/IP is fast
= But socket APl and packet I/O are slow

= We can bring the most of techniques used by kernel-bypass stacks into the OS stack
= Latency reduction by 4-80% (average) or 2-70% (99t %tile)
= Throughput improvement by 4-391%
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