Capacity Estimation

Based on Joe Mitchell's slides

Output: Capacity

- What is capacity?
- Estimate of number of aircraft that can be safely routed within a constrained airspace.
- Demand-driven capacity
- Sector-induced capacity: MAP, human factors, depends on complexity of traffic flows and presence of hazardous weather

Output: Capacity

- We focus on airspace-induced capacity
 - (vs. sector-induced capacity)
 - What are the fundamental geometric limitations on throughput induced by constraints?
- Possible measures:
 - Yes-or-no: Can demand be met?
 - What is maximum α so that $\alpha\mbox{-scaled}$ demand can be met?
 - How many aircraft per hour of class *i* can be safely routed from source to sink through airspace?
 - Multiclass capacity: Can we route k_1 lanes of class 1, k_2 lanes of class 2, k_3 lanes of class 3, etc?

Capacity: Theoretical View

- More formally, capacity computation is a *packing* problem in 4D space-time:
 - Can a given number of flows ("tubes" in space-time) be packed within an airspace so that each flow is constraint-free for its aircraft class?
- Many other constraints, including sector-induced capacity, route dynamics, interactions between classes, contingency routes, holding patterns, etc.
- Stochastic model: Each flow must be feasible with at least a certain probability.
- Capacity is a random variable: Determine the distribution of capacity.

The View in Space-Time

Flow-Based Route Planner (FBRP)

Single Class Capacity Estimation: Determining # Air Lanes Among Constraints

All constraints Hard

Applies to ensemble-based probabilistic weather: Produces a probability distribution for capacity, X

Mincuts Among Hard Constraints

Reference frame is fixed (e.g., for centers) or moving (e.g., moving FCAs).

Mincut for traffic through an annulus to the airportal Mincut for traffic across a sector or FCA

Mincuts computed using a geometric shortest path algorithm, treating constraints as regions of O-weight

Mixed RNP Air Lanes

Satisfying Different RNP Demands

2 of 2 RNP-3 lanes routed; 2 of 3 RNP-5 lanes routed; 0 of 5 RNP-10

Lexicographic Min-Cost Flow

First, route as much of RNP-3 demand as possible (2 of 2)

Then, subject to those lanes as constraints, route as much RNP-5 demand as possible (2 of 3)

No room for RNP-10

lanes

Buffers, Holding Patterns, and Wiggle Room

Multiclass Capacity

- Can we route k₁ lanes of class 1, k₂ lanes of class 2, k₃ lanes of class 3, etc?
- Example: 2-class, 2-type model of Hard/Soft constraints
 - Class 1: Avoid type-1 (red) constraints ("Hard"), but can ignore type-2 (blue) constraints ("Soft")
 - Class 2: Must avoid both type-1 and type-2 constraints (Hard and Soft)

Bicriteria decision:

Other combinations of air lanes for class-1 and class-2 aircraft.

Hardness

• Weak NP-hardness (from PARTITION)

[Shang Yang'08]

Flows Among Hard and Soft Constraints

flow

flow

4 airlanes avoiding only hard constraints

Once one airlane is established avoiding hard+soft constraints, There is capacity for only 2 additional airlanes for "wellequipped" aircraft

Competing for airspace resources: Two levels of equipage yields a "multicommodity" flow problem NP-hard, in general flow

flow

Hard and Soft Mincuts

Hard/Soft Mincuts

Workload Issues: Sector-Induced Capacity Bounds

- Max-flow/mincut theory determines airspace-induced throughput
- "Capacity" must include workload constraints: MAP, traffic complexity

Flows and Routes

Routing to Avoid Hazardous Weather

Geometric Shortest Paths

- Given:
 - (Outer) Polygon P
 - Polygonal obstacles
 - Points s and t

- Find:
 - shortest s-t path
 - avoiding obstacles
- Robotics motion planning

Application: Weather Avoidance

Basic Optimal Paths

Visibility Graph

Local optimality: taut string

> Naïve algorithm: O(n³)

Better algorithms: O(n² log n) sweep O(n²) duality

BEST: Output-sensitive alg: O(|E|+n log n)

Visibility Graphs

Visibility Graph <u>applet</u>

Shows also the topological sweep of an arrangement, animated.

Example: Shortest Path in Simple Polygon

- Triangulate P
- Determine the "sleeve" defined by the triangles in a path in the dual tree, from start to goal
- WUSTL <u>applet</u>

Other Applets

STIP online <u>applet</u> : search for a target in polygon

Rectilinear watchman, online <u>applet</u>

Shortest Path Map

Avoiding Hazardous Weather

Optimal Path Map: Control Law

Fix s Vary t

Hazardous Weather Avoidance

Hazardous Weather Avoidance

Optimal Paths: Weighted Regions

Different costs/nmi in different regions (e.g. weather intensity)

Local optimality: Snell's Law of Refraction

Can also apply gridbased searching

Grid-Based Searches

33

Other Optimal Path Problems

- 3D shortest paths: NP-hard
 - But good approximations
- Turn constraints:
 - Min-# turns: Link distance
 - Bounds on turn angles (radius of curvature)
- "Thick" paths (for air lanes)

Turn-Constrained Weighted Costs: Weather Route Generator (WRG)

35

Weather Avoidance Algorithms for En Route Aircraft

3 Flows

Routing MaxFlow

Find maximum number of air lanes through the mincut

Comparison of Throughput

 Compare number of lanes using static jetway network versus dynamic max-flow air lanes:

Special Case: Airportal

- A geographic region, usually surrounding a major population
 - region, that contains large, high-density airports and additional satellite airports
- We allow 1, 2, or 3 arrival fixes per quadrant (cornerpost) passing over anchor points

Chicago Airportal would include all these airports and optimize their collective performance as an Airportal system.

METRON AVIATION

Jimmy Krozel (Metron)

3D Weather, 2D Manifold

En Route Weather Avoidance Routes define "poke through" constraints on the 2D Descent Manifold

Jimmy Krozel (Metron)

Arrival Tree: Merging Traffic

En Route Weather Avoidance Route creates a "poke through" constraint on the 2D Descent Manifold

3D Weather Hazard Constraint intersecting with 2D Descent Manifold

Jimmy Krozel (Metron)

Arrival and Departure Trees

Descent Profiles

ASDO Capacity Estimation

CIWS Convective Wx VIL Data

CIWS="Corridor Integrated Weather System" CWAM="Convective Weather Avoidance Model" ASDO="Air Services Development Office"

CWAM Hazard Identification

ASDO Capacity Estimation

Define Critical Graph Mincut Capacity given RNP