Routing Air Traffic Flows: from Continuous to Discrete and Back

Valentin Polishchuk

joint work with

Joondong Kim
Joseph Mitchell
STONY
BRGMDK.
UNIVERSITY

Jimmy Krozel Joseph Prete

Arto Vihavainen

Geometric Shortest Paths

- Given:

Continuous Dijkstra

- Wave propagation
- starts from s
- travels at speed 1
- Wavefront at τ
- bd of what's reached by τ
| SP from s to t | =
time when wavefront hits t

Applications

- VLSI
- Robotics
- Sensor networks
- Air Traffic Management
- safety margin

How to find thick paths in
a polygonal domain?
Multiple disjoint "thick" paths

Disjoint Paths in Graphs

Related to Network Flows

MaxFlow/MinCut Theorem	maxflow = mincut Menger's Theorem of disjoint s-t paths $=$ min \# of vertices to disconnect s and t $2=2$
Flow Decomposition	
Theorem	flow $=$
union of paths	

Flows and Paths in Geometric Domains

MaxFlow: Problem Statement

Given: Polygonal domain P with holes
source and sink \mathbf{S} and \mathbf{T}
$\operatorname{div} \sigma=0$ inside P
$\sigma \cdot \mathrm{n}=0$ on $\partial \mathrm{P} \backslash\{\mathbf{S}, \mathbf{T}\}$
$|\sigma| \leq 1$ - capacity
$\mathrm{V}=\left|\int_{\mathrm{S}} \sigma \cdot \mathrm{n} \mathrm{ds}\right|=\mid \int_{\mathrm{T}} \sigma \cdot \mathrm{n} \mathrm{ds}$
Flow
vector field $\sigma: P \rightarrow R^{2}$

Cut: Partition P

MaxFlow
Find σ that maximizes V
\mathbf{S} in one part, \mathbf{T} in the other
Capacity: Length of bd between parts counted within P (not within holes)

Discrete Network

- Source and sink nodes
- Cut
- partition nodes
- capacity
- edges that cross
- Flow
- integers on arcs

2D Domain

- Source and sink edges
- Cut
- partition domain
- capacity
- length of the boundary
- Flow
- vector field

Finding MinCut

Shortest Path in the
 "Critical Graph"

Top \boldsymbol{T}, so $\leftarrow \mathbf{s i}$

Bottom B, so $\rightarrow \mathbf{s i}$

Critical Graph:
B nodes for each obstacle, for \boldsymbol{T}, for \boldsymbol{B}
edge length =
Euclidean distance

MinCut =

Shortest $\boldsymbol{T}-\boldsymbol{B}$ Path in the critical graph

Finding MaxFlow

Continuous Uppermost Path
 Algorithm

- Wave from \boldsymbol{T}
- Wavefront hits a hole
- continue propagation on hole's other side

Continuous MaxFlow/MinCut Theorem

[Mitchell'90]

MaxFlow
$=$
MinCut

$=$

SP \boldsymbol{T} - \boldsymbol{B} path in critical graph

Get Real!

MinCut

Flow Constrained Area (FCA)

Implementation on Real Data

MinCut

$=21.25 \mathrm{nmi}$
Airlane width = 5 nmi
Can route
4.25 jets

Modify theory and algorithms discrete nature of the problem - integer \# of airlanes

Continuous Menger's Theorem

Max \# of disjoint thick paths

SP $\boldsymbol{T}-\boldsymbol{B}$ in thresholded critical graph

$$
I_{i j}=\left\lfloor d_{i j} / \text { airlane width }\right\rfloor
$$

Movie Time!

MinCut

MinCut Over Time

Get Real: Paths...

- "Ugly", not flyable
- Not short

New task:
Find K Shortest Thick Paths

A Thick Path

Thick path = reference_path ${ }^{\oplus}$ unit_circle

Length =
length(reference_path)

Problem Formulation

- Given: start-destination pairs on bd of P

$$
\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right)\right\}
$$

- Find: shortest disjoint thickness-2 $\mathrm{s}_{\mathrm{k}}-\mathrm{t}_{\mathrm{k}}$ paths

Finding 1 Shortest Thick Path

Inflate by 1

Find shortest path

Inflate the path

2 Paths

Inflate by 1
Route $\mathrm{s}_{2}-\mathrm{t}_{2}$ path
Inflate $P\left(s_{1}, t_{1}\right)$ by 2
Find shortest path
Same on the other side Inflate the paths

Non-crossing

- Each path is ASAP (as short as possible)
- given the existence of the other
- minsum, minmax

K Paths

For $k=1 \ldots K$
$d_{k}(u, v):=k^{\text {th }}$ depth of $\partial C(u, v) \equiv$
$\equiv 2 \cdot\left(\#\right.$ of paths between $\partial \mathrm{C}(u, v)$ and $\left.s_{k}-t_{k}\right)+1$
Inflate $\partial P(u, v)$ by $d_{k}(u, v)$
Find the shortest path Inflate the path

Polygons with Holes

- \# of holes h is large
- NP-hard
- $h=O(1)$
- Scroll through relevant homotopy types
- O((K+1)hh!) of them

$O\left((K+1)^{h} h!\right.$ poly $\left.(n, K)\right)$
fixed-parameter tractable

"Gluing" Shortest Thick Paths

SP s-t of width 4

SP $\mathrm{s}_{1}-\mathrm{t}_{1}$ of width 2
$+$
SP $\mathrm{s}_{2}-\mathrm{t}_{2}$ of width 2

From Paths to Flows

Min-Cost Flow

Given: Polygonal domain P sources \mathbf{S} and sinks \mathbf{T}
Flow
vector field σ $\operatorname{div} \sigma=0$ inside P $\sigma \cdot \mathrm{n}=0$ on $\partial \mathrm{P} \backslash\{\mathbf{S}, \mathbf{T}\}$ $|\sigma| \leq 1$ - capacity
$\mathrm{V}=\left|\int_{\mathbf{S}} \sigma \cdot \mathrm{nds}\right|=\left|\int_{\mathbf{T}} \sigma \cdot \mathrm{nds}\right|$

Min-Cost Flow
Given V
Cost
$\left|l_{s}\right|$ - length of streamline through s in \mathbf{S}
Find σ that minimizes cost

$$
\operatorname{cost}=\int_{\mathrm{S}}\left|l_{\mathrm{s}}\right| \mathrm{ds}
$$

Equivalent Problems

$l_{s}-$ streamline of σ through s in S
$l_{\mathrm{s}}: \mathbf{S} \rightarrow \mathbf{T}$
$\sigma_{a b}$ - restriction of σ

Split a into $\mathrm{s}_{\mathrm{k}}, \mathrm{k}=1 \ldots \mathrm{~K}$ Split b into $t_{k}, k=1 \ldots K$ $\mathrm{SP}\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$, width w/K

Path $\rightarrow l_{\mathrm{s}}$ as $\mathrm{K} \rightarrow \infty$
Min-cost $\sigma_{\mathrm{ab}}=\int_{\mathrm{a}}\left|l_{\mathrm{s}}\right| \mathrm{ds}$
$=\Sigma_{k} S P\left(s_{k}, t_{k}\right)$

Contiguous subsets of \mathbf{S}
mapped into
Contiguous subsets of \mathbf{T}

$$
\begin{gathered}
l_{\mathrm{s}}(\mathrm{a})=\mathrm{b} \\
|\mathrm{a}|=|\mathrm{b}|=\mathrm{w}
\end{gathered}
$$

Gluing Things Together

Min-cost $\sigma_{a b}=\sum_{k} S P\left(s_{k}, t_{k}\right)=$ by "Gluing"
$=1$ Shortest Thick Path (from midpoint of a to midpoint of b)
$\sigma=\sigma_{a_{a}}+\sigma_{a_{a}^{\prime} b^{\prime}}+\sigma_{\ldots} \ldots$ Intervals of continuity of $l_{S}: \mathbf{S} \rightarrow \mathbf{T}$ and its inverse

Min-cost Flow = Thick Non-Crossing Paths

The Continuous Flow Decomposition Theorem

The support of
a minimum-cost flow may be decomposed into a linear number of
shortest thick non-crossing paths

Get Real!

Thick Paths

Flow-Based Route Planner

[Prete '07,
Krozel, Mitchell, Penny, P, and Prete '04-07]

Flow-Based Route Planner

- Heuristic
- Uniform grid
- While possible
- find a path
- call it an obstacle

Movie Time!

Thick Paths

Flow-Based Route Planner

(At Least) Two Shortcomings

- Obstacles are static
- The routes are non-crossing

Dynamic Version

- Given
- moving obstacles
- Find
- trajectories for a maximum number of aircraft

Movie Time!

Thick Paths in Dynamic Environment

Dynamic Planning

If there exist \mathbf{K} paths for unit discs moving with speed ≤ 1
we find, for any $\Delta t<1 / 2$
$\geq \mathrm{K}$ paths for discs of radius (1/4-3/8• $\Delta t)^{2}$ moving with speed $\leq 7 / \Delta t$

Improve navigation and speed - get opt!
Path thickness = navigation performance

Summary

	Networks	2D
Dijkstra's Alg [Mitchell'86]		
MaxFlow/MinCut [Strang'83]		
Uppermost Path Alg [Mitchell'90]		$2 \Omega_{s^{B}}^{\top}$
Menger's Theorem [Arkin, Mitchell, and P '08]		
Flow Decomposition [Mitchell and P '07]		

Open: Theory

- SP on surface of arbitrary polyhedron
- 1 thick path, o(n²) alg
- 1 thick wire, poly-time alg
- Planning in face of uncertainty
- Geometric multicommodity flows

Open: Practice

- Implement existing algs
- Design new

Produce movies!

Open: Theory and Practice

SOU
 !

