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Geometric Shortest Paths

e Given:

Polygonal domian P

P
obstacles (holes)
Points s and t S’

. Find: ﬂ

shortest s-t path
avoiding obstacles




Continuous Dijkstra

[Mitchel’86]

Wave propagation
— startsfrom s
— travels at speed 1

Wavefront at T

— bd of what's
reached by T

| SP fromstot| =
time when wavefront hits t




Applications

)
VLSI Multiple disjoint
Robotics | “thick”
Sensor networks paths
Air Traffic Management |

— safety margin

How to find thick paths
in
a polygonal domain?




Disjoint Paths in Graphs

Related to Network Flows

MaxFlow/ maxflow =
Theorem @ 2 =
S t =
Menger’s max # of disjoint s-t paths
Theorem S@t min # of vertices to
disconnect s and t
2=2
Flow Decomposition flow
Theorem S@t _
union of paths




Flows and Paths
in
Geometric Domains



MaxFlow: Problem Statement

Given: Polygonal domain P Flow
with holes vector field o: P — R?2

source andsink Sand T

divo =0 inside P SOMKEE
o+*n =0 ondP\{S,T} S %

|o| =1 — capacity

V=|fsc'nds|=|fT0°nds|.

Sink

Partition P
MaxFlow S in one part, T in the other
Find o that maximizes V Length of bd between parts

counted within P (not within holes)



2D Domain

« Source and sink edges

Discrete Network

« Source and sink nodes

— partition nodes
— capacity
» edges that cross
 Flow
— integers on arcs

— partition domain

— capacity
* length of the boundary

 Flow

— vector field

Source

.

|

Sink



Finding MinCut

Shortest Path in the
“Critical Graph”



Top T, SO « sSi
Bottom B, so — si

SOurce

B edge length =
Euclidean distance

Critical Graph:
nodes for each obstacle, for T, for B



MinCut =
Shortest T-B Path in the critical graph

B mincut



Finding MaxFlow

Continuous Uppermost Path
Algorithm



« Wave from T
 Wavefront hits a hole

— continue propagation on hole’s other side

///!E
‘\

Wavefronts

source

— B

Flow streamlines




Continuous
MaxFlow/MinCut Theorem

[Mitchell’90]

MaxFlow

MinCut

SP T-B path in critical graph




Get Real!

MinCut



Flow Constrained Area (FCA)




Implementation on Real Data

F oroaast o 16002 #16:002
MinCut o /
= 21.25 nmi il
Airlane width = o {/—l/_&
5 nmi I :
Can route s ...r- p
4.25 jets : .

Modify theory and algorithms
discrete nature of the problem — integer # of airlanes |

5



Continuous
Menger's Theorem

Max # of disjoint thick paths

MinCut’

SP T-B in thresholded
critical graph

l; = | dj / airlane widlth|




Movie Timel

MinCut



MinCut Over Time

IIaxirmuen Mumber of Air Lanes at Bottleneck




Get Real: Paths...

« “Ugly”, not flyable

* Not short

New task:

Find K Shortest
Thick Paths




A Thick Path

Thick path =
reference_path ¢  unit_circle

/

Minkowski sum

Length =

length(reference_path)



Problem Formulation

 Qiven: start-destination pairs on bd of P

{ (S1,14), (S2:10)s (S4.15) |}
» Find: shortest disjoint thickness-2 s, -1, paths




Finding 1 Shortest Thick Path

Inflate by 1
Find shortest path

Inflate the path




2 Paths

Inflate by 1
Route s,-t, path

Inflate P(s,,t;) by 2

Find shortest path
Same on the other side

Inflate the paths
Non-crossing

Each path is ASAP (as short as possible)
— given the existence of the other
minsum, minmax



K Paths

Fork=1...K
d.(u,v) := k" depth of 9C(u,v) =
= 2 « (# of paths between dC(u,v) and s,-t,) + 1
nflate oP(u,v) by d,(u,v)
-ind the shortest path
nflate the path




Polygons with Holes

« # of holes his large
— NP-hard
« h=0(1)
— Scroll through relevant homotopy types
« O((K+1)rh!) of them

O( (K+1)hh! poly(n,K) )

fixed-parameter tractable

[Rod and Fellows "99]



“Gluing” Shortest Thick Paths
tg_ t 11

-

SP s-t of width 4
= a
SPs.-t, ofwidth2
) x
SP s,-t, of width 2



From Paths to Flows



Min-Cost Flow

Given: Polygonal domain P
sources S and sinks T

Flow

vector field o
divo =0 inside P

o °+*n =0 ondP\{S,T} .
|o| =1 — capacity

Source

Sink
V=|fgo*nds|=|/p0°nds| o =T
Min-Cost Flow Cost |
|l| — length of streamline through s in S

Given V

Find o that minimizes cost
cost = fsllslds



Equivalent Problems

| — streamline of o through s in S Contiguous subsets of S
[;:S—T mapped into

Contiguous subsets of T

0,, — restriction of o
l(a) = b,

Split ainto s, k=1...K |a| = |b| =w

Split b into t,, k=1...K
SP(s,.1), width w/K
Path — [;as K— « j
. a
Min-cost o,, = [, |l<|ds
b

= szP(Skatk) .\

YY vy




Gluing Things Together .

Min-cost o, = ZkSP(sk,tk) = by“Gluing’j;,J H
— 1 ShOI"[eS'[ Th|Ck Path (from midpoint of a to midpoint of b)

)

- - Intervals of continuity of lS:S—>T and its inverse

Min-cost Flow = |
Thick Non-Crossing |
Paths \I\

vy vy




The Continuous Flow r
Decomposition Theorem

a minimum-cost flow

may be decomposed into
a linear number of 2
shortest thick non-crossing

paths

I



Get Real!

Thick Paths

Flow-Based Route Planner

[Prete '07,
Krozel, Mitchell, Penny, P, and Prete '04-07]



Flow-Based Route Planner

« While possible

* Heuristic .
— find a path

9 — call it an obstacle
- i ;
—
S 1250 .
iy Free Flight —&— 50-Platoon
S 3& (Unidirectional Rule) 10-Platoon
Br vt 4 e 10-
- o f’j .«9* 1000 —#— 3-Flatoon 7
P « &
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i 1-Platoon
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Movie Timel

Thick Paths



Flow-Based Route Planner




(At Least) Two Shortcomings

- "

30" w o"w

» Obstacles are l'l:'-
static

[
m—

» The routes are
non-crossing

M o




Dynamic Version

« Given
— moving obstacles
* Find
— trajectories for a maximum number of aircraft



Movie Timel

Thick Paths in Dynamic Environment



Dynamic Planning

If there exist K paths for
unit discs
moving with speed < 1

we find, forany At < i e

RNP Tracks to Rwy 13L P

2 K paths for
discs of radius (1/4 — 3/8-At )?
moving with speed < 7/ At

Improve navigation and speed — get opt!

Path thickness = navigation performance



Summary

Networks 2D

Dijkstra’s Alg P B
[Mitchell'86] | §=€=/ 5 “\ ,,’

MaxFlow/MinCut :
[Strang’83] | S 2 g t

Uppermost Path Alg
[Mitchell’90]

@

Menger’'s Theorem
[Arkin, Mitchell, and P "08]

Flow Decomposition
[Mitchell and P '07]




Open: Theory
SP on surface of arbitrary polyhedron
1 thick path, o(n?) alg
1 thick wire, poly-time alg

Planning in face of uncertainty
Geometric multicommodity flows




Open: Practice

* Implement existing algs
* Design new

Produce movies!
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10,000 J
8,000 P

Arrival/departure trees
Constrained paths
(turns, wiggle rooms)

Theory and Practice

Future

Single Fix;
i Variance of

‘| incoming flow

: precision
N guidance

Double Fix;

Two non-
intersecting flows
arrive at the
metering fix
location; requires
precision guidance

Triple Fix;

Three non-
intersecting flows
arrive at the
metering fix
location; requires
precision quidance






