
StackMap: Low-Latency Networking
with the OS Stack and Dedicated NICs
​Kenichi Yasukata, Michio Honda, Douglas Santry and Lars Eggert.
Proc. USENIX Annual Technical Conference (USENIX ATC),
Denver, CO, USA, June 22-24, 2016.

​Helsinki-HKUST-Tsinghua Workshop on Mobile Services and Edge Computing,
​Helsinki, Finland, July 27-29, 2016

© 2016 NetApp, Inc. All rights reserved. 1

Overview

§ Message-oriented communication over TCP is common
§ e.g., HTTP, memcached, CDNs

§ Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

§ Improve socket API?
§ Limited Improvements

§ User-space TCP/IP stack?
§ Maintaining and updating today’s

complex TCP is hard

© 2016 NetApp, Inc. All rights reserved. 2

 0

 1

 2

 3

 4

1 20 40 60 80 100

Th
ro

ug
hp

ut
 [G

b/
s]

Concurrent TCP Connections

Linux
Seastar
StackMap

StackMap achieves high performance
with the OS TCP/IP

Background

§ Message-oriented communication over TCP (e.g., HTTP, memcached)
§ Many concurrent connections
§ Small messages
§ High packet rates

© 2016 NetApp, Inc. All rights reserved. 3

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app
1.

us
er

ke
rn

el

NIC

TCP/IP/Eth

netmap

Packet buffers

4.

2.

3.

Request (e.g., HTTP GET)
Response (e.g., HTTP OK)

Message Latency Problem

§ Many requests are processed in
each epoll_wait() cycle
§ New requests are queued in the kernel

© 2016 NetApp, Inc. All rights reserved. 4

while (1) {
n = epoll_wait(fds);
for (i = 0; i < n; i++) {
read(fds[i], buf)
http_ok(buf);
write(fds[i], buf);

}
}

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
es

cr
ip

to
rs

 [#
]

Concurrent TCP Connections

of descriptors returned by epoll_wait()

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
La

te
nc

y
[µ

s]
Concurrent TCP Connections

99th %ile latency
mean latency

§ Processing cost of TCP/IP protocol is not high

§ TCP/IP takes 1.48 us, out of 3.75 us server processing

§ ½ RTT reported by the client app is 9.75 us
§ The rest of 6 us come from minimum hard/soft indirection
§ netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?

© 2016 NetApp, Inc. All rights reserved. 5

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)

§ Processing cost of TCP/IP protocol is not high

§ TCP/IP takes 1.48 us, out of 3.75 us server processing

§ ½ RTT reported by the client app is 9.75 us
§ The rest of 6 us come from minimum hard/soft indirection (5.77 us)
§ netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?

© 2016 NetApp, Inc. All rights reserved. 6

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)

�
�
�
�
�
�
�

� �� �� �� �� ���

��
��
��
�
��
��

���������� ����������� ���

���� ���� ������

epoll_wait() processing delay

Takeaway

§ Conventional system introduces end-to-end latency of 10’s to 100’s of us
§ Results of processing delays

§ Socket API comes at a significant cost
§ read()/write()/epoll_wait() processing delay

§ Packet I/O is expensive

§ TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but
need to improve API and packet I/O

© 2016 NetApp, Inc. All rights reserved. 7

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app
1.

us
er

ke
rn

el

NIC

TCP/IP/Eth

netmap

Packet buffers

4.

2.

3.

StackMap Approach

§ Dedicating a NIC to an
application
§ Common for today’s

high-performance systems
§ Similar to OS-bypass

TCP/IPs

© 2016 NetApp, Inc. All rights reserved. 8

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app
1.

us
er

ke
rn

el

NIC

TCP/IP/Eth

netmap

Packet buffers

4.

2.

3.

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

us
er

ke
rn

el
NIC

TCP/IP/Eth

StackMap Approach

§ Dedicating a NIC to an
application
§ Common for today’s

high-performance systems
§ Similar to OS-bypass

TCP/IPs

§ TCP/IP stack in the kernel
§ State-of-the-art features
§ Active updates and maintenance

© 2016 NetApp, Inc. All rights reserved. 9

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app
1.

us
er

ke
rn

el

NIC

TCP/IP/Eth

netmap

Packet buffers

4.

2.

3.

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

us
er

ke
rn

el
NIC

TCP/IP/Eth

StackMap Architecture

© 2016 NetApp, Inc. All rights reserved. 10

NIC
Device drivers

Linux packet I/O

Socket API

StackMap appRegular app
1.

us
er

ke
rn

el
NIC

TCP/IP/Eth

netmap framework

Packet buffers

4.

2.

3.

1. Socket API for control path
§ socket(), bind(), listen()

2. Netmap API for data path
(extended)

§ Syscall and packet I/O
batching, zero copy, run-to-
completion

3. Persistent, fixed-size
sk_buffs

§ Efficiently call into kernel TCP/IP

4. Static packet buffers and
DMA mapping

StackMap Data Path API

© 2016 NetApp, Inc. All rights reserved. 11

§ TX
§ Put data and fd in each slot
§ Advance the head pointer
§ Syscall to start network stack

processing and transmission headtail

data, fd

StackMap Data Path API

© 2016 NetApp, Inc. All rights reserved. 12

§ TX
§ Put data and fd in each slot
§ Advance the head pointer
§ Syscall to start network stack

processing and transmission

§ RX
§ Kernel puts fd on each

buffer
§ App can traverse a ring

by descriptors

headtail

data, fd

fd4 fd3 fd4 fd4 fd5 fd3

head tail
data, fd

fd4
fd3
fd5

[0]

[2]
[1]

FD Array nxt 2 5 3
5idx 0 1 2 3 4

1
0
4

[3]

[5]
[4]

Scratchpad

§ Implementation
§ Linux 4.2 with 228 LoC changes
§ netmap with 56 LoC changes
§ A new kernel module with 2269 LoC

Experimental Results

§ Setup
§ Two machines with Xeon E5-2680 v2 (2.8

-3.6 Ghz) Intel 82599 10 GbE NIC
§ Server: Linux or StackMap
§ Client: Linux with WRK http benchmark

tool or memaslap memcached benchmark
tool

© 2016 NetApp, Inc. All rights reserved. 13

Basic Performance

§ Simple HTTP server
§ Serving 1KB messages (single core)

© 2016 NetApp, Inc. All rights reserved. 14

 0

 2

 4

 6

 8

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 [G

b/
s]

Concurrent TCP Connections

Linux
StackMap

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

La
te

nc
y

[µ
s]

Concurrent TCP Connections

Linux (99th %ile)
Linux (mean)
StackMap (99th %ile)
StackMap (mean)

Memcached Performance

§ Serving 1KB messages
§ single core
§ Seastar is a fast user-space

TCP/IP on on top of DPDK*

§ Serving 64B messages
§ 1-8 CPU cores

© 2016 NetApp, Inc. All rights reserved. 15

 0

 1

 2

 3

 4

1 20 40 60 80 100

Th
ro

ug
hp

ut
 [G

b/
s]

Concurrent TCP Connections

Linux
Seastar
StackMap

 0

 1

 2

 3

1 4 8Th
ro

ug
hp

ut
 [G

b/
s]

CPU cores [#]

Linux
Seastar
StackMap

 0

 100

 200

 300

 400

1 20 40 60 80 100

La
te

nc
y

[µ
s]

Concurrent TCP Connections

Linux
Seastar
StackMap

*http://www.seastar-project.org/

Discussion

§ What makes StackMap fast?
§ Techniques used by OS-bypass TCP/IPs
§ Run-to-completion, static packet buffers, zero copy, syscall and I/O batching

and new API

§ Limitations and Future Work
§ Safely sharing packet buffers
§ If kernel-owned buffers are modified by a misbehaving app, TCP might fall into

inconsistent state

© 2016 NetApp, Inc. All rights reserved. 16

Conclusion

§ Message-oriented communication over TCP

§ Kernel TCP/IP is fast
§ But socket API and packet I/O are slow

§ We can bring the most of techniques used by kernel-bypass stacks into the OS stack

§ Latency reduction by 4-80% (average) or 2-70% (99th%tile)

§ Throughput improvement by 4-391%

© 2016 NetApp, Inc. All rights reserved. 17

