
Diffusing Your Mobile Apps: Extending In-Network 
Function Virtualisation to Mobile Function Offloading

Mario Almeida, Liang Wang*, Jeremy Blackburn, Konstantina Papagiannaki, Jon Crowcroft*

Telefonica Research, ES            University of Cambridge, UK



Observation: Pervasive Mobile Apps

Pervasive mobile clients have given birth to complex mobile apps. These apps 
are continuously generating, disseminating, consuming, and processing all 
kinds of information, in order to provide us convenient daily services.



Motivation: Battery Is The Bottleneck
Unfortunately, given current battery technology, these demanding apps impose 
a huge burden on energy constrained devices.

While power hogging apps are responsible for 41% degradation of battery life 
on average.

Even popular ones such as social networks and instant messaging apps (e.g., 
Facebook and Skype) can drain a device's battery up to 9X faster due only to 
maintaining an on-line presence.



Solution: Mobile Computation Offloading

Instead of doing the computation locally, let someone else do the job for you. A 
seemingly simple solution, but technically challenging, we need to answer:

What to offload? E.g., A function, a class, or a whole app?
When to offload? E.g., statically or dynamically?
How to offload? E.g., monitor and intercept function call?
Where to offload? E.g., other user devices, cloud, or edge?
How to execute? E.g., JVM, container, unikernel?
How to sync, how to return results, how to discover functions, so on and so on 
...



More Observations
Quite different from a decade ago, network middle boxes are no longer simple 
devices which only forward packets.

ISPs' own network services have been shifting from specialized servers to 
generic hardware with the adoption of the NFV paradigm.

E.g., Telefonica is shifting 30% of their infrastructure to NFV by 2016. Other 
providers such as AT&T, Vodafone, NTT Docomo, and China Mobile.

There are many in-network resources we can exploit. Besides, many of them 
are underutilised.



Our Contribution - INFv
INFv is an offloading system able to cache, migrate and dynamically execute 

on demand functionality from mobile devices in ISP networks.

Features:

● Offloading is at Java class granularity.

● Non-intrusive deployment, i.e., no need to repackage the existing apps.

● Offloaded functions are cached in the network for future use.

● The computation load is well well-balanced in the network by exploiting 

neighbourhood resources.



Comparisons To The Existing Solutions

INFv is now a fully functional, working system after one-year development.



Feasibility Study: Can We Cache Everything



Feasibility Study: Key Takeaways
A study of over 20K of the most popular apps on the Google Play Store in 
February 2016. In summary, our investigation reveals two important facts: 

● a very small amount of apps account for most of the downloads;
● there is a significant code overlap due to commonly used libraries. 

Two facts together indicate a medium storage requirement on INFv. We confirm 
that ≈ 15, 000 apps are responsible for 81% of all Google Play downloads and 
in total they require an aggregated storage of 409 GB. This is apparently a 
manageable size even without excluding a few outliers which are up to 2.1 GB.



Architecture And Subsystems

Profiling Subsystem Network Subsystem Offloading Subsystem



Profiling Subsystem: Cloud-based Profiler
We do not monitor or profile on mobile devices. There is a trade-off between 
accuracy and cost. In general, performance profiling is an expensive operation. 
Then how can we make the offloading decision?

Both profiling and partitions are performed by INFv's profiling subsystem which 
consists of an app analysis cluster and a repository containing apps' partition 
functionality as well offloading metadata (e.g., energy estimates).

However, we can have some “free variables” in the equation of making 
offloading decisions, which can be easily filled by mobile devices.



Profiling Subsystem: App Partitioning
Functionality partitions can be devised on method and thread granularity. The 
latter incurs an extra cost of synchronization (e.g., thread state, virtual state, 
program counters, registers, stack). In order to better integrate with the NFV 
abstraction, our solution is based on method offloading.

However, app partition happens at class granularity. Most mobile architectures 
apps are developed in class-based object-oriented languages, when possible 
we use a class offloading granularity as methods can invoke other methods of 
the same class and share class state (e.g., class fields).



Offloading System
Step 1: Offloading subsystem runs on user devices. It first contacts profiling 
subsystem to fetch the profiling and partition metadata. Given a partition entry 
and exit points, it enables the interception of its respective members (methods 
& constructors).

Step 2: Each app process transparently loads and executes an INFv monitor. 
Once a target invocation is intercepted, a message is created and sent to a 
network stub that transparently interacts with the closer network node to 
execute it.



Offloading System
Step 3: Network nodes abstract the network topology by providing a message 
queue (MQ) between the stub and the execution backend.

Step 4: Within the MQ abstraction, routing is done using the user, device, app 
and version IDs, along with the fully qualified member name and its arguments.

Step 5: Offloaded functionality threads are suspended until the functionality 
finishes or invokes a local functionality in the same thread.



Network Subsystem

The main goal is to balance the load in the network. Note the difference 
between load balancing at edge and scheduling in the cloud.

We considered CPU, memory, and bandwidth. But it seems that CPU always 
becomes the first bottleneck, because most offloaded tasks are computation 
intensive.

Two strategies are studied: Passive and Proactive, by using a simple M/M/1-PS 
queuing model to analyse the performance and derive the balancing algorithm.



Proactive Strategy: C3PO
The algorithm is simple yet effective. We need to 
make sure the load balancing itself will not cause too 
much overhead.

The algorithm maintains four circular buffer with 
fixed size. on_arrvial and on_complete two functions 
need to be performed whenever a request arrives or 
finished.

The “proactiveness” is achieved by “being 
conservative”. Technically, by smoothing the load 
curve, or getting the derivative of the load increasing 
rate.



C3PO Exploits Its Neighbourhood

An illustration of different 
behaviors of Passive and 
Proactive control on grid 
topology. A client connects to the 
router at (0,0) while a server 
connects to the router at (9,9). 
Proactive is more capable at 
utilizing the nearby resources 
within its neighborhood, leading 
to better load balancing and 
smaller latency. (Yellow indicates 
high load.)



Preliminary Evaluation: Setup

Two apps are tested:

Linpack: represents pure 
computation intensive apps.

FaceDetect: represents both 
computation heavy and 
synchronisation heavy tasks.



Impact of Code Partitions



Cost Of State Synchronisation



Scalable to Workload

Figure 6: Comparison of three control 
strategies (in each row) on Exodus ISP 
network, the load is increased step by 
step in each column. x-axis is node 
index and y-axis is load. Top 50 nodes 
of the heaviest load are sorted in 
decreasing order and presented. 
Notations in the figure: τ : average load; 
φ : average latency (in ms); ψ : ratio of 
dropped requests.



Responsiveness to Jitters

Figure 7: Comparison of two 
control strategies using a 
simple line topology: client 
→ router n1 → router n2 → 
server. Two jitters are 
injected at time 40 ms and 
70 ms. x-axis is time (ms) 
and y-axis is normalized 
load. Red numbers 
represent the average load 
during a jitter period. 



Power Consumption Distribution

Figure 8: Power consumption 
distribution (A & B) for 20 
executions over 4G, with and 
without INFv. In C the dashed 
line represents INFvs’ 
consumed power versus the 
local execution (continuous). 



Energy Consumption & Execution Time 

Figure 9: Energy and execution 
time of FaceDetect execution 
with INFv enabled. Crosses 
represent the median. Values 
are normalized by the mean 
values of local execution.



Runtime Decision & Performance

Figure 10: Energy consumption vs. 
execution time of FaceDetect using 
INFv under varying latency. 



Thank you. Questions?


