
Figure 1: The network and the allowable regions for the hubs. Solid circles are airports, hollow
circles are hubs.

Description

The goal of the project is to develop a tool to optimize placement of “hubs” — intersections of the
“highways in the sky”. Air planes, after a takeoff, follow a network of air lanes. Given the volume
of air traffic, even a slightest improvement in the locations of the network nodes, even on a local
scale, will lead to enormous savings.

Input Specification

Formally, the input to the problem is specified by a graph G = (V, E) representing the network
(Fig. 1). The vertices V of the graph are partitioned into two sets:

1. Static vertices, {a1 . . . aA}, representing the airports, and

2. Hubs, {h1, . . . , hH}, representing the intersections.

For every pair ak, al of the airports we are given a number, denoted fkl, of flights scheduled to fly
between ak and al. The flights follow given paths πkl in G.

Format The network is stored either as a |V |-by-|V | adjacency matrix, or as an |V |-by-|E| inci-
dence matrix. Each vertex has a point in the plane, and is represented with its coordinates. The
demands are just an array of integers. Each path is a sequence of vertices in G.

Solution Approach

The optimization is done via Second-Order Conic Programming (SOCP), which is an extension of
Linear Programming (LP). We will have a decision variable pi = (px

i , py
i) for each vertex i ∈ V ; the

variable shows where the ith vertex of G is placed. We will have an auxialry variable tij , for every
edge (i, j) ∈ E. The SOCP will be:

minimize
∑

wijtij

subject to:
pk = ak for every airport ak ∈ A

||pi − pj || ≤ tij for every edge (i, j) ∈ E

The weight wij of an edge (i, j) is the number of times the edge is used by the paths πkl.

1

Stages of the Development

Stage I: Input Visualization. Draw the network. This should be done quickly.

Stage II: Choose the SOCP solver. For instance, http://www.stanford.edu/~boyd/old_
software/SOCP.html , SeDuMi (for MATLAB) http://sedumi.mcmaster.ca/ , or NEOS
server http://www-neos.mcs.anl.gov/.

Stage III: Output. Feed the input into the SOCP solver, get the output, and visualize it.

Allowable Regions

If the project runs fast, at the next stage of the development, we may take into account that the
locations for the hubs are not completely arbitrary — they need to be supervised by human air
traffic controllers (ATC). The developed tool must allow ATC to specify an allowable region, Ri,
for every hub hi (see Fig. 1). This is done through the following stages:
Stage I: Recognizing Vertices by Clicks. Create interface to recognize which vertex of the

drawn network the user has clicked on.

Stage II: Specifying Allowable Regions. Create interface for the user to click at the locations
of the vertices of an allowable region. Check that the region is convex. In the final tool this
should interact with the previous stage as follows: the user clicks on a hub, then specifies the
region for that hub.

Stage III: Adding Linear Constraints to SOCP. The description will be provided on demand.

Possible Extensions

Later, a user may be given a possibility to input his own set of airports, paths between them and
demands, and to define the network. It would be convenient for the user to also be able to mark
some nodes of the network as static (not only the airports, but also some hubs); this is equivalent to
specifying an allowable region equal to the point, at which the node is situated. For demonstration
purposes a set of examples may be created, each including a network, demands and paths, and a set
of allowable regions. The next stage would be to add a realistic feel to the tool: use a map in the
background, base examples on real airports locations and the existing highways, include weather
and no-fly zones, etc.

2

http://www.stanford.edu/~boyd/old_software/SOCP.html�
http://www.stanford.edu/~boyd/old_software/SOCP.html�
http://sedumi.mcmaster.ca/�
http://www-neos.mcs.anl.gov/�

