Routing Air Traffic Flows: from Continuous to Discrete and Back

Valentin Polishchuk

joint work with

Joondong Kim Joseph Mitchell

Jimmy Krozel Joseph Prete

Arto Vihavainen

Geometric Shortest Paths

• Given:

Polygonal domian P obstacles (holes) Points s and t

 Find:
shortest s-t path avoiding obstacles

Ρ

| SP from s to t | =

time when wavefront hits t

Applications

- VLSI
- Robotics
- Sensor networks
- Air Traffic Management
 safety margin

How to find thick paths in a polygonal domain? Multiple disjoint "thick" paths

4

 \mathbb{A}

Disjoint Paths in Graphs

Related to Network Flows

MaxFlow/MinCut		maxflow = mincut
Theorem	s t	2 = 2
Menger's		max # of disjoint s-t paths
Theorem	s t	= min # of vertices to
		disconnect s and t
		2 = 2
Flow Decomposition Theorem	s t	flow
		=
		union of paths

Flows and Paths in Geometric Domains

MaxFlow: Problem Statement

MaxFlow

Find σ that maximizes V

Cut: Partition P S in one part, T in the other Capacity: Length of bd between parts counted within P (not within holes)

Discrete Network 2D Domain

- Source and sink nodes
- Cut •
 - partition nodes
 - capacity
 - edges that cross
- Flow
 - integers on arcs

- Source and sink *edges* •
- Cut •
 - partition domain
 - capacity
 - · length of the boundary
- Flow •
 - vector field

Finding MinCut

Shortest Path in the "Critical Graph"

Finding MaxFlow

Continuous Uppermost Path Algorithm

- Wave from T
- Wavefront hits a hole
 - continue propagation on hole's other side

Get Real!

MinCut

Flow Constrained Area (FCA)

Implementation on Real Data

Continuous Menger's Theorem

Max # of disjoint thick paths = MinCut'

SP T-B in thresholded critical graph

$$I_{ij} = \lfloor d_{ij} / airlane width \rfloor$$

Movie Time!

MinCut

MinCut Over Time

Get Real: Paths...

A Thick Path

Problem Formulation

- Given: start-destination pairs on bd of P $\{ (s_1,t_1), (s_2,t_2), (s_3,t_3) \}$
- Find: shortest disjoint thickness-2 sk-tk paths

Finding 1 Shortest Thick Path

Inflate by 1

Find shortest path

Inflate the path

2 Paths

Inflate by 1 Route s_2 - t_2 path Inflate $P(s_1,t_1)$ by 2 Find shortest path Same on the other side Inflate the paths Non-crossing

- Each path is ASAP (as short as possible)
 - given the existence of the other
- minsum, minmax

K Paths

For k = 1...K

 $d_k(u,v) := k^{th} \text{ depth of } \partial C(u,v) \equiv$ \equiv 2 • (# of paths between $\partial C(u,v)$ and s_k-t_k) + 1 Inflate $\partial P(u,v)$ by $d_k(u,v)$ Find the shortest path Inflate the path v_4 t_4 t_2 v_3 v_2 v_1 t_1

 s_3

 s_{2}

 s_1

Polygons with Holes

- # of holes *h* is large
 - NP-hard
- h = O(1)
 - Scroll through relevant homotopy types
 - O((K+1)^hh!) of them

 $O((K+1)^{h}h! \text{ poly}(n,K))$

fixed-parameter tractable

[Rod and Fellows '99]

"Gluing" Shortest Thick Paths

SP s-t of width 4

SP s_1 - t_1 of width 2 + SP s_2 - t_2 of width 2

From Paths to Flows

Min-Cost Flow

Min-Cost Flow Given V Find σ that minimizes *cost* Cost $|l_s|$ – length of streamline through s in S

$$cost = \int_{S} |l_s| ds$$

Equivalent Problems

 l_{s} – streamline of σ through s in S l_{s} : S \rightarrow T

 σ_{ab} – restriction of σ

Split a into s_k , k=1...KSplit b into t_k , k=1...KSP(s_k , t_k), width w/K

$$\begin{split} \text{Path} &\to l_{s} \text{ as } \mathsf{K} \to \infty \\ & \text{Min-cost } \sigma_{ab} = \int_{a} \big| l_{s} \big| ds \\ &= \sum_{k} SP(s_{k}, t_{k}) \end{split}$$

Contiguous subsets of S mapped into Contiguous subsets of T

> $l_{s}(a) = b,$ |a| = |b| = w

Gluing Things Together Min-cost $\sigma_{ab} = \sum_{k} SP(s_k, t_k) = by "Gluing"$ = 1 Shortest Thick Path (from midpoint of a to midpoint of b)

The Continuous Flow Decomposition Theorem

The support of a minimum-cost flow may be decomposed into a linear number of shortest thick non-crossing paths

Get Real!

Thick Paths

Flow-Based Route Planner

[Prete '07, Krozel, Mitchell, Penny, P, and Prete '04-07]

Flow-Based Route Planner

- Heuristic
 - Uniform grid

- While possible
 - find a path
 - call it an obstacle

Movie Time!

Thick Paths

Flow-Based Route Planner

(At Least) Two Shortcomings

 Obstacles are static

• The routes are non-crossing

Dynamic Version

- Given
 - moving obstacles
- Find

- trajectories for a maximum number of aircraft

Movie Time!

Thick Paths in Dynamic Environment

Dynamic Planning

If there exist **K** paths for **unit** discs moving with speed ≤ **1**

we find, for any $\Delta t < \frac{1}{2}$

≥ K paths for discs of radius $(1/4 - 3/8 \cdot \Delta t)^2$ moving with speed ≤ 7 / Δt

Improve navigation and speed – get opt!

Path thickness = navigation performance

Summary

	Networks	2D
Dijkstra's Alg [Mitchell'86]	S S S S S S S S S S S S S S S S S S S	
MaxFlow/MinCut [Strang'83]		B
Uppermost Path Alg [Mitchell'90]	s t	T B B
Menger's Theorem [Arkin, Mitchell, and P '08]	s t	T mincut
Flow Decomposition [Mitchell and P '07]		R R R R R R R R R R R R R R R R R R R

Open: Theory

- SP on surface of arbitrary polyhedron
- 1 thick path, o(n²) alg
- 1 thick wire, poly-time alg
- Planning in face of uncertainty
- Geometric multicommodity flows

Open: Practice

- Implement existing algs
- Design new

Produce movies!

Pilots

ATC $\widehat{\mathbf{j}}$ ATM

Open: Theory and Practice

Arrival/departure trees Constrained paths (turns, wiggle rooms)

Future

Single Fix; Variance of incoming flow reduced by FD precision guidance

Two nonintersecting flows arrive at the metering fix location; requires precision guidance

Triple Fix; Three nonintersecting flows arrive at the metering fix location; requires precision guidance

