

User Privacy Is Not Preserved with ID-removed Anonymous Cellular Data

Zhen Tu Tsinghua University Beijing, China tuzhen16@gmail.com

Problem Statement

Contents

Performance Evaluation

Motivation

Massive Mobile Data

- extensive use of mobile phones
- explosive mobile traffic

Great Potential Value

- academic research
- commercial application
- city management

Both academic and industrial communities are calling for mobile data publishing and sharing.

Motivation

Publishing and Sharing

- Potential risks of leaking mobile user privacy
- Anonymization before data publishing
 - > Hashing of user identifiers (week attack resistance[9])

Generalization or suppression (low data utility[17])
 [9] Unique in the crowd: The privacy bounds of human mobility. *Scientific reports*, 3, 2013.
 [17] Hiding mobile traffic fingerprints with glove. CoNext, 2015.

New Way to Open Cellular Data

Open the meta-data with all the ID or part of ID removed[2,4]

> Only fine-grained spatio-temporal information remains.

Publishers' belief: sufficient to protect user privacy & high data utility

[2] China telecom' big data products. http://www.dtbig.com/

[4] A case study: privacy preserving release of spatio-temporal density in Paris. SIGKDD, 2014.

ID-removed Anonymous Data: Is that Really Safe?

Not safe at all! Indeed, our study shows that it has severe potential user privacy leakage.

Privacy Concerns in ID-removed Data Publishing Scenario

Is it possible to recover user identifications with no prior information even for such ID-removed meta-data?

How to build a feasible attack system?

The aim of our attack system is to recover user identifications from the ID-removed anonymous cellular data. In other words, we need to identify those spatio-temporal points that belong to a single user. So we have to answer the following questions:

1) Does the trajectory of a single user have his or her own characteristics?

2) Is there any difference between trajectories generated by different users?

Datasets

Datasets& Metrics	Operator Dataset	Application Dataset
Source	Cellular network	Mobile application
Location	Shanghai, China	Shanghai, China
Time	Apr. 2016	Nov. 2015
Duration	1 week	2 days
User number	5.90 millions	15.50 thousands
Record number	1.54 billions	7.69 millions
Records/user	261	496

Characteristics of Mobile User Trajectories

Diverse & Representative:

- cellular network & mobile devices
- spatial and temporal resolutions
- total number of records
- average number of records

(a) Day 1 (b) Day 2 Figure 2: The locations of cellular towers visited by five randomly selected mobile users.

- same user: similar traces on day 1 and day 2
- different users: different mobility traces

ID-recovered System

(a) Visualization of original trajectory (b) System pipeline Figure 5: An overview of the trajectory recovery attack system.

Input : ID-removed spatio-temporal points **Output: ID-recovered** trajectories

Minutes-level Identification

• identify the spatio-temporal records contributed by the same user within several minutes

Hours-level Identification

- identify the spatio-temporal records contributed by the same user with a timestamp gap of several hours
- Days-level Identification

2

3

• identify the spatio-temporal records contributed by the same user across different days

Minutes-level Identification

A single user's trajectory recorded by the cellular network is bursty in both temporal and spatial domain.

Bursty records, which have a short time interval and a near distance, have a high probability to be generated by the same person.

Hours-level identification

A single user's mobility has a continuous feature, thus we can estimate a user's next location using the current location and velocity.

Continuous traces, when connected the error between predicted location and actual location is small, have a high probability to be generated by the same person.

Days-level identification

A single user's mobility pattern is regular across days and different users have different mobility patterns.

(a) Operator dataset (b) App dataset Figure 9: The PDF of information gain in grouping hours-level records contributed by a single user or different users.

The information gain measures the difference between two traces' location distributions.

Similar traces, when connected the information gain is small, have a high probability to be generated by the same person.

Problem Statement

Contents

Performance Evaluation

Performance Evaluation

Recovery Results

1)App dataset

Precision Rate: 84.3 % **F1 Score**: 80.3%

Recall Rate: 71.7% Precision Rate: 73.3% **F1 Score**: 72.2%

2) Operator Dataset

We have recovered the ID-removed cellular data with high accuracy!

Accuracy of each ID-recovered trajectory **D**Metric

Original trajectory(N=5)

ID-recovered trajectory(M=6)

Accurate trace points(L=4)

Recall Rate = L/M = 66.7%missed Precision Rate = L/N = 80%F1 score = 2x(Re x Pr)/(Re + Pr) = 72.7%

0.8

DResult

0.0 ge 8.0 G ARecall Precision 0.2 F1 Score

(a) App dataset

(b) Operator dataset

#2

#3

#1

excessive

Performance Evaluation

Privacy Leakage Level

Normalized mutual information(NMI)

- An index to quantify the amount of information over the original trajectories that we can obtain from the recovered trajectories.
- > Higher the value is, more the user privacy leaks.

Our system is able to recover over 90% information of the original trajectories.

User privacy is not preserved with ID-removed anonymous cellular data!

Performance Evaluation

Key Factors to Reduce Privacy Leakage

Dataset Scale

Tips: only publish and share large-scale datasets.

Data Resolution

Tips: open datasets with low spatial granularity.

Mobility Behavior

Radius of gyration is an index to measure the space covered by each user's trajectory, users of high mobility usually have large radius of gyration.
Tips: only share trajectories of high mobility and large active area.

Innovation

We are the first to identify and study the privacy problem about ID-removed anonymous cellular data.

Observations

ID-removed anonymous cellular data has severe potential user privacy leakage.
Dataset scale, data resolution and mobility behaviors are key factors to impact the extent of privacy leakage.

Guidelines

- only publish large-scale datasets
- open datasets with low spatial granularity
- only share trajectories of high mobility and large active area

Thanks you! I'm happy to take questions.

For Data Sample, Please Contact <u>tuzhen16@gmail.com</u> <u>liyong07@tsinghua.edu.cn</u> FIB-LAB: <u>http://fi.ee.Tsinghua.edu.cn</u>